...
首页> 外文期刊>Molecular biology and evolution >Old but Not (So) Degenerated—Slow Evolution of Largely Homomorphic Sex Chromosomes in Ratites
【24h】

Old but Not (So) Degenerated—Slow Evolution of Largely Homomorphic Sex Chromosomes in Ratites

机译:Old but Not (So) Degenerated—Slow Evolution of Largely Homomorphic Sex Chromosomes in Ratites

获取原文
获取原文并翻译 | 示例

摘要

Degeneration of the nonrecombining chromosome is a common feature of sex chromosome evolution, readily evident by the presence of a pair of largely heteromorphic chromosomes, like in eutherian mammals and birds. However, in ratites (order Palaeognathae, including, e.g., ostrich), the Z and W chromosomes are similar in size and largely undifferentiated, despite avian sex chromosome evolution was initiated 130 Ma. To better understand what may limit sex chromosome evolution, we performed ostrich transcriptome sequencing and studied genes from the nonrecombining region of the W chromosome. Fourteen gametologous gene pairs present on the W chromosome and Z chromosome were identified, with synonymous sequence divergence of 0.027–0.177. The location of these genes on the Z chromosome was consistent with a sequential increase in divergence, starting 110–157 and ending 24–30 Ma. On the basis of the occurrence of Z-linked genes hemizygous in females, we estimate that about one-third of the Z chromosome does not recombine with the W chromosome in female meiosis. Pairwise dN/dS between gametologs decreased with age, suggesting strong evolutionary constraint in old gametologs. Lineage-specific dN/dS was consistently higher in W-linked genes, in accordance with the lower efficacy of selection expected in nonrecombining chromosomes. A higher ratio of GC AT:AT GC substitutions in W-linked genes supports a role for GC-biased gene conversion in differentially driving base composition on the two sex chromosomes. A male-to-female (M:F) expression ratio of close to one for recombining genes and close to two for Z-linked genes lacking a W copy show that dosage compensation is essentially absent. Some gametologous genes have retained active expression of the W copy in females (giving a M:F ratio of 1 for the gametologous gene pair), whereas for others W expression has become severely reduced resulting in a M:F ratio of close to 2. These observations resemble the patterns of sex chromosome evolution seen in other avian and mammalian lineages, suggesting similar underlying evolutionary processes, although the rate of sex chromosome differentiation has been atypically low. Lack of dosage compensation may be a factor hindering sex chromosome evolution in this lineage.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号