首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Addition and cycloaddition reactions of β-chloroazo-olefins
【24h】

Addition and cycloaddition reactions of β-chloroazo-olefins

机译:β-氯偶氮烯烃的加成和环加成反应

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1985 Addition and Cycloaddition Reactions of (3-Chloroazo-olefins Thomas L. Gilchrist * and John A. Stevens The Robert Robinson Laboratories, University of Liverpool, P.O. Box 147, Liverpool L69 3BX Brian Parton Imperial Chemical Industries p.I.c.; Organics Division, Blackle y, Manchester IM9 3DA 2-Chloro-l -(2,4-dinitrophenylazo)ethene (1a) has been isolated, and the corresponding alkoxy- carbonylazo compounds (1 b) and (lc)have been generated in solution, as the first examples of azo- olefins bearing single P-halogeno substituents. The compounds (la) and (lb) undergo 4 + 21 cycloaddition to indene and to ethyl vinyl ether with high endo stereoselectivity. Furan and cyclopentadiene give the cycloadducts (6) and (7), respectively, with (1a).Nucleophilic addition- elimination reactions are observed with piperidine, indole, thiophenol, and carbanions. In most of these reactions the primary products are subject to further nucleophilic attack: thus, the hydrazones (11) formed by addition of carbanions are converted into aminopyrroles (12) by further reaction with the carbanions and dehydration. 0-Chloroazo-olefins of general structure (1) have not previously CICH=CHN=NR CL2 CHCHrNNHR been prepared. Chattaway and Farinholt investigated reactions (2)of dichloroacetaldehyde with arylhydrazines and observed (1) a; R = C6H3(N02)2-2,4transient colours in solution which they ascribed to azo-olefins.2 We have investigated their preparation and properties, par- b; R = C0,Me ticularly their addition and cycloaddition reactions.The c; R = C02CMe3 corresponding nitroso-olefin, 2-~hloronitrosoethylene, has d; R = S02C6H4.Me-4been generated as a transient intermediate and has been shown to undergo addition-elimination reactions; it also acts as a four n-electron component in hetero-Diels-Alder reaction^,^ like CL FL many other nitroso-olefins.' In contrast, 2,2-dichloronitroso- ethylene acts as a two n-electron component (through the nitroso group) in cycloaddition reactions with conjugated EtOJ$dienes. As there is usually a broad similarity in the chemistry of EtOQN nitroso- and azo-olefins we wished to establish whether this C02Me extended to the P-chloro derivatives. PP-Dichloroazo-olefins undergo nucleophilic addition-elimination reactions readily but no cycloaddition reactions of these compounds have so far been achieved.Preparation of the Azo-o1ejns.-Dichloroacetaldehyde, pre-pared by the reduction of chloral hydrate, was converted into the known '2,4-dinitrophenylhydrazone(2a). This derivative can also be prepared from the commercially available diethyl acetal of dichloroacetaldehyde. The alkoxycarbonylhydrazones (2b)and (k),which are new compounds, were prepared by the same method as that reported for the preparation of the toluene- p-sulphonylhydrazone (2d).* The azo-olefins (la-) were generated from the hydrazones by reaction with anhydrous sodium carbonate suspended in dichlorornethane. The 2,4-dinitrophenylazo-olefin (la) was isolated as a red crystalline solid.The Hn.m.r. spectrum of the compound in CDCl, indicates that it is a 7:3 mixture of (E)-and (Z)-isomers. Azo-olefin (lb) was isolated as an orange solid which proved to be unstable, and it was not fully characterised. The compound is, however, long-lived in solution. N.m.r. and i.r. solution spectra were obtained for both the azo-olefins (lb) RHand (lc);in each case n.m.r. showed the presence of only a single isomer, which was identified as the (E)-isomer on the basis of the coupling constant ( 11.9 Hz) for the vinylic hydrogens. Cycloaddition Reactions.-In common with many other azo- (9) a; R = PhS b; R = Indol-3-ylolefins,' but in contrast to the PP-dichloroazo-olefins, compounds (la) and (lb) were found to participate as the four n-electron components in Diels-Alder reactions with electron- rich dienophiles.The azo-olefin (la) reacted slowly with indene (101 1742 J. CHEM. SOC. PERKIN TRANS. I 1985 at room temperature to give, in high yield, a 1 :1 adduct as a single stereoisomer. This was assigned structure (3a), with an all- cis arrangement of substituents at C-4, C-4a, and C-9b, on the basis of the vicinal coupling constants in the n.m.r. spectrum. The coupling constants J4,40= 6.7 Hz and J4a,96= 7.2 Hz are consistent with a structure in which 4-H and 9b-H occupy pseudo-equatorial positions and 4a-H a pseudo-axial position. The azo-olefin (lb) gave an an analogous adduct (3b)with indene; again, only one stereoisomer was detected.Ethyl vinyl ether also formed 1:1 adducts with each of these azo-olefins. That from compound (la) was a single stereoisomer, which was assigned structure (4a). The corresponding adduct (4b)was isolated as the major product of the reaction of azo-olefin (lb) with ethyl vinyl ether; an isomer, which was assigned structure (9,was also isolated. The tetrahydropyridazines (4b) and (5) were clearly distinguishable by n.m.r.; in particular, 4-H in (4b)(S4.33) shows only weak vicinal coupling whereas 4-H in (5) (6 4.64) is strongly coupled (J 12.2 Hz) to one of the adjacent hydrogens at C-5. In both isomers 6-H shows only weak vicinal coupling, indicating that the 6-ethoxy groups occupy pseudo- axial positions: the anomeric effect is observed in these, as in related,1° tetrahydropyridazines. In the compounds (4) the chloro substituents at C-4 are cis to the ethoxy groups at C-6, and so also occupy pseudo-axial positions. The adduct (4b) was found to isomerise to compound (5) when stored for several weeks at -50 "C; thus, (5) may be a secondary product of the reaction. Furan reacted with the azo-olefin (la) to give a cyclo-adduct which was assigned the structure (6).Cyclopentadiene also reacted with this azo-olefin but the primary reaction product could not be isolated by chromatography; instead, a displacement product (7) was obtained after elution of the chromatography column with methanol. In these reactions the azo-olefins (la) and (lb) act as heterodienes. Moreover, in those adducts for which the stereo- chemistry can be deduced from the n.m.r.spectra, the relative positions of the substituents are consistent with endo addition to the (E)-azo-olefins as the primary reaction. This observation applies to the azo-olefin (la) which, as described earlier, exists as an (E)/(Z)mixture in solution. It seems likely that these isomers can interconvert easily, and that addition takes places preferen- tially to the (E)-isomer. The preference for endo transition states in these reactions is consistent with previous studies of azo-olefin additions. O* Addition-Elimination Reactions with Nucleophi1es.-The azo-olefin (la) reacted readily with a range of nucleophiles. Piperidine gave the addition-elimination product (8),analogous to those formed from PP-dichloroazo-olefins and secondary amines.6 Although both thiophenol and indole also reacted with (la) in the presence of sodium carbonate, simple addition- elimination products were not detected; instead, the products (9), each incorporating two moles of the nucleophile, were isolated in moderate yield.The reasons for further addition of thiophenol in such reactions have been discussed earlier; in the case of reaction with indole, an intermediate addition-elimination product in the tautomeric form (10)would be highly susceptible to nucleophilic attack. The azo-olefins (la) and (lb) reacted readily with activated methylene compounds in the presence of base to give the hydrazones (11). These are the products to be expected from addition-elimination reactions of the carbanions, followed by tautomerisation.Further attack of the carbanions on these hydrazones was observed in several cases. Pyrroles (12) were isolated, these being the products of Michael addition of the carbanions to the hydrazones followed by cyclodehydration of the adducts. Evidence for this sequence was provided by the reaction of the hydrazone (1 1 b) with pentane-2,4-dione, which R2 H R3 NNHR' (11) a; R1 = C!3(NO2)2-2,4, R2= R3 = Ac b; R1 = C02Me, R2 = R3= Ac c ; R' = C02Me, R2 = R3 = Bz d; R1 = C02Me, R2 = R3 = C02Et e; R1 = C02Me, R2 = R3 = CN f; R1 = C02Me, R2 = NO2, R3 = C0,Et g; R1 = C02 Me, R2 R3 = C02CMe20C0 (12) a; R1 = C6H3(NO2)2-2,4, R2 = R3= Me b; R1 = C02Me, R2= R3= Me c; R1 = C6H3(N02)2-2,4, R2 = Me, R3= OEt d; R1 = C6H3(N02)2-2,4, R1R2 = CH2CMe2CH2 r 03 Me02CNH (14) Rl CO NMq gave the pyrrole (12b).This pyrrole was also formed directly by the reaction of the azo-olefin (lb) with an excess of pentane-2,4- dione in the presence of sodium carbonate.The azo-olefin (la) reacted with dimedone (2 mol) to give the Michael adduct (13), which was cyclised to the pyrrole (12d) on treatment with acid. Ethyl acetoacetate reacted in a similar manner with (la) but the Michael adduct was formulated as the cyclic tautomer (14)(as a mixture of diastereoisomers) on the basis of its n.m.r. spectrum. This compound was also converted into a pyrrole, compound (12c), by reaction with acid.Conjugate nucleophilic addition to unsaturated hydrazones of type (11)should, in principle, provide a more general route to pyrroles. Severin and his co-workers have described related reactions in which pyrroles (16) are formed by reduction of the hydrazones (15)' * However, preliminary experiments, in which carbanions derived from other activated methylene compounds were added to the hydrazones (11) were unsuccessful in this respect: although the additions took place, mixtures of products resulted and pyrroles were not isolated in useful yield. J. CHEM. SOC. PERKIN TRANS. i 1985 Experimental 1.r. spectra were recorded as KBr discs. 'H N.m.r. spectra were recorded at 220 MHz in CDCl, on a Perkin-Elmer R34 instrument, and "C n.m.r.spectra at 25.2 MHz on a Varian XLlOO spectrometer, except where indicated otherwise. Electron impact mass spectra were obtained on AEI MS12 and MS902 instruments. Melting points are uncorrected. Ether refers to diethyl ether. Light petroleum refers to that fraction boiling in the range (60-80 "C). Dichloroacetaldehyde Methoxycarbonylhydrazone (2b).-Freshly distilled dichloroacetaldehyde (5.0 g, 44.3 mmol) was added to a stirred solution of methoxycarbonylhydrazine (3.62 g, 40.2 mmol) in propanoic acid (30 cm') at room temperature. After 1 h the reaction mixture was cooled to 0 "C and left at this temperature for 6 h. The solid which was filtered off, washed, dried, and crystallised was the hydrazone (2a) (4.9 g, 6679, m.p.180-181 "C (from ethyl acetate-hexane) (Found: C, 26.2; H, 3.1; N, 14.8. C4H6Cl,N202 requires C, 25.9; H, 3.2; N, 15.1); vmax. 3 230 (NH) and 1710 cm-' (CO); S(CD,),CO 3.77 (3 H), 6.61 (1 H, d, J 8.0 Hz), 7.67 (1 H, d, J 8.0 Hz) and 10.22 (1 H); m/z 188,186, and 184 (M'). Dichloroacetaldehyde t-Butoxycarbonylhydrazone (2c).-Dichloroacetaldehyde (2.0 g, 17.7mmol) and t-butoxycarbonyl- hydrazine (2.33 g, 17.7 mmol) similarly gave the hydrazone (2c) (2.85 g, 71), m.p. 115 "C (decomp.) (from chloroform-hexane) (Found: C, 36.8; H, 5.3; N, 12.1. C,H,,Cl,N,O, requires C, 37.0; H, 5.3; N, 12.3);vmax.3 260 (NH) and 1 710 cm-' (CO); 6 1.50(9 H),6.29(1 H,d, J8.0Hz), 7.45 (1 H,d, J8.0Hz),and 8.72 (1 H); m/z (by chemical ionisation) 231,229, and 227 (M++ l), 171, and 57 (base).2-Chloro- 1 -(2,4-dinitrophenylazo)ethene (1a).-Dichloro-acetaldehyde 2,4-dinitrophenylhydrazone (0.40 g, 1.37 mmol) was stirred with anhydrous sodium carbonate (0.6 g, 5.66 mmol) in dichloromethane (50 cm') for 24 h at room temperature. Evaporation of the filtrate gave a red solid which was crystal- lised to give the azo-olefin (la) (0.255 g, 73), m.p. 73-74 "C (from dichloromethane-light petroleum) (Found: C, 37.5; H, 1.9; N, 22.1. C8H,CIN,0, requires C, 37.4; H, 1.9; N, 21.8); vmaX.1 600, 1 580, 1 YO, 1 515, and 1 340 cm-'; Lmax.(CH2C12) 327 nm (E 18 700); 6(Z)-isomer) 7.22 and 7.61 (each 0.3 H, d, J 5.5 Hz)and (E)-isomer 7.72 ad 7.79 (each 0.7 H, d, J 12.0 Hz); 7.60-7.65 (1 H, m),8.48-8.58 (1 H, m), and 8.75-8.79 (1 H, m); m/z 258 and 256 (M+).1-Chloro-2-(methoxycarbonylazo)ethene(1b).-The hydra-zone (2b)(0.50 g, 2.7 mmol) in tetrachloromethane (50 cm3) was stirred with sodium carbonate (1.0 g) for 24 h. The solution was evaporated to small volume and the azo-olefin was identified from solution spectra: vmax.1 770 (CO), 1 600, and 1 480 cm-';A,,,,,. 412 nm; 6 (60 MHz, CCl,) 3.98 (3 H), 7.46 (1 H, d, J 11.9 Hz), and 7.80 (1 H, d, J 11.9 Hz). 2-(t-Butoxycarbonylazo)-l-chloroethene (lc).-By the method described for compound (lb) the azo-olefin (lc) was obtained in tetrachloromethane solution from the hydrazone (2c)(0.50 g, 2.2 mmol); vmax,1 765 (CO), 1 600, and 1 480 em-'; 6 (60 MHz, CCl,) 1.58 (9 H), 7.38 (1 H, d, J 11.9 Hz), and 7.68 (1 H,d, J11.9Hz). 4-Chloro-1-(2,4-dinitrophenyl)-4,4a,5,9b-tetrahydro-1H-indenoc 1,2-clpyridazine (3a).-A solution of the azo-olefin (la) (0.30 g, 1.17 mmol) and indene (0.40 g, 5.55 mmol) in dichloromethane (50 cm') was kept at room temperature until the azo-olefin was no longer detectable (6 days).Column chromatography (silica; ether-light petroleum 1 :2) gave the pyridazine (3a) (0.41 g, 9473, m.p. 152-154 "C (from chloroform-hexane) (Found: C, 54.7; H, 3.5; N, 15.2. C,,H,,CIN,O, requires C, 54.8; H, 3.5; N, 15.0); vmax.1 595, 1 520, and 1 505 cm-'; 6 3.27 (2 H, m, 5-H), 3.51 (1 H, m, 4a-H), 4.78 (1 H, dd, J6.7 and 2.5 Hz, 4-H), 5.48 (1 H, d, J 7.2 Hz, 9b-H), 6.99-7.10 (3 H, m, 3-H and 2 Ar-H), 7.26 (2 H, m), 7.49 (1 H, d), 8.32 (1 H, dd), and 8.55 (1 H, d); decoupling experiments established J3,,2.5 Hz, J4,,@ 7.2 Hz; m/z 3746.7 Hz, and J4a,9b and 372 (M').Methyl 4-Chloro-4,4a,5,9b-tetrahydro-1H-indeno l12-c)py- ridazine-1 -carboxylate (3b).-To a solution of the hydrazone (2b) (0.50 g, 2.7 mmol) and indene (1.0 cm3, 8.6 mmol) in dichloromethane (50 cm3) was added sodium carbonate (1.0 g) and the mixture was stirred for 48 h. The azo-olefin (lb)was still detectable (t.1.c.). The reaction mixture was then heated under reflux for 24 h, cooled, and filtered. Layer chromatography of the filtrate gave the pyridazine (3b) (0.35 g, 4973, m.p. 1361 37 "C (from dichloromethane-hexane) (Found: C, 59.0 H, 5.1; N, 10.4. C13H13ClN20, requires C, 59.0; H, 5.1; N, 10.6); vmax.1 700 and 1 610 cm-' (CO); 6 3.14 (2 H, m, 5-H), 3.44 (1 H, m, 4a-H), 3.87 (3 H), 4.63 (1 H, dd, J 5.8 and 2.2 Hz, 4-H), 5.60 (1 H, d, J 8.3 Hz, 9b-H), 7.15-7.30 (4 H, m, 3-H and 3 Ar-H), and 7.57 (1 H, m); decoupling established J3,,2.2 Hz, J4.40 8.3 Hz; m/z 266 and 264 (M+).5.8 Hz, and J4a,9b 4-Chloro-1-(2,4-dinitrophenyl)-6-ethoxy-1,4,5,6-tetrahydro-pyridazine (4a).-The azo-olefin (la) (0.50 g, 1.95 mmol), toluene (10 cm3), and ethyl vinyl ether (3 cm3) were heated in a sealed tube at 50 "C for 24 h.Column chromatography (silica) and elution with ether gave the pyridazine (4a) (0.49 g, 77), m.p. 110"C (decomp.) (from ether-hexane) (Found: C, 43.6; H, 3.9; N, 16.9. C,,H,,CIN,O, requires C, 43.8; H, 4.0; N, 17.0); vmax~1600,1535,1510,and1333cm-';61.25(3H,t),2.49(1H, ddd, J 15.5,6.8,and 2.8 Hz, 5-H), 2.87 (1 H, d, J 15.5 Hz, showing further small coupling, 5'-H), 3.62 (2 H, m), 4.41 (1 H, d, J 6.8 Hz, showing further coupling, 4-H), 5.23 (1 H, ca.t, 6-H), 7.08 (1 H, m, 3-H), 7.46 (1 H, d), 8.36 (1 H, dd), and 8.57 (1 H, d); decoupling established J4,5= 6.8 Hz, J4.5,= ca. 1 Hz, J,,,. = 15.5 HZ, J5.6 = 2.8 HZ, and J5s.6 = ca. 2.7 HZ; m/z 293 (M+ -35) and 202 (base). Methyl 4-Chloro-6x-etho.xy-1,4,5,6-tetrahydropyridazine-1-carboxylate (4b)and its 4P-lsurner (5).-The hydrazone (2b) (0.50 g, 2.7 mmol) and ethyl vinyl ether (1 cm3) were stirred in dichloromethane (50 cm3) with sodium carbonate (1 g) for 48 h. Layer chromatography (silica) gave, with dichloromethane as eluant, the pyridazine (4b) (0.30 g, 51) as an oil (Found: M+, 220.06146.C8Hl,ClN,03 requires M+, 220.061 04); 6 1.03 (3 H, t), 2.18 (1 H, ddd, J 15.6,7.2, and 3.3 Hz, 5-H), 2.54 (1 H, d, J 15.6 Hz, showing further coupling, 5'-H), 3.41 (2 H, m), 3.74 (3 H),4.33 (1 H, dd, J7.2 and 3.0 Hz,4-H), 5.61 (1 H, CQ. t, Jca. 3 Hz, 6-H), and 6.99 (1 H, s, br, 3-H); decoupling gave J4,5= 7.2 Hz, J4,5, = 3.0 Hz, J5,5p == 15.6 Hz, J5*6 = 3.3 Hz, and J5f,6 ca. 3 Hz. A second band from the plate was extracted and gave thepyridazine (5)as an oil (Found: M+,220.061 46); 6 1.14 (3 H, t), 1.97 (1 H, ddd, J 12.5, 12.2, and 2.3 Hz, 5-H), 2.54 (1 H, m, 5'-H), 3.60 (2 H, q), 3.87 (3 H), 4.64 (1 H, dd, J 12.2 and 7.2 Hz, showing further coupling, 4-H), 5.64 (1 H, ca.t, J ca. 2 Hz, 6-H), and 6.95 ( 1 H, s, br, 3-H);decoupling gave J4,5= 12.2Hz, J4,5,= 7.2Hz,J5,,. = 12.5Hz,J5., = 2.3Hz,andJ5.., = ca.2Hz.Over a period of several weeks at -50 "C, the pyridazine (4b) isomerised to (5). 4-Chloro-1-(2,4-dinitrophenyl)-1,4,4a,7a-tetrahydrofuro3,2-clpyridazine (6)-The azo-olefin (la) (0.30 g, 1.17 mmol), furan (5 cm3), and dichloromethane (50 cm3) were mixed and the solution set aside until the azo-olefin was no longer detectable 1744 (18 days). Column chromatography (silica) and elution with ether-hexane (2: 1) gave the pyridazine (6)(0.285 g, 7573, m.p. 162-1 63 "C (from dichloromethane-hexane) (Found: C, 44.3; H, 2.9; N, 17.2. C,,H,CIN,O, requires C, 44.4; H, 2.8; N, 17.2); v,,,.1 600, 1 533, 1 504, and 1 335 cm-'; S(CD,),CO 4.90(1 H, m, 4-H), 5.43 (1 H, m, 7-H), 5.61 (1 H, d, J 10.0 Hz, showing further coupling, 4a-H), 5.74 (1 H, d, J 10.0 Hz, showing further coupling, 7a-H), 6.7 1 (1 H, m, 6-H), 7.52 (1 H, m, 3-H), 7.67'(1 H,d), 8.43 (1 H,dd),and 8.54(1 H,d); J,,, = ca. = ca. 2 Hz, and J4a,701.5 Hz, J4.40 = 10.0 Hz; mjz 326 and 324 (M+)-1-(2,4-Dinitrophenyl)-4-methoxy-4,4a,5,7a-tetrahydro-1H-cyicopentacpyridazine (7).-A solution of the azo-olefin (la) (0.30 g, 1.17 mmol) and cyclopentadiene (5 cm3) in dichloro- J. CHEM. SOC. PERKIN TRANS. I 1985 m.p. 170 "C (from chloroform) (Found: C, 48.9; H, 3.6; N, 17.3. C,3H12N,0, requires C, 48.8; H, 3.8; N, 17.5); v,,,. 3 265 (NH), 1 692 (CO), 1 662 (CO), 1 586, and 1 334 cm-'; 6 2.42 (3 H),2.48(3H),7.22(1H,d),8.03(1H,d,JlO.OHz),8.13(1H,d, J 10.0 Hz), 8.39 (1 H, dd), 9.1 2 (1 H, d), and 11.42 (1 H, NH); m/z 320 (M+).Methoxycarbonylhydrazones (1 1b)-( 1 lg): General Pro-cedures.-Method A. The hydrazone (2b) (5 mmol), the activated methylene compound (8 mmol), and sodium carbon- ate were stirred together in dichloromethane for the time specified. The product was isolated by column chromatography (silica). Method B, The hydrazone (2b) (5 mmol), the activated methylene compound (8 mmol), acetic acid (10 mmol), and methane (50 cm3) was kept at 20 "C for 20 h. Layer chromato- graphy (silica) and development with ether-hexane (3: 1) gave one major product which required elution with methanol to remove it from the support.This gave a solid which was identified as the pyridazine (7) (0.06 g, 16), m.p. 162-165 "C (from dichloromethane-hexane) (Found: C, 52.9; H, 4.5; N, 17.5. C,,H,,N,O, requires C, 52.8; H, 4.4; N, 17.6); vmax. 1 600, 1 535, and 1 330 cm-'; 6 2.50-2.85 (3 H, m, 4a-H and 5-H), 3.40 (1 H,dd,JlO.Oand2.0Hz,4-H),3.54(3H),5.00(1H,d,br,J7.0 Hz, 7a-H), 5.89(1 H,m),6.14(1 H,m), 7.21 (1 H,d),7.26(1 H,d, J2.0 Hz, 3-H), 8.31 (1 H, dd), and 8.49 (1 H, d); m/z 318 (M'). 1-2-(2,4-Dinitropheny1azo)ethenyllpiperidine @).-A solu-tion of the azo-olefin (la) (0.40 g, 1.55 mmol) in dichloro- methane (50 cm3) was stirred and piperidine (5 cm3) was added dropwise. The solution was evaporated after 0.5 h to give the azo-olejin (8) (0.43 g, 91), m.p.153-154 "C (from dichloro- methane-hexane) (Found: C, 51.2; H, 5.1; N, 23.3. C, 3H,N,O, requires C, 51.2; H, 4.9; N, 23.0); v,,,. 1 615, 1 585, and 1 310 cm-'; ILmax,(CH2C12) 326 (E 6 200) and 488 nm (50 0oO); 6 1.77 (6 H), 3.55 (4 H), 7.55 (1 H, d, J 10.6 Hz), 7.65 (1 H, d, J 10.6 Hz), 7.78 (1 H, d), 8.26 (1 H, dd), and 8.50 (1 H, d); m/z 305 (M'). 2,2-Bisphenylthioacetaldehyde 2,4- Dinitrophenylhydrazone (9a).-A solution of the azo-olefin (la) (0.30 g, 1.17 mmol) and thiophenol (1 cm3) in dichloromethane (50 cm3) was stirred with anhydrous sodium carbonate (0.75 g) for 24 h and gave the dinitrophenylhydrazone (9a) (0.25 g, 4979, m.p. 138-140 "C (from dichloromethane-hexane) (lit.,6 138-1 39 "C). 2,2-Di-indoi-3-ylacetaldehyde 2,4-Dinitrophenylhydrazone (9b).-The hydrazone (2a) (0.50 g, 1.7 mmol), indole (0.20 g, 1.7 mmol), and anhydrous sodium carbonate (1 g) were stirred in dichloromethane (50 cm3) for 24 h.The filtrate gave, by layer chromatography (silica) and development with ether-hexane (4: l), the 2,4-dinitrophenylhydrazone(9b) O. 15 g, 39 based on the hydrazone (2a), yield not increased by the use of an excess of indole, m.p. 21 3-214 "C (from ethyl acetate-hexane) (Found: C, 63.3; H, 4.2; N, 18.2. Ct4H18N,0, requires C, 63.4; H, 4.0; N, 18.5); v,,,, 3 400 (NH), 3 270 (NH), 1 615, 1 590, and 1 325 cm-'; S(CD,),CO 5.59 (1 H, d, J7.3 Hz, 2-H), 6.97 (2 H, m), 7.09 (2 H, m), 7.25 (2 H, m), 7.39 (2 H, m), 7.62 (2 H, m), 8.06 (1 H, d), 8.32 (1 H, dd), 8.42 (1 H, d, J7.3 Hz, 1-H), 8.92 (1 H, d), 10.17 (2 H), and 11.28 (1 H).3-Acetylpent-2-ene- 1,4-dione 1 -(2,4- Dinitrophenylhydrazone) (lla).-The azo-olefin (la) (0.50 g, 1.95 mmol) and pentane-2,4- dione (0.195 g, 1.95 mmol) in dichloromethane (50 cm3) were stirred for 4 h with anhydrous sodium carbonate (1 g). The filtrate gave, by column chromatography (silica) and elution with ether-hexane (l:l), the azo-olefin (la) (0.324 g) and the hydrazone (1 la) (0.144 g, 65 based on azo-olefin consumed), piperidine (10 mmol) were heated in tetrahydrofuran (100 cm3) under reflux for 0.5 h. The reaction mixture was cooled and filtered. The filtrate was evaporated and the residue was dissolved in ethyl acetate (50 cm3). The solution was washed with water, dried, and evaporated to dryness; the residue was recrystallised.(a) 3-Acetylpent-2-me- 1,4-dione 1-methoxycarbonyihydra-zone (1 lb). Pentane-2,4-dione gave, by method A, the hydrazone (1 1b) (58), m.p. 149-1 50 "C (from dichloromethane-hexane) (Found: C, 50.9; H, 5.8; N, 13.4. C,H ,NZO4 requires C, 50.9; H, 5.7; N, 13.2); v,,,. 3 320 (NH), 1 755 (CO), and 1 685 cm-' (CO); h,,,,(EtOH) 254 (E 23 OOO) and 303 nm (23 OOO); 6 2.38 (3 H), 2.41 (3 H), 3.87 (3 H), 7.38 (1 H, d, J 10.0 Hz), 8.01 (1 H, d, J 10.0 Hz), and 9.74 (1 H, NH); m/z 212 (M+).The same product (50) was also obtained by method B. (b) 3-Benzoyl-4-phenylbut-2-ene-1 ,4-dione 1 -metho.uy- carbonylhydrazone (1 lc). Dibenzoylmethane gave, by method B, the hydrazone (llc) (50),m.p. 125-127 "C (from toluene) (Found: C, 67.9; H, 4.8; N, 8.4.C,,H16N,0, requires C, 67.9; H, 4.7; N, 8.3); v,,,. 3 200 (NH), 1 715 (CO), and 1 670 (CO) cm-'; 6 3.78 (3 H), 7.25-7.85 (12 H, m), and 8.75 (1 H, NH); m/z (by chemical ionisation) 337 (M' + 1). (c) Ethyl 2-ethoxycarbonyl-4-oxobut-2-enoate4-methoxy-carbonylhydrazone (1la). Diethyl malonate gave, by method B followed by layer chromatography (silica) and elution with ether-hexane (2: l), the hydrazone (lld) (25), m.p. 90-93 "C (from ether-hexane) (Found: C, 48.6; H, 5.9; N, 10.4. Cll- H,,N,O, requires C, 48.5; H, 5.9; N, 10.3); v,,,. 3 200 (NH), 1 720 (CO), and 1 710 cm-' (CO); 6 1.28 (3 H, t), 1.29 (3 H, t), 3.83 (3 H), 4.20 (2 H, q), 4.22 (2 H, q), 7.48 (1 H, d, J9.8 Hz), 8.19 (1 H, d, J 9.8 Hz), and 10.1 1 (1 H, NH); m/z 272 (M+).(d) 2-Cyano-4-oxobut-2-enonitrile4-metho.uycarbonylhydra-zone (lle). Malononitrile gave, by method B, the hydrazone (lle)(9573, m.p. 181 "C (decomp.) (from ethyl acetate-hexane) (Found: C, 47.0 H, 3.4; N, 31.4. C7H6N,0, requires C, 47.2; H, 3.4; N, 31.5); v,,,, 3 200 (NH) and 2.215 cm-' (CN);S(CD,),CO 3.81 (3 H), 7.99 (1 H, d, J9.8 Hz), 8.22 (1 H, d, J 9.8 Hz), and 11.0 (1 H, NH); mjz 178 (M+). (e) Ethyl 2-nitro-4-o.uobut-2-enoate4-metho.uycarbonylhydra-zone (1 lf). Ethyl nitroacetate gave, by method B, the hydrazone (Ilg) (14), m.p. 124-125 "C (from ether-hexane) (Found: C, 39.0; H, 4.4; N, 17.0. C8H,,N30, requires C, 39.2; H, 4.5; N, 17.1);v,,,.3 220 (NH) and 1 715 (CO) cm-'; 6 1.32 (3 H, t), 3.89 (3 H), 4.33 (2 H, q), 7.51 (1 H, d,J9.8 Hz), 7.78 (1 H, d, J9.8 Hz), and 9.05 (1 H, NH); mjz 254 (M'). (f) 2,2-Dimethyl-5-(2-oxoethylidene)-1,3-dio.uane-4,6-dione2-methoxycarbonylhydrazone (1 19). 2,2-Dimethyl- 1,3-dioxane- 4,6-dione gave, by method B, the hydrazone (llf) (90), m.p. 200 "C (from ethanol) (Found: C, 47.0; H, 4.7; N, 11.0. C,,HI2N2O6 requires C, 46.9; H, 4.7; N, 10.9); v,,,. 3 200 (NH) and 1 720 cm-' (CO);S(CD,),CO 1.76 (6 H), 3.82 (3 H), 7.87(1 H,d,JlO.OHz),8.86(1 H,d,JlO.OHz),and ll.OS(1 H, NH); m/z (by chemical ionisation) 257 (M+ + 1). J. CHEM. SOC. PERKIN TRANS. I 1985 3- Acetyl-4-( 1 -acetyl-2-oxopropyl)- 1 -(2,4-dinitrophenyl-amino)-2-rnethylpyrrole (12a).-The azo-olefin (la) (0.50 g, 1.95 mmol) and pentane-2,4-dione (0.39 g, 3.9 mmol) were dissolved in dichloromethane (50 cm3) and the solution was kept at 20 "C for 5 days.Layer chromatography (silica) and elution with ether gave the pJ7rrole (12a) (0.675 g, 8673, m.p. 190-191 "C (from dichloromethane-hexane) (Found: C, 53.4; H, 4.3; N, 14.0. C, ,H ,N407 requires C, 53.7; H, 4.5; N, 13.9); v,,,. 3 300br (NH) and 1 650 cm-' (CO); h,,,.(EtOH) 259 (E 17 500), 294 (14 700), and 310 nm (14 500);6 2.01 (6 H), 2.30 (3 H), 2.45 (3 H), 6.31 (1 H, d, Ar 6-H), 6.56 (1 H, 5-H), 8.35 (1 H, dd, Ar 5-H),9.22 (1 H, d, Ar 3-H), and 10.18 (1 H, NH); G,(CD,),SO 11.0 (q, 2-Me), 23.7 (q,4-Me), 30.2 (q, 3-Me), 107.0 (s, 4-CH), 114.3 (d, Ar 6-C), 117.2 (s, 4-C), 119.7 (s, 3-C), 121.7 (d, Ar 3-C), 122.6 (d, 5-C), 130.8 (s, Ar 2-C), 136.1 (s, Ar 4-C), 138.0 (s, 2-C), 147.1 (s, Ar 1-C), 191.0 (s, 4-C0), and 193.3 (s, 3-CO) p.p.m.3- Acetyl-4-( 1 -acety1-2-oxopropyl)- 1 -methoxycarbonylamino- 2-meth~dpyrrole (12b).-A solution of dichloroacetaldehyde methoxycarbonylhydrazone (2b) (3.0 g, 16.2 mmol) and pentane-2,4-dione (4.87 g, 48.7 mmol) in dichloromethane (100 cm3) was stirred with anhydrous sodium carbonate (6 g) for 14 days. Column chromatography (silica) and elution with ether gave the pyrrole (12b) (2.46 g, 52), m.p. 151-153 "C (from ethyl acetate-hexane) (Found: C, 57.2: H, 6.3; N, 9.7. C,,H,,N,O, requires C, 57.1; H, 6.1; N, 9.5); v,,,. 3 180 (NH), 1 750 (CO), and 1 627 cm-' (CO); S(CD,),CO 1.89 (6 H), 2.19 (3 H), 2.41 (3 H), 3.77 (3 H), 6.67 (1 H), and 9.66br (1 H, NH); Gc(CD,),CO 11.2 (q, 2-Me), 23.9 (9, 4-Me), 30.2 (9, 3-Me), 53.4 (q, 1-Me), 107.0 (s, 4-CH), 117.0 (s, 4-C), 119.5 (s, 3-C), 122.1 (d, 5-C), 138.0 (s, 2-C), 155.6 (s, 1-CO), 191.5 (s, 4-C0), and 195.2 (s, 3-CO) p.p.m.4,SDihydro- 1 -(2,4-dinitrophenylamino)-4-ethoxycarbonyl-3-(1-ethoxycarbonyl-2-oxopropyl)-5-hydroxy-5-methylpyrrole (14).-A solution of the azo-olefin (la) (0.50 g, 1.95 mmol) and ethyl acetoacetate (0.50 g, 3.93 mmol) in dichloromethane (50 cm3)was kept at 20 "C for 4days. Removal of the solvent gave the dihydropyrrole (14) (0.75 g, 80), m.p. 160 "C (decomp.) (from ethanol) (Found: C, 50.3; H, 4.9; N, 11.6. C,,H,,N,O,, requires C, 50.0; H, 5.0; N, 11.7);v,,,.3 420 (OH), 3 330 (NH), 1 700 (CO), and 1 650 cm-' (CO); 6(CD3),SO 1.19 (6 H, 2 x t), 1.35 (3 H), 2.16 (3 H), 3.05 and 3.08 (ss, together 1 H, 4-H), 3.90-4.20 (5 H, m), 5.64 and 5.67 (ss, together 1 H, 3-CH), 6.13 (1 H, 2-H), 7.66 (1 H, d), 8.24 (1 H, dd), 8.88 (1 H, d), and 9.50 (1 H, NH); m/z 462 (M+ -18). 1-(2,4-Dinitrophenylamino)-3-ethoxycarbonyl-4-(1-ethoxy-carbonyl-2-oxopropyl)-2-methylpyrrole(12c).-The dihydro-pyrrole (14) (0.10 g, 0.21 mmol) was heated in ethanol (25 cm3) under reflux with sulphuric acid (0.2 g) for 1 h. Water was added until the reaction mixture became turbid, and the mixture was then allowed to cool. The precipitate was filtered off and crystallised to give the pyrrole (la)(0.067 g, 70), m.p.11 1-1 14 "C (from aqueous ethanol) (Found: C, 52.2; H, 5.0 N, 12.1. C,OH,,N,O, requires C, 51.9; H, 4.8; N, 12.1); S(CD,),CO 1.22 (3 H, t), 1.31 (3 H, t), 2.24 (3 H), 2.43 (3 H), 4.19 (2 H, q), 4.26 (2 H, q), 5.43 (1 H, 4-CH), 6.46 (1 H, d, Ar 6-H), 6.90 (1 H, 5-H), 8.43 (1 H, dd), 9.07 (1 H, d), and 10.94 (1 H, NH); m/z 462 (Mf). 1745 Bis(4,4-dimethyl-2,6-dioxocyclohexyl)ucetullehyde 2,4-Dinitrophenylhydrazone (13).-A solution of the azo-olefin (la) (0.30 g, 1.17 mmol) and dimedone (0.66 g, 4.7 mmol) in dichloromethane(50cm3)wasstirredwithsodiumcarbonate( 1g)for 4 days at 20 "C. The solution was washed with water, dried, and the solvent was removed to give the hydrazone (13)(0.43 g, 76), m.p.176 "C (from dichloromethane-hexane) (Found: C, 57.4; H, 5.6; N, 11.5. C,,H,,N,O, requires C, 57.6; H, 5.6; N, 11.2);vmax.3 290 (NH) and 1 600 cm-' (CO); h,,,.(EtOH) 261 (E 34000) and 368 nm (20000); 6 1.15 (12 H), 2.38 (8 H), 5.03 (1H,d,J2.0Hz),7.61(1H,d,J2.0Hz),7.75(1H,d),8.27(1 H, dd), and 9.1 1 (1 H, d). 6,6-Dimethyl-3-(4,4-dimethyl-2,6-dioxocyclohexyl)-1-(2,4-dinitrophenylamino)-4-oxo-4,5,6,7-tetrahydroindole (12d).-A solution of the hydrazone (13) (0.10 g, 0.2 mmol) containing 2 drops of concentrated HCl was heated under reflux for 20 min. Hot water was added until the reaction mixture became turbid. It was then cooled and the precipitate was filtered off and crystallised to give the tetrahydroindole (12d) (0.53 g, 5573, m.p. 235 "C (decomp.) (from dichloromethane-hexane) (Found: C, 59.3; H, 5.1; N, 11.7.C,,H,,N,O, requires C, 59.7; H, 5.4; N, 11.7); v,,,. 3 280 (NH), 1 617 (CO), and 1 595 cm-' (CO); 6 1.09(12 H),2.34(2 H), 2.42.60(6 H,m),6.52(1 H,d,Ar 6-H), 6.94 (1 H, 5-H), 8.34 (1 H, dd), 9.18 (1 H, d), and 9.74 (1 H, NH); G,(CD,),SO) 28.0 (q), 31.4 (s), 33.8-52.3 (m), 108.1 (s, 2-C of C-4 substituent), 114.7 (d, Ar 6-C), 116.6 (s, 3-C), 121.9 (d, Ar 3-C), 122.6 (d, 5-C), 130.3 (s, Ar 2-C), 130.5 (d, Ar 5-C), 137.8 (s, Ar 4-C), 141.5 (s, 2-C), 147.4 (s, Ar 1-C), 191.1 (s), and 194.5 (s). Acknowledgements We thank Imperial Chemical Industries plc (Organics Division) for support, and the S.E.R.C. for a CASE Studentship (to J. A. S.). References 1 Preliminary communication, T. L. Gilchrist, B. Parton, and J. A Stevens, Tetrahedron Lett., 1981, 22, 1059. 2 F. D. Chattaway and L. H. Farinholt, J. Chem. SOC.,1930, 94. 3 H. Lerche, J. Treiber, and T. Severin, Chem. Ber., 1980, 113, 2796. 4 E. Francotte, R. Merenyi, B. Vandenbulcke-Coyette, and H. G. Viehe, Helv. Chim. Acta, 1981, 64, 1208. 5 T. L. Gilchrist, Chem. SOC.Rev., 1983, 12, 53. 6 T. L. Gilchrist, B. Parton, and J. A. Stevens, J. Chem. SOC.,Perkin Trans. I, preceding paper. 7 A. Ross and R.N. Ring, J. Org. Chern., 1961, 26, 579. 8 K. Bott, Chem. Ber., 1975, 108, 402. 9 R. Faragher and T. L. Gilchrist, f.Chem. SOC.,Perkin Trans. I, 1979, 249. 10 S. J. Clarke, D. E. Davies, and T. L. Gilchrist, J. Chem. SOC.,Perkin Trans. I, 1983, 1803. I1 S. Sommer, Tetrahedron Lett., 1977, 117; Chem. Lett., 1977, 583; Angent. Chem. lnr. Ed. En 1979, 18, 695; A. G. Schultz, W. K. Hagmann, and M.Shen, Tetrahedron Lett., 1979, 2965. 12 T. Severin and H. Poehlmann, Chem. Ber., 1977,110,491;H. Lerche and T. Severin, Synthesis, 1978, 687. Received 10th December 1984; Paper 412077
机译:J. CHEM. SOC. PERKIN 译.I 1985 (3-氯偶氮烯烃的加成和环加成反应 Thomas L. Gilchrist * 和 John A. Stevens The Robert Robinson Laboratories, University of Liverpool, P.O. Box 147, Liverpool L69 3BX Brian Parton, Imperial Chemical Industries p.I.c.;Organics Division, Blackle y, Manchester IM9 3DA 2-氯-l-(2,4-二硝基苯偶氮)乙烯(1a)已被分离出来,相应的烷氧基-羰基偶氮化合物(1 b)和(lc)在溶液中生成,作为偶氮-烯烃携带单个对卤代基取代基的第一个例子。化合物 (la) 和 (lb) 对茚和乙基乙烯基醚进行 [4 + 21 环加成,具有高内切立体选择性。呋喃和环戊二烯分别产生环加合物(6)和(7),其中(1a)。用哌啶、吲哚、硫酚和碳离子观察到亲核加成消除反应。在大多数这些反应中,初级产物受到进一步的亲核攻击:因此,通过添加碳离子形成的腙 (11) 通过与碳离子的进一步反应和脱水转化为氨基吡咯 (12)。一般结构(1)的0-氯偶氮烯烃以前没有制备过CICH=CHN=NR CL2 CHCHrNNHR。Chattaway和Farinholt研究了二氯乙醛与芳基肼的反应(2),并观察了(1)a;R = C6H3(N02)2-2,4溶液中的瞬态颜色,他们将其归因于偶氮烯烃。2 我们研究了它们的制备和性质,par-b;R = C0,具体地是它们的加成和环加成反应。c;R=C02CMe3对应的亚硝基烯烃,2-~高亚硝基乙烯,有d;R = S02C6H4。Me-4作为瞬时中间体生成,并已被证明会发生加成消除反应;它还在异狄尔斯-桤木反应中充当四 n 电子组分^,^ 像 CL FL 许多其他亚硝基烯烃一样。相反,2,2-二氯亚硝基乙烯在与共轭 EtOJ$二烯的环加成反应中充当两个 n 电子组分(通过亚硝基)。由于EtOQN亚硝基和偶氮烯烃的化学性质通常具有广泛的相似性,因此我们希望确定这种C02Me是否延伸到对氯衍生物。PP-二氯偶氮烯烃容易发生亲核加成-消除反应,但迄今为止尚未实现这些化合物的环加成反应。偶氮-o1ejns.-二氯乙醛的制备,通过水合氯醛的还原制备,转化为已知的'2,4-二硝基苯腙(2a)。该衍生物也可由市售的二氯乙醛的乙缩醛制备。烷氧羰基腙(2b)和(k)是新化合物,其制备方法与甲苯对磺酰腙(2d)的制备方法相同。* 偶氮烯烃(la-)由腙与悬浮在二氯芹乙烷中的无水碳酸钠反应生成。将2,4-二硝基苯偶氮烯烃(la)分离为红色结晶固体。该化合物在 CDCl 中的 Hn.m.r. 谱图表明它是 (E) 和 (Z) 异构体的 7:3 混合物。偶氮烯烃(lb)被分离为橙色固体,被证明是不稳定的,并且没有得到充分的表征。然而,该化合物在溶液中的寿命很长。获得了偶氮烯烃(lb)、RHand(lc)的N.m.r.和i.r.溶液谱图;在每种情况下,n.m.r.都只显示存在一种异构体,根据乙烯基氢的耦合常数(11.9 Hz),该异构体被确定为(E)-异构体。环加成反应-与许多其他偶氮相同-(9)a;R = PhS b;R = 吲哚-3-基烯烃,但与PP-二氯偶氮烯烃相比,化合物(la)和(lb)被发现作为四个n电子成分参与Diels-Alder与富电子亲二烯试剂的反应。偶氮烯烃 (la) 与茚 (101 1742 J. CHEM. SOC. PERKIN TRANS.I 1985 年在室温下以高产率得到 1:1 的加合物作为单个立体异构体。它被分配了结构(3a),在C-4、C-4a和C-9b处具有全顺式排列的取代基,基于n.m.r.光谱中的邻近耦合常数。耦合常数 J4,40= 6.7 Hz 和 J4a,96= 7。2 Hz 与 4-H 和 9b-H 占据伪赤道位置和 4a-H 占据伪轴位置的结构一致。偶氮烯烃(lb)与茚产生类似的加合物(3b);同样,只检测到一种立体异构体。乙基乙烯基醚也与这些偶氮烯烃中的每一种形成 1:1 的加合物。来自化合物(la)的是单个立体异构体,其结构被指定为(4a)。分离出相应的加合物(4b),作为偶氮烯烃(lb)与乙基乙烯基醚反应的主要产物;被分配结构(9)的异构体也被分离出来。四氢哒嗪(4b)和(5)可以通过n.m.r.清楚地区分;特别是,(4b)(S4.33)中的4-H仅显示出弱的邻近耦合,而(5)(6,4.64)中的4-H与C-5处的相邻氢之一强耦合(J 12.2 Hz)。在两种异构体中,6-H仅显示出弱的邻近偶联,表明6-乙氧基占据伪轴位置:在这些异构体中观察到异构效应,如相关的1°四氢哒嗪。在化合物 (4) 中,C-4 位点的氯取代基与 C-6 位点的乙氧基呈顺式,因此也占据伪轴位。发现加合物(4b)在-50“C下储存数周时与化合物(5)同构;因此,(5)可以是反应的次级产物。呋喃与偶氮烯烃 (la) 反应得到环加合物,该加合物被赋予了结构 (6)。环戊二烯也与该偶氮烯烃反应,但一级反应产物不能通过色谱分离;取而代之的是,在用甲醇洗脱色谱柱后得到置换产物(7)。在这些反应中,偶氮烯烃 (la) 和 (lb) 充当异二烯。此外,在那些可以从n.m.r.谱中推断出立体化学性质的加合物中,取代基的相对位置与(E)-偶氮烯烃的内加成作为主要反应一致。这一观察结果适用于偶氮烯烃(la),如前所述,偶氮烯烃在溶液中以(E)/(Z)混合物的形式存在。这些异构体似乎可以很容易地相互转化,并且这种加成优先于(E)-异构体。这些反应中对内过渡态的偏好与先前对偶氮烯烃加成的研究一致。O* 与核苷的加成-消除反应1es.-偶氮烯烃 (la) 容易与一系列亲核试剂反应。哌啶得到加成消除产物(8),类似于PP-二氯偶氮烯烃和仲胺形成的加成消除产物.6虽然硫酚和吲哚在碳酸钠存在下也与(la)反应,但未检测到简单的加成消除产物;取而代之的是,产物 (9) 每个都含有两摩尔亲核试剂,以中等产率分离。在此类反应中进一步添加苯硫酚的原因已在前面讨论过;在与吲哚反应的情况下,互变异构形式(10)的中间加成消除产物极易受到亲核攻击。偶氮烯烃 (la) 和 (lb) 在碱存在下容易与活化的亚甲基化合物反应,生成腙 (11)。这些是碳离子的加成消除反应,然后是互变异构化的预期产物。在几种情况下观察到碳离子对这些腙的进一步攻击。分离吡咯 (12),这些是将碳离子添加到腙中,然后对加合物进行环脱水的产物。腙 (1 1 b) 与戊烷-2,4-二酮反应提供了该序列的证据,其 R2 H R3 NNHR' (11) a;R1 = C&!3(NO2)2-2,4, R2= R3 = Ac b;R1 = C02Me, R2 = R3= 交流 c ;R' = C02Me, R2 = R3 = Bz d;R1 = C02Me, R2 = R3 = C02Et e;R1 = C02Me, R2 = R3 = CN f;R1 = C02Me, R2 = NO2, R3 = C0,Et g;R1 = C02 Me, R2 R3 = C02CMe20C0 (12) a;R1 = C6H3(NO2)2-2,4, R2 = R3= Me b;R1 = C02Me, R2= R3= 我 c;R1 = C6H3(N02)2-2,4, R2 = Me, R3= OEt d;R1 = C6H3(N02)2-2,4, R1R2 = CH2CMe2CH2 r 03 Me02CNH (14) Rl CO NMq 得到吡咯 (12b)。这种吡咯也是由偶氮烯烃(lb)与过量的戊烷-2,4-二酮在碳酸钠存在下直接反应形成的。偶氮烯烃 (la) 与二酮 (2 mol) 反应生成 Michael 加合物 (13),在用酸处理时将其环化为吡咯 (12d)。乙酰乙酸乙酯与(la)的反应方式相似,但Michael加合物根据其n.m.r.谱图被配定为环状互变异构体(14)(作为非对映异构体的混合物)。该化合物也通过与酸反应转化为吡咯化合物(12c)。原则上,(11)型不饱和腙的共轭亲核加成应提供更通用的吡咯途径。Severin和他的同事描述了通过还原腙(15)形成吡咯(16)的相关反应' * 然而,将来自其他活性亚甲基化合物的碳负离子添加到腙(11)中的初步实验在这方面并不成功:尽管进行了添加,但产生了产物混合物,并且吡咯没有分离出有用的收率。J. CHEM. SOC. PERKIN TRANS. i 1985 实验性 1.r. 光谱被记录为 KBr 圆盘。'H N.m.r.光谱在CDCl中以220 MHz记录,在Perkin-Elmer R34仪器上记录,在瓦里安XLlOO光谱仪上以25.2 MHz记录“C n.m.r.光谱,除非另有说明。在AEI MS12和MS902仪器上获得了电子撞击质谱图。熔点未校正。乙醚是指乙醚。轻质石油是指沸腾在(60-80“C)范围内的馏分。将新鲜蒸馏的二氯乙醛(5.0g,44.3mmol)加入到甲氧羰基肼(3.62g,40.2mmol)的丙酸(30cm')搅拌溶液中。1小时后,将反应混合物冷却至0“C,并在该温度下放置6小时。过滤、洗涤、干燥和结晶的固体是腙(2a)(4.9g,6679,m.p.180-181“C(来自乙酸乙酯-己烷)(发现:C,26.2;H,3.1;N,14.8。C4H6Cl,N202需要C,25.9;H,3.2;N,15.1%);vmax。3 230 (NH) 和 1710 cm-' (CO);S[(CD,),CO] 3.77 (3 H)、6.61 (1 H, d, J 8.0 Hz)、7.67 (1 H, d, J 8.0 Hz) 和 10.22 (1 H);m/z 188,186 和 184 (M')。二氯乙醛叔丁氧羰基腙(2c).-二氯乙醛(2.0g,17.7mmol)和叔丁氧羰基肼(2.33g,17.7mmol)同样得到腙(2c)(2.85g,71%),熔点115“C(分解)(来自氯仿己烷)(发现:C,36.8;H,5.3;N,12.1。C,H,,Cl,N,O,要求C,37.0;H,5.3;N,12.3%);vmax.3 260 (NH) 和 1 710 cm-' (CO);6 1.50(9 H)、6.29(1 H,d, J8.0Hz)、7.45 (1 H,d, J8.0Hz) 和 8.72 (1 H);m/z(化学电离)231,229和227(M++ l),171和57(碱).2-氯-1-(2,4-二硝基苯偶氮)乙烯(1a).-二氯乙醛2,4-二硝基苯腙(0.40g,1.37mmol)在室温下与无水碳酸钠(0.6g,5.66mmol)在二氯甲烷(50cm')中搅拌24小时。滤液蒸发得到红色固体,结晶得到偶氮烯烃(la)(0.255g,73%),熔点73-74“C(来自二氯甲烷轻石油)(发现:C,37.5;H,1.9;N,22.1。C8H,CIN,0,需要C,37.4;H,1.9;N,21.8%);vmaX.1 600、1 580、1 YO、1 515 和 1 340 cm-';Lmax的。(CH2C12) 327 nm (E 18 700);6[(Z)-异构体)7.22和7.61(各0.3 H,d,J 5.5 Hz)和[(E)-异构体]7.72和7.79(各0.7 H,d,J 12.0 Hz);7.60-7.65 (1 H, m)、8.48-8.58 (1 H, m) 和 8.75-8.79 (1 H, m);m/z 258 和 256 (M+).1-氯-2-(甲氧羰基偶氮)乙烯(1b).-四氯甲烷 (50 cm3) 中的氢区 (2b)(0.50 g, 2.7 mmol) 与碳酸钠 (1.0 g) 搅拌 24 h.将溶液蒸发至小体积,从溶液谱图中鉴定偶氮烯烃:vmax.1 770 (CO)、1 600 和 1 480 cm-';一个。412纳米;6 (60 MHz, CCl,)、3.98 (3 H)、7.46 (1 H, d, J 11.9 Hz) 和 7.80 (1 H, d, J 11.9 Hz)。2-(叔丁氧羰基偶氮)-L-氯乙烯(lc).-通过化合物(lb)所述的方法,从腙(2c)(0.50g,2.2mmol)中获得偶氮烯烃(lc);vmax,1 765 (CO), 1 600, 和 1 480 em-';6 (60 MHz, CCl,)、1.58 (9 H)、7.38 (1 H, d, J 11.9 Hz) 和 7.68 (1 H,d, J11.9Hz)。4-氯-1-(2,4-二硝基苯基)-4,4a,5,9b-四氢-1H-茚酮 1,2-哒嗪 (3a).-偶氮烯烃(la)(0.30g,1.17mmol)和茚(0.40g,5.将55mmol)的二氯甲烷(50cm')保持在室温下,直到偶氮烯烃不再可检测到(6天)。柱层析法(二氧化硅;乙醚轻石油1:2)得到哒嗪(3a)(0.41克,9473,熔点152-154“C(来自氯仿己烷)(发现:C,54.7;H,3.5;N,15.2。C,,H,,CIN,O,需要 C,54.8;H,3.5;N,15.0%);Vmax.1 595、1 520 和 1 505 cm-';6 3.27 (2 H, m, 5-H), 3.51 (1 H, m, 4a-H), 4.78 (1 H, dd, J6.7 and 2.5 Hz, 4-H), 5.48 (1 H, d, J 7.2 Hz, 9b-H), 6.99-7.10 (3 H, m, 3-H and 2 Ar-H), 7.26 (2 H, m), 7.49 (1 H, d), 8.32 (1 H, dd) 和 8.55 (1 H, d);解耦实验证实了J3,,2.5 Hz,J4,,@ 7.2 Hz;m/z 3746.7 Hz 和 J4a,9b 和 372 (M')。将4-氯-4,4a,5,9b-四氢-1H-茚并[l12-c)吡嗪-1-羧酸甲酯(3b)加入碳酸钠(1.0g)和混合物搅拌48小时。偶氮烯烃(lb)仍可检测到(t.1.c.)。然后将反应混合物在回流下加热24小时,冷却,过滤。滤液层层色谱得到哒嗪(3b)(0.35g,4973,熔点1361 37“C(来自二氯甲烷己烷)(发现:C,59.0 H,5.1;N,10.4。C13H13ClN20,需要C,59.0;H,5.1;N,10.6%);vmax.1 700 和 1 610 cm-' (CO);6 3.14 (2 H, m, 5-H), 3.44 (1 H, m, 4a-H), 3.87 (3 H), 4.63 (1 H, dd, J 5.8 and 2.2 Hz, 4-H), 5.60 (1 H, d, J 8.3 Hz, 9b-H), 7.15-7.30 (4 H, m, 3-H 和 3 Ar-H) 和 7.57 (1 H, m);解耦建立J3,,2.2 Hz,J4.40 8.3 Hz;m/z 266 和 264 (M+).5.8 Hz,以及 J4a,9b 将偶氮烯烃(la)(0.50 g,1.95 mmol)、甲苯(10 cm3)和乙基乙烯基醚(3 cm3)在密封管中在50“C加热24 h.柱层析(二氧化硅)并用乙醚洗脱,得到哒嗪(4a)(0.49 g, 77%),熔点110“C(分解)(来自醚己烷)(发现:C,43.6;H,3.9;N,16.9。C,,H,,CIN,O,需要C,43.8;H,4.0;N,17.0%);vmax~1600,1535,1510,和1333cm-';61.25(3H,t),2.49(1H,ddd,J 15.5,6.8和2.8 Hz,5-H),2.87(1 H,d,J 15.5 Hz,显示进一步的小耦合,5'-H),3.62(2 H,m),4.41(1 H,d,J 6.8 Hz,显示进一步的耦合,4-H),5.23(1 H,ca.t,6-H),7.08(1 H,m,3-H),7.46(1 H, d)、8.36 (1 H, dd) 和 8.57 (1 H, d);解耦建立 J4,5= 6.8 Hz, J4.5,= 约 1 Hz, J,,,.= 15.5 赫兹、J5.6 = 2.8 赫兹和 J5s.6 = 约 2.7 赫兹;m/z 293 (M+ -35) 和 202 (base)。将4%-氯-6x-乙醇-1,4,5,6-四氢哒嗪-1-羧酸甲酯(4b)及其4P-lsurner(5)-腙(2b)(0.50g,2.7mmol)和乙基乙烯基醚(1cm3)在二氯甲烷(50cm3)中与碳酸钠(1g)搅拌48 h。层层色谱(二氧化硅)得到,以二氯甲烷为洗脱剂,哒嗪(4b)(0.30g,51%)为油(Found: M+, 220.06146.C8Hl,ClN,03 requires M+, 220.061 04);6 1.03 (3 H, t), 2.18 (1 H, ddd, J 15.6,7.2, and 3.3 Hz, 5-H), 2.54 (1 H, d, J 15.6 Hz, 显示进一步耦合, 5'-H), 3.41 (2 H, m), 3.74 (3 H), 4.33 (1 H, dd, J7.2 和 3.0 Hz,4-H), 5.61 (1 H, CQ. t, Jca. 3 Hz, 6-H) 和 6.99 (1 H, s, br, 3-H);去耦得到J4,5= 7.2 Hz,J4,5,= 3.0 Hz,J5,5p == 15.6 Hz,J5*6 = 3.3 Hz,J5f,6 ca. 3 Hz。从平板中提取第二条带,并得到哒嗪(5)作为油(发现:M+,220.061 46);6 1.14 (3 H, t), 1.97 (1 H, ddd, J 12.5, 12.2, and 2.3 Hz, 5-H), 2.54 (1 H, m, 5'-H), 3.60 (2 H, q), 3.87 (3 H), 4.64 (1 H, dd, J 12.2 and 7.2 Hz, 显示进一步耦合, 4-H), 5.64 (1 H, ca.t, J ca. 2 Hz, 6-H) 和 6.95 ( 1 H, s, br, 3-H);去耦得到J4,5=12.2Hz,J4,5,= 7.2Hz,J5,,.= 12.5Hz,J5.,= 2.3Hz,和J5..,= ca.2Hz.在-50“C下数周内,哒嗪(4b)异构化为(5)。将4-氯-1-(2,4-二硝基苯基)-1,4,4a,7a-四氢呋喃并[3,2-氯哒嗪(6)-偶氮烯烃(la)(0.30g,1.17mmol),呋喃(5cm3)和二氯甲烷(50cm3)混合,并将溶液放在一边,直到偶氮烯烃不再可检测到1744(18天)。柱层析(二氧化硅)并用醚己烷(2:1)洗脱得到哒嗪(6)(0.285 g,7573,熔点162-1 63“C(来自二氯甲烷己烷)(发现:C,44.3;H,2.9;N,17.2。C,,H,CIN,O,需要 C,44.4;H,2.8;N,17.2%);v,,,.1 600、1 533、1 504 和 1 335 cm-';S[(CD,),CO] 4.90(1 H, m, 4-H), 5.43 (1 H, m, 7-H), 5.61 (1 H, d, J 10.0 Hz, 显示进一步耦合, 4a-H), 5.74 (1 H, d, J 10.0 Hz,显示进一步耦合,7a-H)、6.7 1 (1 H, m, 6-H)、7.52 (1 H, m, 3-H)、7.67'(1 H,d)、8.43 (1 H,dd) 和 8.54(1 H,d);J,,, = 约 = 约 2 Hz,J4a,701.5 Hz,J4.40 = 10.0 Hz;MJZ 326 和 324 (M+)-1-(2,4-二硝基苯基)-4-甲氧基-4,4a,5,7a-四氢-1H-环戊并[c]哒嗪 (7).-偶氮烯烃 (la) (0.30 g, 1.17 mmol) 和环戊二烯 (5 cm3) 在二氯 J. CHEM. SOC. PERKIN TRANS.I 1985 m.p. 170 “C (来自氯仿) (发现: C, 48.9;H,3.6;N,17.3。C,3H12N,0,要求C,48.8;H,3.8;N,17.5%);v,,,.3 265 (NH)、1 692 (CO)、1 662 (CO)、1 586 和 1 334 cm-';6 2.42 (3 H)、2.48 (3H)、7.22 (1H,d)、8.03 (1H,d,JlO.OHz)、8.13 (1H,d, J 10.0 Hz)、8.39 (1 H, dd)、9.1 2 (1 H, d) 和 11.42 (1 H, NH);m/z 320 (M+)。甲氧羰基腙 (1 1b)-( 1 lg):一般程序-方法 A。将腙(2b)(5mmol),活性亚甲基化合物(8mmol)和碳酸钠在二氯甲烷中搅拌在一起,保持规定时间。产物采用柱层析法(二氧化硅)分离。方法B,将腙(2b)(5mmol)、活性亚甲基化合物(8mmol)、乙酸(10mmol)和甲烷(50 cm3)在20“C下保温20 h。层层色谱法(二氧化硅)和醚己烷(3:1)的显影得到了一种主要产物,需要用甲醇洗脱才能将其从载体中除去。这得到了一种固体,其被鉴定为哒嗪(7)(0.06g,16%),熔点162-165“C(来自二氯甲烷-己烷)(发现:C,52.9;H,4.5;N,17。5. C,,H,,N,O,需要C,52.8;H,4.4;N,17.6%);vmax。1 600、1 535 和 1 330 cm-';6 2.50-2.85 (3 H, m, 4a-H and 5-H), 3.40 (1 H,dd,JlO.Oand2.0Hz,4-H),3.54(3H),5.00(1H,d,br,J7.0 Hz, 7a-H), 5.89(1 H,m),6.14(1 H,m), 7.21 (1 H,d), 7.26(1 H,d, J2.0 Hz, 3-H), 8.31 (1 H, dd), 8.49 (1 H, d);m/z 318 (M')。搅拌偶氮烯烃(la)(0.40g,1.55mmol)在二氯甲烷(50cm3)中的溶解,并滴加哌啶(5cm3)。0.5小时后蒸发溶液,得到偶氮-烯丙胺(8)(0.43克,91%),熔点153-154“C(来自二氯甲烷己烷)(发现:C,51.2;H,5.1;N,23.3。C,3H,N,O,需要C,51.2;H,4.9;N,23.0%);v,,,.1 615、1 585 和 1 310 cm-';ILmax,(CH2C12) 326 (E 6 200) 和 488 nm (50 0oO);6 1.77 (6 H)、3.55 (4 H)、7.55 (1 H, d, J 10.6 Hz)、7.65 (1 H, d, J 10.6 Hz)、7.78 (1 H, d)、8.26 (1 H, dd) 和 8.50 (1 H, d);m/z 305 (M')。2,2-二苯基硫代乙醛2,4-二硝基苯腙(9a).-偶氮烯烃(la)(0.30g,1.17mmol)和硫酚(1cm3)在二氯甲烷(50cm3)中的溶液与无水碳酸钠(0.75g)搅拌24小时,并得到二硝基苯腙(9a)(0.25g,4979,m.p.138-140“C(来自二氯甲烷-己烷)(lit.,6 138-1 39”C)。2,2-二吲哚-3-乙醛 2,4-二硝基苯腙(9b).-腙(2a)(0.50g,1.7mmol),吲哚(0.20g,1.7 mmol)和无水碳酸钠(1 g)在二氯甲烷(50 cm3)中搅拌24 h.滤液通过层层色谱(二氧化硅)和醚己烷(4:l)显影,得到2,4-二硝基苯腙(9b)[O.15g,39%基于腙(2a),使用过量的吲哚不增加产量],m.p.21 3-214“C(来自乙酸乙酯己烷)(发现: C,63.3;H,4.2;N,18.2。Ct4H18N,0,需要C,63.4;H,4.0;N,18.5%);v,,,, 3 400 (NH)、3 270 (NH)、1 615、1 590 和 1 325 cm-';S[(CD,),CO] 5.59 (1 H, d, J7.3 Hz, 2-H), 6.97 (2 H, m), 7.09 (2 H, m), 7.25 (2 H, m), 7.39 (2 H, m), 7.62 (2 H, m), 8.06 (1 H, d), 8.32 (1 H, dd), 8.42 (1 H, d, J7.3 Hz, 1-H), 8.92 (1 H, d), 10.17 (2 H), and 11.28 (1 H).3-乙酰戊-2-烯-1,4-二酮 1-(2,4-二硝基苯腙) (lla).-偶氮烯烃(la)(0.50g, 将1.95mmol)和戊烷-2,4-二酮(0.195g,1.95mmol)在二氯甲烷(50cm3)中与无水碳酸钠(1g)搅拌4小时。滤液通过柱层析(二氧化硅)并用醚己烷(l:l)、偶氮烯烃(la)(0.324g)和腙(1la)(0.144g,65%基于消耗的偶氮烯烃)洗脱,在四氢呋喃(100cm3)中回流加热0.5小时。将反应混合物冷却并过滤。将滤液蒸发,将残留物溶于乙酸乙酯(50cm3)中。溶液用水洗涤,干燥,蒸干;残留物重结晶。(a) 3-乙酰基戊-2-甲基-1,4-二酮 1-甲氧基羰基酰腙区(1磅)。戊烷-2,4-二酮通过方法A得到腙(1 1b)(58%),熔点149-1 50“C(来自二氯甲烷己烷)(发现:C,50.9;H,5.8;N,13.4。C,H,NZO4需要C,50.9;H,5.7;N,13.2%);v,,,.3 320 (NH)、1 755 (CO) 和 1 685 cm-' (CO);h,,,,(EtOH) 254 (E 23 OOO) 和 303 nm (23 OOO);6 2.38 (3 H)、2.41 (3 H)、3.87 (3 H)、7.38 (1 H, d, J 10.0 Hz)、8.01 (1 H, d, J 10.0 Hz) 和 9.74 (1 H, NH);m/z 212 (M+)。(b)3-苯甲酰基-4-苯基丁-2-烯-1,4-二酮1-metho.uy-羰基腙(1 lc)也得到相同产物(50%)。二苯甲酰甲烷通过方法B得到腙(llc)(50%),m.p. 125-127“C(来自甲苯)(发现:C,67.9;H,4.8;N,8.4.C,,H16N,0,需要C,67.9;H,4.7;N,8.3%);v,,,.3 200 (NH)、1 715 (CO) 和 1 670 (CO) cm-';6 3.78 (3 H)、7.25-7.85 (12 H, m) 和 8.75 (1 H, NH);m/z(化学电离)337(M' + 1)。(c) 2-乙氧羰基-4-氧代丁-2-烯酸乙酯4-甲氧基羰基腙(1la)。得到丙二酸二乙酯,通过方法B,然后进行层层色谱(二氧化硅)并用醚己烷(2:l),腙(lld)(25%),熔点90-93“C(来自醚己烷)(发现:C,48.6;H,5.9;N,10.4。Cll- H,,N,O,需要 C,48.5;H,5.9;N,10.3%);v,,,.3 200 (NH)、1 720 (CO) 和 1 710 cm-' (CO);6 1.28 (3 H, t), 1.29 (3 H, t), 3.83 (3 H), 4.20 (2 H, q), 4.22 (2 H, q), 7.48 (1 H, d, J9.8 Hz), 8.19 (1 H, d, J 9.8 Hz), 和 10.1 1 (1 H, NH);m/z 272 (M+)。(d) 2-氰基-4-氧代丁-2-烯腈4-甲基羰基腈带(lle)。丙二腈通过方法B得到腙(lle)(9573,m.p.181“C(分解)(来自乙酸乙酯-己烷)(发现: C, 47.0 H, 3.4;N,31.4。C7H6N,0,需要C,47.2;H,3.4;N,31.5%);v,,,, 3 200 (NH) 和 2.215 cm-' (CN);S[(CD,),CO] 3.81 (3 H)、7.99 (1 H, d, J9.8 Hz)、8.22 (1 H, d, J 9.8 Hz) 和 11.0 (1 H, NH);mjz 178 (M+)。(e) 2-硝基-4-o-uobut-2-烯酸乙酯4-metho.uycarbonylhydra-zone(1 lf)。硝基乙酸乙酯通过方法B得到腙(Ilg)(14%),熔点124-125“C(来自醚己烷)(发现:C,39.0;H,4.4;N,17.0。C8H,,N30,需要C,39.2;H,4.5;N,17.1%);v,,,.3 220 (NH) 和 1 715 (CO) cm-';6 1.32 (3 H, t), 3.89 (3 H), 4.33 (2 H, q), 7.51 (1 H, d,J9.8 Hz), 7.78 (1 H, d, J9.8 Hz), 和 9.05 (1 H, NH);mjz 254 (M')。(f) 2,2-二甲基-5-(2-氧代亚乙基)-1,3-二异环-4,6-二酮2-甲氧羰基腙(1,19)。2,2-二甲基-1,3-二氧六环-4,6-二酮,通过方法B得到腙(llf)(90%),熔点200“C(来自乙醇)(发现:C,47.0;H,4.7;N,11.0。C,,HI2N2O6 需要 C, 46.9;H,4.7;N,10.9%);v,,,.3 200 (NH) 和 1 720 cm-' (CO);S[(CD,),CO] 1.76 (6 H), 3.82 (3 H), 7.87(1 H,d,JlO.OHz), 8.86(1 H,d,JlO.OHz), and ll.OS(1 H, NH);m/z (化学电离) 257 (M+ + 1).J. CHEM. SOC. PERKIN 译.I 1985 3-乙酰基-4-(1-乙酰基-2-氧代丙基)-1-(2,4-二硝基苯基氨基)-2-rn乙基吡咯(12a).-偶氮烯烃(la)(0.50g,1.95mmol)和戊烷-2,4-二酮(0.39g,3.将9mmol)溶于二氯甲烷(50cm3)中,并将溶液在20“C下保持5天。层层色谱(二氧化硅)并用乙醚洗脱得到pJ7rrole(12a)(0.675g,8673,熔点190-191“C(来自二氯甲烷-己烷)(发现:C,53.4;H,4.3;N,14.0。C,,H,N407要求C,53.7;H,4.5;N,13.9%);v,,,.3 300br (NH) 和 1 650 cm-' (CO);h,,,.(乙醇)259 (E 17 500)、294 (14 700) 和 310 nm (14 500);6 2.01 (6 H)、2.30 (3 H)、2.45 (3 H)、6.31 (1 H, d, Ar 6-H)、6.56 (1 H, 5-H)、8.35 (1 H, dd, Ar 5-H)、9.22 (1 H, d, Ar 3-H) 和 10.18 (1 H, NH);G,[(CD,),SO] 11.0 (q, 2-Me), 23.7 (q,4-Me), 30.2 (q, 3-Me), 107.0 (s, 4-CH), 114.3 (d, Ar 6-C), 117.2 (s, 4-C), 119.7 (s, 3-C), 121.7 (d, Ar 3-C), 122.6 (d, 5-C), 130.8 (s, Ar 2-C), 136.1 (s, Ar 4-C), 138.0 (s, 2-C), 147.1 (s, Ar 1-C)、191.0 (s, 4-C0) 和 193.3 (s, 3-CO) p.p.m.3- 乙酰基-4-(1-乙酰基1-2-氧代丙基)-1-甲氧羰基氨基-2-甲基~吡咯 (12b).-二氯乙醛甲氧羰基腙 (2b) (3.0 g, 16.2 mmol) 和戊烷-2,4-二酮 (4.87 g, 48.7 mmol) 在二氯甲烷 (100 cm3) 中的溶液与无水碳酸钠 (6 g) 搅拌 14 天。柱层析(二氧化硅)并用乙醚洗脱得到吡咯(12b)(2.46克,52%),熔点151-153“C(来自乙酸乙酯己烷)(发现:C,57.2:H,6.3;N,9.7。C,,H,,N,O,需要C,57.1;H,6.1;N,9.5%);v,,,.3 180 (NH)、1 750 (CO) 和 1 627 cm-' (CO);S[(CD,),CO] 1.89 (6 H)、2.19 (3 H)、2.41 (3 H)、3.77 (3 H)、6.67 (1 H) 和 9.66br (1 小时, 新罕布什尔州);GC[(CD,),CO] 11.2 (q, 2-Me), 23.9 (9, 4-Me), 30.2 (9, 3-Me), 53.4 (q, 1-Me), 107.0 (s, 4-CH), 117.0 (s, 4-C), 119.5 (s, 3-C), 122.1 (d, 5-C), 138.0 (s, 2-C), 155.6 (s, 1-CO), 191.5 (s, 4-C0), and 195.2 (s, 3-CO) p.p.m.4,SDihydro- 1-(2,4-二硝基苯基氨基)-4-乙氧羰基-3-(1-乙氧羰基-2-氧代丙基)-5-羟基-5-甲基吡咯 (14).-偶氮烯烃(la)溶液(0.50g, 将1.95mmol)和乙酰乙酸乙酯(0.50g,3.93mmol)在二氯甲烷(50 cm3)中保持在20“C下4天。除去溶剂得到二氢吡咯(14)(0.75克,80%),熔点160“C(分解)(来自乙醇)(发现:C,50.3;H,4.9;N,11.6。C,,H,,N,O,,需要 C,50.0;H,5.0;N,11.7%);v,,,.3 420 (OH)、3 330 (NH)、1 700 (CO) 和 1 650 cm-' (CO);6[(CD3),SO] 1.19 (6 H, 2 x t), 1.35 (3 H), 2.16 (3 H), 3.05 和 3.08 (ss, 合计 1 H, 4-H), 3.90-4.20 (5 H, m), 5.64 和 5.67 (ss, 共 1 H, 3-CH), 6.13 (1 H, 2-H), 7.66 (1 H, d), 8.24 (1 H, dd), 8.88 (1 H, d) 和 9.50 (1 H, 新罕布什尔州);米/兹 462 (M+ -18).将1-(2,4-二硝基苯氨基)-3-乙氧羰基-4-(1-乙氧基羰基-2-氧代丙基)-2-甲基吡咯(12c)-二氢吡咯(14)(0.10g,0.21mmol)在乙醇(25 cm3)中用硫酸(0.2 g)回流加热1 h。加入水,直到反应混合物变得浑浊,然后让混合物冷却。滤去沉淀物,结晶得到吡咯(la)(0.067g,70%),m.p.11 1-1 14“C(来自乙醇水溶液)(发现:C,52.2;高, 5.0 N, 12.1.C,OH,,N,O,需要C,51.9;H,4.8;N,12.1%);S[(CD,),CO] 1.22 (3 H, t), 1.31 (3 H, t), 2.24 (3 H), 2.43 (3 H), 4.19 (2 H, q), 4.26 (2 H, q), 5.43 (1 H, 4-CH), 6.46 (1 H, d, Ar 6-H), 6.90 (1 H, 5-H), 8.43 (1 H, dd), 9.07 (1 H, d) 和 10.94 (1 H, NH);m/z 462 (公制)。1745 双(4,4-二甲基-2,6-二氧代环己基)芥醛 2,4-二硝基苯腙 (13).-偶氮烯烃 (la) (0.30 g, 1.17 mmol) 和二甲酮 (0.66 g, 4.7 mmol) 在二氯甲烷 (50cm3) 中的溶液在 20 “C 下搅拌碳酸钠 ( 1g) 4 天。将溶液用水洗涤,干燥,除去溶剂,得到腙(13)(0.43g,76%),m.p.176“C(来自二氯甲烷-己烷)(Found:C,57.4;H,5.6;N,11.5。C,,H,,N,O,需要C,57.6;H,5.6;N,11.2%);vmax.3 290 (NH) 和 1 600 cm-' (CO);h,,,.(环氧乙烷)261(E 34000)和368纳米(20000);6 1.15 (12 H)、2.38 (8 H)、5.03 (1H,d,J2.0Hz)、7.61(1H,d,J2.0Hz)、7.75(1H,d)、8.27(1 H, dd) 和 9.1 1 (1 H, d)。6,6-二甲基-3-(4,4-二甲基-2,6-二氧代环己基)-1-(2,4-二硝基苯氨基)-4-氧代-4,5,6,7-四氢吲哚(12d).-含有2滴浓HCl的腙(13)(0.10g,0.2mmol)溶液在回流下加热20分钟。加入热水,直至反应混合物变得浑浊。然后冷却,滤去沉淀物并结晶,得到四氢吲哚(12d)(0.53g,5573,熔点235“C(分解)。(来自二氯甲烷-己烷)(发现:C,59.3;H,5.1;N, 11.7.C,,H,,N,O, 需要 C, 59.7;H, 5.4;N,11.7%);v,,,.3 280 (NH)、1 617 (CO) 和 1 595 cm-' (CO);6 1.09(12 H)、2.34(2 H)、2.4&2.60(6 H,m)、6.52(1 H,d,Ar 6-H)、6.94 (1 H, 5-H)、8.34 (1 H, dd)、9.18 (1 H, d) 和 9.74 (1 H, NH);G,[(CD,),SO) 28.0 (q), 31.4 (s), 33.8-52.3 (m), 108.1 (s, 2-C of C-4 取代基), 114.7 (d, Ar 6-C), 116.6 (s, 3-C), 121.9 (d, Ar 3-C), 122.6 (d, 5-C), 130.3 (s, Ar 2-C), 130.5 (d, Ar 5-C), 137.8 (s, Ar 4-C), 141.5 (s, 2-C), 147.4 (s, Ar 1-C), 191.1 (s) 和 194.5 (s)。致谢 我们感谢帝国化学工业有限公司(有机物部门)的支持,以及 S.E.R.C. 的 CASE 学生奖学金(给 J. A. S.)。参考文献 1 初步来文,T. L. Gilchrist, B. Parton, and J.A 史蒂文斯,四面体,1981,22,1059。2 F. D. Chattaway 和 L. H. Farinholt, J. Chem. SOC.,1930, 94.3 H. Lerche, J. Treiber, and T. Severin, Chem. Ber., 1980, 113, 2796.4 E. Francotte、R. Merenyi、B. Vandenbulcke-Coyette 和 H. G. Viehe, Helv.噗噗。植物学报, 1981, 64, 1208.5 T. L. Gilchrist, Chem. SOC.Rev., 1983, 12, 53.6 T. L. Gilchrist, B. Parton, and J. A. Stevens, J. Chem. SOC.,Perkin Trans.I,前面的论文。7 A. Ross 和 R.N. Ring, J. Org. Chern., 1961, 26, 579.8 K. Bott, Chem. Ber., 1975, 108, 402.9 R. Faragher 和 T. L. Gilchrist, f.Chem. SOC.,Perkin Trans.我,1979 年,249 年。10 S. J. Clarke, D. E. Davies, and T. L. Gilchrist, J. Chem. SOC.,Perkin Trans.我,1983 年,1803 年。I1 S. Sommer, Tetrahedron Lett., 1977, 117;Chem. Lett., 1977, 583;安根特。化学 lnr.编辑 En& 1979, 18, 695;A.G.Schultz, W. K. Hagmann, and M.Shen, Tetrahedron Lett., 1979, 2965.12 T. Severin 和 H. Poehlmann, Chem. Ber., 1977,110,491;H. Lerche and T. Severin, Synthesis, 1978, 687.收稿日期:1984年12月10日;纸412077

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号