...
首页> 外文期刊>journal of chemical physics >Theory of the Coupling of Electronic and Vibrational Excitations in Molecular Crystals and Helical Polymers
【24h】

Theory of the Coupling of Electronic and Vibrational Excitations in Molecular Crystals and Helical Polymers

机译:Theory of the Coupling of Electronic and Vibrational Excitations in Molecular Crystals and Helical Polymers

获取原文

摘要

The effect of the internal vibrations of monomers (or molecules) on the electronic absorption spectra of aggregates with either helical or three dimensional translational symmetry is considered using molecular exciton theory. In this treatment the singlehyphen;particle excitations (vibronic excitons) are coupled to all those twohyphen;particle manifolds in which vibronic and ground vibrational excitons occupy different lattice sites. This allows for collective coupling among singlehyphen;particle levels overlapped by twohyphen;particle continua. The main approximations invoked are (a) the crude Bornmdash;Oppenheimer approximation to factorize the wavefunctions of isolated monomers, (b) neglect of electron exchange between monomer wavefunctions (tight binding), and (c) the neglect of any mixing of different electronic states by intermonomer forces. Wave sums of exciton resonance interactions are eliminated in favor of a density of sums function. To test the range of coupling strengths for which the theory is valid calculations are performed for a onehyphen;dimensional polymer model with only nearesthyphen;neighbor interactions and a threehyphen;dimensional crystal model with a simple density function. For intermediate coupling the influence of threehyphen; and higherhyphen;particle states becomes important and these states are included in the energy calculations by an extended fraction type of technique. Other calculations explore the effect of (a) a change in the vibrational frequency of the monomer after electronic excitation, (b) changes in the energy of the opticalkequals;0levels with direction of the exciting radiation, and (c) changes in the transition intensity of the isolated monomer.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号