...
首页> 外文期刊>Journal of geophysical research >Cosmic Noise Absorption During Solar Proton Events in WACCM-D and Riometer Observations
【24h】

Cosmic Noise Absorption During Solar Proton Events in WACCM-D and Riometer Observations

机译:Cosmic Noise Absorption During Solar Proton Events in WACCM-D and Riometer Observations

获取原文
获取原文并翻译 | 示例
           

摘要

Solar proton events (SPEs) cause large-scale ionization in the middle atmosphere leading to ozone loss and changes in the energy budget of the middle atmosphere. The accurate implementation of SPEs and other particle ionization sources in climate models is necessary to understand the role of energetic particle precipitation in climate variability. We use riometer observations from 16 riometer stations and the Whole Atmosphere Community Climate Model with added Dregion ion chemistry (WACCM-D) to study the spatial and temporal extent of cosmic noise absorption (CNA) during 62 SPEs from 2000 to 2005. We also present a correction method for the nonlinear response of observed CNA during intense absorption events. We find that WACCM-D can reproduce the observed CNA well with some need for future improvement and testing of the used energetic particle precipitation forcing. The average absolute difference between the model and the observations is found to be less than 0.5 dB poleward of about 66 degrees geomagnetic latitude, and increasing with decreasing latitude to about 1 dB equatorward of about 66 degrees geomagnetic latitude. The differences are largest during twilight conditions where the modeled changes in CNA are more abrupt compared to observations. An overestimation of about 1 degrees to 3 degrees geomagnetic latitude in the extent of the CNA is observed due to the fixed proton cutoff latitude in the model. An unexplained underestimation of CNA by the model during sunlit conditions is observed at stations within the polar cap during 18 of the studied events.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号