...
首页> 外文期刊>journal of chemical physics >On the electrostatic interaction in macroionic solutions
【24h】

On the electrostatic interaction in macroionic solutions

机译:On the electrostatic interaction in macroionic solutions

获取原文
   

获取外文期刊封面封底 >>

       

摘要

A general theory on the electrostatic interaction in macroionic solution is developed. It is assumed that the motion of macroions is adiabatically cut off from that of simple ions and the distribution of simple ions is determined by the Boltzmann distribution. A generalized Poissonndash;Boltzmann equation is solved with the linearization approximation. The total electrostatic energy of the solution is obtained, from which the Helmholtz free energy of interaction is calculated. The Gibbs free energy is derived by the use of its additivity relation with respect to the number of the ionic species. The two free energies are demonstrated not to be equal to each other for highly charged macroions, in contrast with widely accepted view. It is shown that the electrostatic potential for a pair of macroions predicts strong attraction between the macroions, as was the case with the Levinendash;Dube treatment, and the Helmholtz pair potential results in purely repulsive interaction, in accordance with the DLVO theory. However, the Gibbs pair potential leads us torepulsionat small interparticle separations andattractionat large distances, creating a lsquo;lsquo;secondaryrsquo;rsquo; minimum (with a potential valley deeper than the thermal energy for spherical colloidal particles). Without taking refuge in a van der Waals attraction the theory evidently substantiates the experimental fact recently reported, namely the existence of Coulombic intermacroion attraction through the intermediary of counterions. Thus, the ordering of macroions (synthetic and biological) and charged latex particles in solutions can be accounted for in terms of the present theory: By taking the lattice sum of the pair potential, it is shown that the bcc structure for polymer latex particles is favored in the small kgr;aregion (kgr;minus;1: the Debye radius,a: the radius of particle), whereas closehyphen;packed structures dominate in the intermediate and large kgr;aregions. In the whole regions, the simple cubic structure is disfavored. The interparticle distance (the position of the secondary minimum) is shown to become smaller with increasing kgr;a, while the potential valley takes the deepest value at kgr;aape;1. The interparticle distance is found to decrease with latex concentration and temperature. These theoretical outcomes are compared with experimental data currently available.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号