首页> 外文期刊>journal of food science >Detection of Microbial Contamination Utilizing an Infrared CO2Analyzer
【24h】

Detection of Microbial Contamination Utilizing an Infrared CO2Analyzer

机译:Detection of Microbial Contamination Utilizing an Infrared CO2Analyzer

获取原文
       

摘要

ABSTRACTInfrared (IR) analysis of headspace gas for the presence of CO2was evaluated as a method of nondestructively sampling and segregating microbiologically contaminated products. Approximately 1.8 million 7‐oz bottles containing citrus juices and fruit drinks were inspected and segregated based on IR CO2analysis. Comparison of IR analysis with conventional plating methods indicated 89 of the samples determined to be positive by conventional methods were also detected by IR analysis. False negatives were found to be the result of nonfermentative microorganisms in over 80 of the contaminated samples not detected by IR analysis. Nonfermentative organisms were identified and effects on product were evaluated. The expected contamination rate was 5.3 compared to 6.3 contamination detected by IR analysis.SUMMARYIN SUMMARY, an IR CO2analyzer was utilized successfully to inspect 100 of product suspected of microbial contamination. When proper procedures were followed, contaminated product was detected and removed for destruction while good product was recovered for subsequent shipment to consumers. This system is advantageous because it allows for a 100 nondestructive inspection, is comparable to conventional plating methods in determining the presence of microbial contamination, and can be automated to a high degree. It is probable that automated container handling would have resulted in fewer false positives due to tilting of bottles as well as elimination of false negatives containing CO2 which were the result of insufficient time of analysis. Disadvantages include the requirement of an IR detectable microbial product, a container or package adaptable to an IR transmission or reflection type analysis, and a considerable cost for equipment. Any product contaminated by fermentative microorganisms and packaged in glass containers having a headspace of approximately 0.5 inch could be inspected by the methods described here. Justification for the cost of equipment would depend on the amount of contaminated product and the expected recovery rate. It is quite possible that future application of IR analysis could include monitoring food process streams for indicators of microbial contaminatio

著录项

  • 来源
    《journal of food science》 |1982年第4期|1222-1225|共页
  • 作者

    C. H. THRELKELD;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号