首页> 外文期刊>journal of chemical physics >Calculation of Vibrational Relaxation Times of the Chloromethanes
【24h】

Calculation of Vibrational Relaxation Times of the Chloromethanes

机译:Calculation of Vibrational Relaxation Times of the Chloromethanes

获取原文
           

摘要

The Schwartz, Slawsky, and Herzfeld method for the calculation of vibrational relaxation times of gases has been extended in its application to polyatomic molecules. A general method is developed for the calculation of the effective relaxation times and the associated constants of the sound velocity relaxation equation. Calculations have been made for the bimolecular collisions of methane and the chloromethanes involving changes of one, two, and three quanta. A normal coordinate treatment is used to obtain the atomic vibrational amplitudes. The effect of an intermolecular potential function, embodying a dipole interaction term, is included for the polar molecules of this investigation.Calculated results are compared with experimental data. For CH4and CH3Cl the calculations agree well with experimental results. For CH2Cl2, CHCl3, and CCl4the calculated relaxation times are higher than selected experimental values by factors of 8ndash;9. For CH2Cl2, CHCl3, and CCl4two major relaxation times are calculated. In the case of CH2Cl2the two relaxation areas have been observed. The experimental data on CHCl3and CCl4remain inconclusive in respect to the two predicted relaxation areas. Collisions involving three quanta are shown to be important for CH2Cl2, CHCl3, and CCl4.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号