...
首页> 外文期刊>The FASEB Journal >Blocking the histone lysine 79 methyltransferase DOT1L alleviates renal fibrosis through inhibition of renal fibroblast activation and epithelial-mesenchymal transition
【24h】

Blocking the histone lysine 79 methyltransferase DOT1L alleviates renal fibrosis through inhibition of renal fibroblast activation and epithelial-mesenchymal transition

机译:Blocking the histone lysine 79 methyltransferase DOT1L alleviates renal fibrosis through inhibition of renal fibroblast activation and epithelial-mesenchymal transition

获取原文
获取原文并翻译 | 示例
           

摘要

Disruptor of telomeric silencing-1 like (DOT1L) protein specifically catalyzes the methylation of histone H3 on Lys79 (H3K79) and is implicated in tumors. But its role in tissue fibrosis remains unclear. Here we demonstrated that injury to the kidney increased DOT1L expression and H3K79 dimethylation in renal tubular epithelial cells and myofibroblasts in a murine model of unilateral ureteral obstruction. Administration of EPZ5676, a highly selective inhibitor of DOT1L, attenuated renal fibrosis. Treatment with EPZ5676 or DOT1L small interfering RNA also inhibited TGF-beta 1 and serum-induced activation of renal interstitial fibroblasts and epithelial-mesenchymal transition (EMT) in vitro. Moreover, blocking DOT1L abrogated injury-induced epithelial G(2)/M arrest; reduced expression of Snail, Twist, and Notch1; and inactivated several profibrotic signaling molecules in the injured kidney, including Smad3, epidermal growth factor receptor, platelet-derived growth factor receptor, signal transducer and activator of transcription 3, protein kinase B, and NF-kappa B. Conversely, DOT1L inhibition increased expression of phosphatase and tensin homolog, a protein associated with dephosphorylation of tyrosine kinase receptors, and prevented decline in levels of Klotho and Smad7, 2 renoprotective factors. Thus, our data indicate that targeting DOT1L attenuates renal fibrosis through inhibition of renal fibroblasts and EMT by suppressing activation of multiple profibrotic signaling pathways while retaining expression of renoprotective factors.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号