首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Nitrogen bridgehead compounds, part 49. Synthesis and stereochemistry of 9-aminotetrahydro-4H-pyrido1,2-apyrimidin-4-ones.
【24h】

Nitrogen bridgehead compounds, part 49. Synthesis and stereochemistry of 9-aminotetrahydro-4H-pyrido1,2-apyrimidin-4-ones.

机译:氮桥头堡化合物,第 49 部分。9-氨基四氢-4H-吡啶并1,2-a嘧啶-4-酮的合成和立体化学。

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1985 Nitrogen BridgeheadCompounds, Part 49 I.Synthesis and Stereochemistry of 9-Aminotetrahydro-4Wpyrido12-43 pyrimidin-4-ones. Tibor Breining, lstvan Hermecz *, Benjamin Podanyi, Zoltan M6szBros Chinoin Pharmaceuticaland Chemical Works, H-1325 Budapest, P.O. Box 110,Hungary Ghbor Toth Institute of Generaland Analytical Chemistry#TechnicalUniversity,H-1 1 1 I Budapest, Gellert ter 4. Hungary The 9-phenylaminotetrahydro-4H-pyridol,2-apyrimidin-4-ones (4)-(9)# synthesized from the 9-bromo compounds (1)-(3)# displayed imine-enamine tautomerism. In solution (if R2 # H) the equilibrium mixtures contain both cis-and trans-imines. The enamine form is stabilized by increasing polarity of the solvent and by increasing the electron-withdrawing effect of substituent R’.Owing to I ,3-allylic strain, in the derivatives where R2 = Me the imine form is energetically less favoured than in the derivativeswith R2 = H. The chemical structures of the synthesizedproducts were studied by u.v., ‘H and 13Cn.m.r. spectroscopy. 9-Substituted 4H-pyridoc 1,2-apyrimidin-4-ones deserve at-tention as antiallergic agents.2 For their ~ynthesis,~the reactivity of the 9-methylene group of 6,7,8,9-tetrahydro-4H-pyrido1,2-apyrimidin-4-ones towards electrophilic re-agents ’y6 has been utilized. This paper deals with the reactions of 9-bromo-4-oxo-6,7,8,9-tetrahydro-4H-pyrido1,2-apyrimi-dine-3-carboxylic acid derivatives with anilines, and with the stereochemistry of the products. Results Reaction of the 9-bromotetrahydropyridoC1,2-apyrimidine-3-carboxylic acids6” (1) and (3) with aniline, or reaction of the ester (2)6b with N-methylaniline in acetonitrile under argon at ambient temperature afforded the 9-amino derivatives (4)---(6).Boiling with 2 sodium hydroxide under argon resulted in decarboxylation with the formation of compounds (7)-(9) (Scheme 1). Br R3NPh R3NPh R2 0 (l), (41, (7): R’= CO,H, R2=Me, R3=H; 2 (2). (51, (8): R’= C02Et, R =Me, R3= Me; 2(3), (6), (9): R’= CO,H, R = H, R3= H. Reagents: i, MeCN, ambient temperature, argon; ii, hot aqueous NaOH, argon Scheme 1. Since solvent-dependent imine-enamine tautomerism has been reported 5c77 for tetrahydro-4H-pyridol,2-a)pyrimidin-4-ones, we have now investigated the tautomerism of the 9-amino derivatives (4)--(9) (Scheme 2). U.V.Studies.-U.v. spectral data, recorded in ethanol, are shown in Table 1, together with similar data for some known 6b*8 tetrahydro-4H-pyridoC 1,2-apyrimidines in the imine (10)--(14)and enamine (15H19)forms. R3NPh R3NPh R3NPh- I -1 cis -I mine Enamine trans -Imine (4)-(9) Tautomerism of 9-phenylaminotetrahydro-4H-pyrido1,Zulpyrimidin-4-ones scheme 2. Me G>R1R2 R2 0 0 Imine Enamine (10) R’= C02H, R2= Me (IS) (11) R’= C02Et, R2= Me (16) (12) R’=C02H, RZ= H (17) 2(13) R1= H, R = Me (18) (14) R’= HI R2= H (19) Comparison ofthese data reveals that the enamine tautomer predominates for the 6-methyl 3-carboxylic acid derivatives (4) and (5), while compounds (6)+9) are mainly present as the imines.In (4) or (5)the double bond between C-9 and C-9a may be conjugated with the non-bonding electron pair of either N(1) or C(9)-N. By analogy with N-phenyl enamines’ and from the close similarity of the U.V. spectra of (4) and (5) to those of the models (15) and (M),it can be stated that the chromophoric system of our compounds is not (or is only slightly) conjugated with the N-phenyl function. 1816 J. CHEM. soc. PERKIN TRANS. I 1985 Table 1. U.V.data (hmaX./nm, /I mol-' cm-' on 6,7,8,9- and 1,6,7,8-tetrahydro- and 9-phenylaminotetrahydro-4H-pyridoC1,2-apyrimidin-4-on=in EtOH Imine Enamine Imine Enamine Corn@.Lx. Compd-Lax. (E) Compd. ~max.(El Lax. 6) (10) 230 (5 500) (15) 256 (28 290) (4) a 265 300 (7 930) 362 (2900) 363 infl. (11) 230 (6 460) (16) 258 (21 880) (5) 254 inff. (29 400), 265 (31 460) 303 (8 320) 356 (2750) 356 (4660) (12) 228 (6 590) (17) 256 (30 360) (6) 238 (12 730) 300 (9 650) 362 (3 370) 299 (8710) (7) 242 (13 950) (13) 226 (6 030) 344 (1 550) 281 (7060) 278 (4 790) (8) 247 (16 080) 288 (6550) (14) 224 (9 010) (19)b 340 (660) (9) 243 (13 510) 277 (6 760) 280 (6850) * In saturated solution. The spectrum taken in acetonitrile. Table 2. Substituent chemical shifts of 9-substituents of 6,7,8,9-tetrahydropyrido 1,2-apyrimidines Equatorial 9-su bsti tuen t Axial 9-substit uent (cis-isomer) (trans-isomer) rI A 3 Compd.a fi y 6 a P Y 6 Solvent (4) 21.6 8.4 -1.0 0.4 20.0 7.7 -3.5 -0.1 (CD3),SO (5) 29.6 4.0 -1.1 0.6 26.1 4.5 -5.5 0.1 CDCI3 (6) 20.1 7.0 -3.0 -1.7 (CD3)2SO (7) 24.0 7.9 -1.5 1.2 20.8 10.2 -2.4 -0.5 CDCl3 (8) 29.3 3.3 -1.4 0.3 25.9 4.1 -5.7 -0.2 CDClj (9) 22.4 8.2 -2.0 -1.1 CDCl3 Table 3. Isomeric ratios of 9-aminotetrahydropyrido1,2-apyrimidin-4-ones At equilibrium r 1 in CDCl, in(cD3)2s0jImine () Imine ()* * cis trans Enamine () cis trans Enamine (7:) Insoluble 15 15 70 70 15 15 28 2 70 Insoluble 75 25 50 50 50 50 62 38 66 34 100 100 N.M.R. Studies.*-Spectra of the 9-anilino compounds (4)-whereas in the imines it is sp3 bonded and appears in the range (9)contain two or three sets of signals which change with time.5 1.2-6 1.1 p.p.m. This indicates the co-existence of tautomeric forms in solution. 15N N.m.r. spectroscopy was used in two cases for the The amine and enamine tautomers were identified by the 2-H identification of tautomers. For compound (5) the N-1 signal signal and also the C-2, C-9 and C-9a signals. appeared at -270.1 p.p.m. for the enamine form and at -143.1 For the enamines of (4)--(6) the 2-H signal appears as a p.p.m. for the cis-imine form. In the latter case the signal at doublet at 7.66-7.71 p.p.m. (J7.1-7.3 Hz), due to coupling -182.0 p.p.m. was assigned to N-5, and that at -325.9 p.p.m. with 1-H, and is shifted upfield relative to the corresponding to C(9)-N. In the spectrum of (9), only the signals for N-5and singlet at 8.56-8.63 p.p.m. for the imine tautomers.A similar C(9)-N in the cis-imine form could be identified (at 6 = -191.2 upfield shift was experienced for the C-2 and C-9a signals, at and -328.5 p.p.m,, respectively). 147.6-148.5 and 131.2-133.1 p.p.m. for the enamines Similarly as for 6-methyltetrahydropyrido1,2-apyrimidin-4-compared to the signals at 151.4-157.8 and 157.5-161.4 ones," in the 6-methyl derivatives (4), (5), (7) and (8) the p.p.m. for the imines. conformer with a quasi-axially oriented methyl group is A further characteristic feature is that in the enamines C-9 is dominant. Since only the most stable conformer, the half-chair, sp2 hybridized, giving signals between 91.1 and 96.1 p.p.m., has to be considered for the piperidine ring, in the imine tautomers of the 6-methyl derivatives the 9-amino group is * 'Hand 13C N.m.r.spectral results are available as a supplementary equatorial in the cis, and axial in the trans epimer (Scheme 2). publication. Sup. No. 56174 (4 pp). For details of the supplementary The orientation of the phenylamino group in compounds publications scheme see Instructions for Authors (1989, J. Chem. Soc., (6x9)is established with the aid of the coupling constants for Perkin Trans. 1, 1985, issue 1. 8-H and 9-H. In the spectra of compounds (6) and (9), J. CHEM. SOC. PERKIN TRANS. I 1985 unsubstituted at C-6, couplings of 7.1, and of 7.5 and 5.8 Hz indicate that the conformational equilibrium is shifted in favour of the conformer with a quasi-axial phenylamino group.As for the 6-methyl derivatives, in the spectrum of (7) these coupling constants of both the cis (10.7 and 6.2 Hz) and trans stereoisomers(5.5 Hz) could be assigned, while for (8)only those associated with the major cis isomer (1 1.4 and 5.4 Hz) were recognizable. Finally, due to overlapping with other signals, the coupling constants for the individual stereoisomers of (4) and (5) could not be distinguished. From the "C n.m.r. spectra, cis-and trans-imines were identified by means of the y-effect of the 9-amino group on C-7. The effects of the 9-amino substituent on the chemical shifts of the ring carbons (SCS) in the imine tautomers are compiled in Table 2, the tetrahydropyridoC 1,2-apyrimidines unsubstituted at C-9 being taken as reference.The y-anti effect in the 6-methyl derivatives(4), (3,(7), and (8)is -1.0 to -1.5 p.p.m., while the y-gauche effect is -2.4 to -5.7 p.p.m. From a comparison of the effects observed in the 6-demethyl derivatives (6) and (9) with those in the 6-methyl derivatives (4) and (7), it can be concluded that, in accordance with the 'H n.m.r. results, the predominant conformer of (6) and (9) is the one with a quasi-axial phenylamino group. Discussion on Isomeric Ratio.-Isomeric ratios for the tetrahydro derivatives (4)-(9) determined by 'H and ' n.m.r. spectroscopy are presented in Table 3. Values obtained immediately after dissolution suggest that compounds (4) and (5) are present in the solid phase as enamines, and the other compounds as imines.In deuteriochloroform under equilibrium conditions the imine tautomer of compound (5) predominates, and in (CD,),SO the enamine tautomer. This is in accord with earlier observations that highly polar solvents stabilize the enamine form.' ' The tautomeric equilibrium is also influenced by substituents at C-3. In (CD,),SO the enamine tautomer is dominant for the 6-methyl derivatives (4) and (5) having an electron-attracting carboxy or ester group at C-3, whereas those unsubstituted at C- 3, e.g.(7) and (8),are mainly in the imine form. The phenomenon R3NPh R3NPh R3NPh 0 V I I1 141 pm 134pm 0 Scbeme 3. can be explained by considering the mesomeric structures 1-111 (Scheme 3) of the enamine tautomer, of which I11 is stabilized by a carboxyl or ester group.' This also implies the preponderance of mesomer I11 over I, i.e.the non-bonding pair of electrons of the enamine nitrogen is mainly shifted towards C-2. This hypothesis was corroborated by an X-ray analysis of a similar enamine carboxylic acid (15).lzaIn this, the N(l)-C(9a) distance was 141 pm, and the N(lW(2) distance only 134 pm. Besides an electron-attracting substituent at C-3, a 6-methyl group also makes a significant contribution to the stability of the enamine form. Thus in (CD,),SO the imine form prevails in the demethyl3-carboxylic acid (6), whereas the enamine form does so in the 6-methyl analogue (4). This methyl group is the source of two unfavourable interactions (Scheme 4).One is the 1,3-allylic strain 10*13 between C(4W and C(6)-Me, which is relieved when the methyl group assumes a quasi-axial Me 307 pm 335 pm (11 1 (15) Scheme 4. Characteristic atomic distances and torsion angles for compounds (11) and (15) '* orientation. The other is a 1,3-diaxial interaction between a quasi-axial methyl group and 8-H,,. The role of the 6-methyl group was studied by comparing the imine (11)and the enamine (15). The constitutions and (according to U.V. data) the chromophoric systems of these compounds are highly similar to those of the imine and enamine tautomers, respectively, of the phenylamino compounds (4)--49) (see Table 1). A comparison of the X-ray data reveals that the distance between C(6)-Me and 8-H,, is practically the same in (11) and (15)(278 and 279 pm, respectively), whereas the distance between C(6)-Me and C(4)=0 is 307 pm in the imine (11)and 335 pm in the enamine (15).The torsion angle of the methyl and carbonyl groups around the C(4)-C(6) axis is 69" in the imine (11)and 81" in the enamine (15).Similar conclusions can be drawn by comparing data on the 9-carboxymethyl derivative of compound (11)14and the 9-formyl-6-methyl- 1,6,7,8-tetrahydro-4H-pyrido1 ,2-apyr- imidin-4-0ne.~~ These data suggest that stabilization of the enamine form by the 6-methyl group is not to be attributed to a decrease in the 1,3-diaxial interaction between that group and 8-H,,, but rather to further relief of the 1,3-allylic strain still present in the imine tautomer and involving the methyl and 4-0XO groups.ExperimentalM.p.s. are uncorrected. Yields were not optimized. U.V. spectra were recorded in ethanol with a UNICAM SP-800 spectro- photometer. 'H N.m.r. spectra of (7) were recorded at 250 MHz on a Bruker WM-250 instrument; 'H and "C n.m.r. spectra of (4t-(8) at 100 and 25 MHz respectively on a Jeol FX-100 instrument. That of (9) were recorded on a Bruker WP-80 instrument at 80and 20.1 MHz, respectively. 'H N.m.r. spectra were taken in 5-10 solutions, 13Cn.m.r. spectra in saturated solutions using SiMe, as internal standard in both cases. ISN N.m.r. spectra were recorded at 10.04 MHz on a Jeol FX-100 instrument with proton broadband decoupling.The chemical shifts were determined relative to the signal of external aqueous K"N03 and then converted to the signal of external nitromethane G(MeNO,) = 0.0 p.p.m.1. Shifts upfield from the reference have negative values. (Typical acquisition parameters are: spectral width 5000 Hz, flip angle 30", and pulse delay 5 s.) The tautomer and cis-trans ratios were obtained by integration of the 'H n.m.r. spectra and from the peak heights of the corresponding signal of the '3C n.m.r. spectrum, averaging the values of 4-6 signals. The maximum deviation was 2. Analytical results on the new compounds agreed with calculated data. Details are given in the supplementary publication (see p. 1016). Synthesis of the 9-Amino-4-oxo-tetrahydro-4H-pyrido1,2-a-pyrimidine-3-carboxy lic Acid Derivatives (4)-(6).-A solution of 9-bromotetrahydropyridopyrimidinone (1)--(3) (10mmol) and aniline or N-methylaniline (22 mmol) in acetonitrile (5 ml), was stirred at ambient temperature for 3-6 days under an argon atmosphere.Water (20 ml) was then added and the reaction mixture was stirred for 0.5 h. The precipitated crystals (4)--(6) were filtered off,washed with ethanol, and dried. Thus prepared were compound (4) (2.7 g, 90). m.p. 200-202 "C (refluxed in MeOH) (lit.,," 198-199 "C); compound (5)(1.7g, 50), m.p. 180-181 "C (from MeCN), (lit.,2" 180-181 "C); compound (6) (2.5 g, 88), m.p. 178-180 "C (refluxed in MeOH). Decarboxylation of Compounds (4)-(6).-A solution of the 9-anilinotetrahydropyridopyrimidine-3-carboxylicacid derivative (4)---(6) (10 g) in 2 aqueous sodium hydroxide solution (100 ml) was refluxed for 5 h under an argon atmosphere.After the mixture had been cooled to 5 "C, the precipitated crystals (7)-(9) were filtered off, washed with water and dried. Thus prepared were compound (7) (7.3g, 85), m.p. 165-167 "C(from MeOH); compound (8) (5.8 g, 74), m.p. 188-189 "C (from MeOH); compound (9)(6.8g, 80), m.p. 155-156 "C (from MeOH). References 1 Part 48, I. Hermecz, M. Kajtar, K. Simon, T. Breining, P. R. Surjan, G. Toth, and Z. Mesdros, J. Org. Chem., in the press. J. CHEM. SOC. PERKIN TRANS. I 1985 2 (a) I. Hermen, T. Breining, L. Vasvari-Debreny, A. Horvath, Z. Meszaros, I.Bitter, C. DeVos, and L. Rodriguez, J. Med. Chem., 1983,26,1494; (b)I. Hermecz, T. Breining, Z. Meszaros, A. Horvath, L. Vasvari-Debreczy, F. Dessy, C. DeVos, and L. Rodriguez, ibid., 1982,25,1140; (c) I. Hermecz, T. Breining, Z. M~ZATOS,J. Kokosi, L. MQzaros, F. Dessy, and C. DeVos, ibid., 1983, 26, 1126; (d) I. Herrnecz, A. Horvath, Z. Mesdros, C. DeVos, and L. Rodriguez, ibid., 1984,27, 1253. 3 (a) 1. Hermecz, T. Breining, L. Vasvari-Debreczy, A. Horvath, Z. Mesdros, 1. Bitter, and J. Kokosi, German Patent 3 017 564 (Chem. Abstr., 1981, 94,121591t); (6) I. Hermecz, T. Breining, L. Vasvari- Debreczy, A. Horvath, and J. Kokosi, German Patent 3 017 560 (Chem. Abstr., 1981,,81007u). 4 (a) G. Naray-Szabo, I. Hermen, and Z. Mtszaros, J.Chem. SOC., Perkin Trans. 1, 1974, 1753; (6)J. Kokosi, I. Hermecz, Gy. SAsz, Z. Mesdros, G. Toth, and M. Csakvari-Pongor, J. Heterocycl. Chem., 1982,19,909. 5 (a) I. Hermecz, I. Bitter, A. Horvath, G. Toth, and Z. MQdros, Tetrahedron Lett., 1979, 20, 2557; (b) A. Horvath, I. Hermecz, L. Vasvari-Debreczy, K. Simon, M. Pongor-Csakvari, 2.Mksziros, and G. Toth, J. Chem. SOC.,Perkin Trans. 1, 1983, 369; (c) I. Bitter, I. Hermecz, G. Tbth, P. Dvortsak, Z. Bende, and 2. Mesdros, Tetrahedron Lett., 1979,20,5039. 6 (a) I. Hermecz, T. Breining, Z. Meszaros, G. Toth, and I. Bitter, Heterocycles, 1980, 14, 1953; (b) Z. Meszaros, J. Knoll, P. Szentmiklbsi, A. David, G. Horvath, and I. Hermecz, Arzneim.-Forsch., 1972,22,815. 7 (a)H. Wamhoff and L.Lichtenthaler, Chem. Ber., 1978,111,2813; (b) I. Hermecz, J. Engler, Z. Mkszaros, and G. Toth, Tetrahedron Lett., 1979, 20, 1337; (c)G. Toth, C. De La Cruz, I. Bitter, I. Hermecz, B. Pete, and 2.Meszaros, Org. Magn. Reson., 1982,2Q, 229. 8 (a)G. Horvath, A. I. Kiss, Z. Mkszaros, and I. Hermecz, Acta Chim. Acad. Sci. Hung., 1974, 83, 15; (b) I. Hermecz, P. R. Surjan, T. Breining, K. Simon, G. Horvith, Z. Miszaros, M. Kajtar, and G. Tbth, J. Chem. SOC.,Perkin Trans. 2,1983,1413. 9 (a)H. Ahlbrecht and S. Fischer, Tetrahedron, 1970,26, 2837; (b)W. Walter and H.-W. Meyer, Justus Liebigs Ann. Chem., 1974,776. 10 G. Toth, I. Hermecz, and Z. Mtszbros, J.Heterocycl. Chem., 1979,16, 1181. 11 (a)H. Ahlbrecht, J. Blecher, and F. Krohnke, Tetrahedron Lett., 1969, 439; (b) H. Ahlbrecht and R.-D. Kalas, Justus Liebigs Ann. Chem., 1979,102. 12 (a)K. Simon, Z. Meszaros, and K. Sasvari, Acta Crystallogr., 1975, B31,1702; (b)K. Sasvari and K. Simon, Acta Crystallogr., 1973, B29, 1245. 13 F. Johnson, Chem. Rev., 1968,68,375. 14 K. Simon, God. Jugosl. cent. kristalogr., 1980,15,87. Received 2nd July 1984;Paper 4/ 11 19
机译:J. CHEM. SOC. PERKIN 译.I 1985 氮桥头堡化合物,第 49 部分 I.9-氨基四氢-4Wpyrido[12-43] 嘧啶-4-酮的合成和立体化学。Tibor Breining, lstvan Hermecz *, Benjamin Podanyi, Zoltan M6szBros Chinoin Pharmaceuticaland Chemical Works, H-1325 Budapest, P.O. Box 110,Hungary Ghbor Toth Institute of Generaland Analytical Chemistry#TechnicalUniversity,H-1 1 1 I Budapest, Gellert ter 4.匈牙利 由9-溴化合物(1)-(3)#合成的9-苯基氨基四氢-4H-吡啶并[l,2-a]嘧啶-4-酮(4)-(9)#表现出亚胺-烯胺互变异构。在溶液中(如果R2#H),平衡混合物同时含有顺亚胺和反亚胺。通过增加溶剂的极性和增加取代基R'的吸电子效应来稳定烯胺形式。由于 I ,3-烯丙基菌株,在 R2 = Me 的衍生物中,亚胺形式在能量上不如 R2 = H 的衍生物。采用u.v.、'H和13Cn.m.r.光谱研究了合成产物的化学结构。9-取代的 4H-吡啶 1,2-a]嘧啶-4-酮值得作为抗过敏剂.2 因为它们的 ~雌雄,~6,7,8,9-四氢-4H-吡啶并[1,2-a]嘧啶-4-酮的 9-亚甲基对亲电试剂 'y6 的反应性已被利用.本文研究了9-溴-4-氧代-6,7,8,9-四氢-4H-吡啶并[1,2-a]嘧啶-二-3-羧酸衍生物与苯胺的反应,以及产物的立体化学性质。结果 9-溴四氢吡啶C1,2-a]嘧啶-3-羧酸6“(1)和(3)与苯胺的反应,或酯(2)6b与N-甲基苯胺在氩气下在氩气下在乙腈中的反应,得到9-氨基衍生物(4)---(6)。用2%氢氧化钠在氩气下煮沸导致脱羧,形成化合物(7)-(9)(方案1)。Br R3NPh R3NPh R2 0 (l), (41, (7): R'= CO,H, R2=Me, R3=H; 2 (2).(51, (8): R'= C02Et, R =Me, R3= Me; 2(3), (6), (9): R'= CO,H, R = H, R3= H. 试剂: i, MeCN, 环境温度, 氩气; ii, 热水NaOH, 氩气方案 1.由于四氢-4H-吡啶并[l,2-a)嘧啶-4-酮的溶剂依赖性亚胺-烯胺互变异构体5c77“的报道,我们现在研究了9-氨基衍生物(4)--(9)的互变异构(方案2)。U.V.Studies.-U.V.(紫外线研究-紫外线)表1显示了以乙醇形式记录的光谱数据,以及亚胺(10)--(14)和烯胺(15H19)形式的一些已知的6b*8四氢-4H-吡啶1,2-a]嘧啶的类似数据。R3NPh R3NPh R3NPh- I -1 顺式 -I 胺 烯胺 反式 亚胺 (4)-(9) 9-苯基氨基四氢-4H-吡啶并[1,Zulpyrimidin-4-酮的互变异构 方案 2.我 G>R1R2 R2 0 0 亚胺烯胺 (10) R'= C02H, R2= 我 (IS) (11) R'= C02Et, R2= 我 (16) (12) R'=C02H, RZ= H (17) 2(13) R1= H, R = Me (18) (14) R'= HI R2= H (19) 这些数据的比较表明,烯胺互变异构体在 6-甲基 3-羧酸衍生物 (4) 和 (5) 中占主导地位, 而化合物(6)+9)主要以亚胺的形式存在。在(4)或(5)中,C-9和C-9a之间的双键可以与N(1)或C(9)-N的非键合电子对共轭。通过与N-苯基烯胺的类比,以及(4)和(5)的UV光谱与模型(15)和(M)的光谱的相似性,可以说我们化合物的发色团系统没有(或只是轻微)与N-苯基功能共轭。1816 J. CHEM. soc. PERKIN 译.I 1985 表 1.U.V.data (hmaX./nm, &/I mol-' cm-' on 6,7,8,9- 和 1,6,7,8-四氢和 9-苯基氨基四氢-4H-吡啶C1,2-a]嘧啶-4-on=in EtOH 亚胺 Enamine Imine Enamine Corn@.lx.Compd-Lax的。(E) Compd. ~max.(El Lax. 6) (10) 230 (5 500) (15) 256 (28 290) (4) a 265 300 (7 930) 362 (2900) 363 infl. (11) 230 (6 460) (16) 258 (21 880) (5) 254 inff.(29 400), 265 (31 460) 303 (8 320) 356 (2750) 356 (4660) (12) 228 (6 590) (17) 256 (30 360) (6) 238 (12 730) 300 (9 650) 362 (3 370) 299 (8710) (7) 242 (13 950) (13) 226 (6 030) 344 (1 550) 281 (7060) 278 (4 790) (8) 247 (16 080) 288 (6550) (14) 224 (9 010) (19)b 340 (660) (9) 243 (13 510) 277 (6 760) 280 (6850) * 在饱和溶液中。在乙腈中获取的光谱。表 2.9-取代基的取代基化学位移为6,7, 8,9-四氢吡啶并[ 1,2-a]嘧啶 赤道 9-su bsti tuen t 轴向 9-substit uent (cis-isomer) (trans-isomer) rI A 3 Compd.a fi y 6 a p Y 6 溶剂 (4) 21.6 8.4 -1.0 0.4 20.0 7.7 -3.5 -0.1 [(CD3),SO] (5) 29.6 4.0 -1.1 0.6 26.1 4.5 -5.5 0.1 CDCI3 (6) 20.1 7.0 -3.0 -1.7 [(CD3)2SO] (7) 24.0 7.9 -1.5 1.2 20.8 10.2 -2.4 -0.5 CDCl3 (8)29.3 3.3 -1.4 0.3 25.9 4.1 -5.7 -0.2 CDClj (9) 22.4 8.2 -2.0 -1.1 CDCl3 表 3.9-氨基四氢吡啶并[1,2-a]嘧啶-4-酮的异构体比值 在平衡 r 1 在 CDCl 中,在 [(cD3)2s0j亚胺 (%) 亚胺 (%)* * 顺式反式烯胺 (%) 顺式反式烯胺 (7:) 不溶性 15 15 70 70 15 15 28 2 70 不溶性 75 25 50 50 50 50 62 38 66 34 100 100 N.M.R. 研究.*-9-苯胺化合物的光谱 (4)-而在亚胺中,它是 sp3 键合的,出现在 (9) 范围内,包含两个或三个随时间变化的信号集.5 1.2-6 1.1 p.p.m.这表明溶液中互变异构形式共存。15N N.m.r.光谱在2-H鉴定互变异构体中发现了胺和烯胺互变异构体。对于化合物 (5) N-1 信号以及 C-2、C-9 和 C-9a 信号。烯胺形式出现在 -270.1 p.p.m. 和 -143.1 对于 (4)--(6) 的烯胺,2-H 信号显示为顺亚胺形式的 p.p.m.。在后一种情况下,在晚上7.66-7.71(J7.1-7.3 Hz),由于耦合,-182.0 p.p.m.被分配给N-5,在-325.9 p.p.m.被分配给1-H,并且相对于对应的C(9)-N被上场移动。在(9)的光谱中,只有N-5和单线态在8.56-8.63 p.p.m.的亚胺互变异构体信号。可以鉴定出类似的顺亚胺形式的C(9)-N(在6 = -191.2时,C-2和C-9a信号分别在-328.5 p.p.m时经历了上场偏移)。147.6-148.5 和 131.2-133.1 p.p.m. 对于烯胺 与 6-甲基四氢吡啶并[1,2-a]嘧啶-4-相比,与 151.4-157.8 和 157.5-161.4 的信号相比,“在 6-甲基衍生物 (4)、(5)、(7) 和 (8) 中,亚胺的 p.p.m.具有准轴向取向甲基的构象器是 另一个特征是,在烯胺中,C-9占主导地位。由于只有最稳定的构象,即半椅子,sp2杂交,在91.1和96.1 p.p.m.之间发出信号,必须考虑哌啶环,在6-甲基衍生物的亚胺互变异构体中,9-氨基是 * 'Hand 13C N.m.r.光谱结果在顺式中可作为补充赤道,在反式差向异构体中作为轴向(方案2)。出版。[增刊第56174号(4页)]。有关补充化合物出版物方案中苯氨基取向的详细信息,请参阅作者说明(1989年,J.Chem.Soc.,(6x9)是在Perkin Trans.1,1985年,第1期8-H和9-H的耦合常数的帮助下建立的。在化合物 (6) 和 (9) 的光谱中,J. CHEM. SOC. PERKIN TRANS.I 1985 在 C-6 处未取代,7.1 和 7.5 和 5.8 Hz 的耦合表明构象平衡向有利于具有准轴向苯氨基的构象者移动。至于6-甲基衍生物,在(7)的光谱中,顺式(10.7和6.2 Hz)和反式立体异构体(5.5 Hz)的耦合常数都可以被分配,而对于(8)中,只有与主要顺式异构体(1 1.4和5.4 Hz)相关的耦合常数是可识别的。最后,由于与其他信号重叠,无法区分(4)和(5)的单个立体异构体的耦合常数。从“C n.m.r.谱图中,顺亚胺和反亚胺是通过9-氨基对C-7的y效应鉴定的。表2汇编了9-氨基取代基对亚胺互变异构体中环碳(SCS)化学位移的影响,以C-9未取代的四氢吡啶C 1,2-a]嘧啶为参考。6-甲基衍生物(4)、(3,(7)和(8)的y-反作用为-1.0至-1.5 p.p.m.,而y-gauche效应为-2.4--5.7 p.p.m。通过比较在6-脱甲基衍生物(6)和(9)中观察到的效应与在6-甲基衍生物(4)和(7)中观察到的效应,可以得出结论,根据'H n.m.r.结果,(6)和(9)的主要构象是具有准轴向苯氨基的构象。关于异构体比的讨论。-通过'H'和'n.m.r.光谱确定的四氢衍生物(4)-(9)的异构体比率如表3所示。溶解后立即获得的值表明,化合物(4)和(5)以烯胺的形式存在于固相中,而其他化合物则以亚胺的形式存在。在平衡条件下的氘氯仿中,化合物(5)的亚胺互变异构体占主导地位,在[(CD,),SO]中,烯胺互变异构体占主导地位。这与早期的观察结果一致,即高极性溶剂可以稳定烯胺的形式。' 互变异构体平衡也受到 C-3 取代基的影响。在[(CD,),SO]中,烯胺互变异构体对于在C-3处具有吸电子羧基团或酯基团的6-甲基衍生物(4)和(5)占主导地位,而在C-3处未取代的互变异构体,例如(7)和(8),主要为亚胺形式。现象 R3NPh R3NPh R3NPh 0 V I I1 141 pm 134pm 0 Scbeme 3.可以通过考虑烯胺互变异构体的介构结构1-111(方案3)来解释,其中I11由羧基或酯基稳定。这也意味着介构体 I11 比 I 占优势,即烯胺氮的非键合电子对主要向 C-2 移动。对类似的烯胺羧酸(15)的X射线分析证实了这一假设.lza在这里,N(l)-C(9a)距离为141 pm,而N(lW(2)距离仅为134 pm。除了 C-3 的吸电子取代基外,6-甲基还对烯胺形式的稳定性做出了重大贡献。因此,在 [(CD,),SO] 中,亚胺形式在脱甲基 3-羧酸 (6) 中占主导地位,而烯胺形式在 6-甲基类似物 (4) 中占主导地位。该甲基是两个不利相互作用的来源(方案 4)。一种是介于 C(4W 和 C(6)-Me 之间的 1,3-烯丙基菌株 10*13,当甲基呈现准轴向 Me 307 pm 335 pm (11 1 (15) 方案 4.化合物 (11) 和 (15) '* 取向的特征原子距离和扭转角。另一种是准轴向甲基与8-H之间的1,3-二轴相互作用,,.通过比较亚胺(11)和烯胺(15)来研究6-甲基的作用。这些化合物的组成和发色团系统(根据U.V.数据)分别与苯氨基化合物(4)--49)的亚胺和烯胺互变异构体高度相似(见表1)。X射线数据的比较表明,C(6)-Me和8-H之间的距离在(11)和(15)中几乎相同(分别为278和279 pm),而C(6)-Me和C(4)=0之间的距离在亚胺(11)中为307 pm,在烯胺(15)中为335 pm。甲基和羰基围绕 C(4)-C(6) 轴的扭转角在亚胺 (11) 中为 69“,在烯胺 (15) 中为 81”。通过比较化合物(11)14的9-羧甲基衍生物和9-甲酰基-6-甲基-1,6,7,8-四氢-4H-吡啶并[1,2-a]吡啶-4-0ne的数据,可以得出类似的结论,,,。 而是进一步缓解仍然存在于亚胺互变异构体中并涉及甲基和 4-0XO 基团的 1,3-烯丙基菌株。ExperimentalM.p.s. 未更正。产量没有得到优化。用UNICAM SP-800分光度计在乙醇中记录UV光谱。'H N.m.r. (7) 的光谱是在 250 MHz 下用布鲁克 WM-250 仪器记录的;Jeol FX-100 仪器上分别在 100 MHz 和 25 MHz 处的 (4t-(8) 的 H 和 C n.m.r. 光谱。(9)分别在布鲁克WP-80仪器上以80和20.1 MHz录制。'H N.m.r.谱图在5-10%溶液中取,13Cn.m.r.谱图在饱和溶液中均使用SiMe作为内标。ISN N.m.r.光谱在具有质子宽带解耦功能的Jeol FX-100仪器上记录在10.04 MHz。化学位移相对于外部水溶液K“N03的信号测定,然后转换为外部硝基甲烷的信号[G(MeNO,) = 0.0 p.p.m.1。从参考向上场的移位为负值。(典型采集参数为:光谱宽度 5000 Hz,翻转角度 30 英寸,脉冲延迟 5 秒。通过'H n.m.r.谱和'3C n.m.r.谱相应信号的峰高积分,得到互变异构体和顺反比,平均4-6个信号的值。最大偏差为&2%。新化合物的分析结果与计算数据一致。详情见补充出版物(见第1016页)。在氩气气氛下,在室温下搅拌9-溴四氢吡啶啶酮(1)--(3)(10mmol)和苯胺或N-甲基苯胺(22mmol)在乙腈(5ml)中的溶液,合成9-氨基-4-氧代-四氢-4H-吡啶并[1,2-a]-嘧啶-3-羧酸衍生物(4)-(6).-9-溴四氢吡啶嘧啶酮(1)--(3)(10mmol)和苯胺或N-甲基苯胺(22mmol)在乙腈(5ml)中的溶液。然后加入水(20ml),并将反应混合物搅拌0.5小时。滤去析出结晶(4)--(6),用乙醇洗涤,干燥。这样制备的是化合物(4)(2.7克,90%)。m.p. 200-202 “C(在MeOH中回流)(lit.,,”198-199“C);化合物(5)(1.7g,50%),熔点180-181“C(来自MeCN),(lit.,2”180-181“C);化合物(6)(2.5g,88%),熔点178-180“C(在MeOH中回流)。化合物(4)-(6).-9-苯胺四氢吡啶嘧啶-3-羧酸衍生物(4)---(6)(10g)在2%氢氧化钠水溶液(100ml)中的溶液在氩气气氛下回流5小时。将混合物冷却至5“C后,滤去析出的晶体(7)-(9),用水洗涤并干燥。这样制备的化合物(7) (7.3g, 85%), m.p. 165-167 “C(来自MeOH);化合物(8)(5.8g,74%),熔点188-189“C(来自MeOH);化合物(9)(6.8g,80%),熔点155-156“C(来自MeOH)。参考文献 1 第 48 部分,I. Hermecz、M. Kajtar、K. Simon、T. Breining、P. R. Surjan、G. Toth 和 Z. Mesdros, J. Org. Chem.,在出版社。J. CHEM. SOC. PERKIN 译.I 1985 2 (a) I. Hermen, T. Breining, L. Vasvari-Debreny, A. Horvath, Z. Meszaros, I.Bitter, C. DeVos, and L. Rodriguez, J. Med. Chem., 1983,26,1494;(b)I. Hermecz, T. Breining, Z. Meszaros, A. Horvath, L. Vasvari-Debreczy, F. Dessy, C. DeVos, and L. Rodriguez, 同上, 1982,25,1140;(c) I. Hermecz, T. Breining, Z. M~ZATOS,J. Kokosi, L. MQzaros, F. Dessy, and C. DeVos, 同上, 1983, 26, 1126;(d) I. Herrnecz, A. Horvath, Z. Mesdros, C. DeVos, and L. Rodriguez, 同上, 1984,27, 1253。3(a) 1.Hermecz, T. Breining, L. Vasvari-Debreczy, A. Horvath, Z. Mesdros, 1.Bitter 和 J. Kokosi,德国专利 3 017 564 (Chem. Abstr., 1981, 94,121591t);(6) I. Hermecz, T. Breining, L. Vasvari- Debreczy, A. Horvath, and J. Kokosi, 德国专利 3 017 560 (Chem. Abstr., 1981,%,81007u).4 (a) G. Naray-Szabo, I. Hermen, and Z. Mtszaros, J.Chem. SOC., Perkin Trans. 1, 1974, 1753;(6)J. Kokosi, I. Hermecz, Gy.SAsz、Z. Mesdros、G. Toth 和 M. Csakvari-Pongor、J. Heterocycl。化学, 1982,19,909.5 (a) I. Hermecz, I. Bitter, A. Horvath, G. Toth, and Z. MQdros, Tetrahedron Lett., 1979, 20, 2557;(b) A. Horvath、I. Hermecz、L. Vasvari-Debreczy、K. Simon、M. Pongor-Csakvari、2.Mksziros和G.Toth, J. Chem. SOC.,Perkin Trans. 1, 1983, 369;(c) I. Bitter、I. Hermecz、G. Tbth、P. Dvortsak、Z. Bende 和 2.Mesdros, Tetrahedron Lett., 1979,20,5039.6 (a) I. Hermecz, T. Breining, Z. Meszaros, G. Toth, and I. Bitter, Heterocycles, 1980, 14, 1953;(b) Z. Meszaros, J. Knoll, P. Szentmiklbsi, A. David, G. Horvath, and I. Hermecz, Arzneim.-Forsch., 1972,22,815.7 (a)H. Wamhoff 和 L.Lichtenthaler, Chem. Ber., 1978,111,2813;(b) I. Hermecz, J. Engler, Z. Mkszaros, and G. Toth, Tetrahedron Lett., 1979, 20, 1337;(c)G. Toth, C. De La Cruz, I. Bitter, I. Hermecz, B. Pete, and 2.Meszaros, Org. Magn.共振, 1982,2Q, 229.8 (a)G. Horvath, A. I. Kiss, Z. Mkszaros, and I. Hermecz, Acta Chim.洪科学院, 1974, 83, 15;(b) I. Hermecz, P. R. Surjan, T. Breining, K. Simon, G. Horvith, Z. Miszaros, M. Kajtar, and G. Tbth, J. Chem. SOC.,Perkin Trans. 2,1983,1413.9 (a)H. Ahlbrecht 和 S. Fischer, Tetrahedron, 1970,26, 2837;(b)W.和H.-W.Meyer, Justus Liebigs Ann. Chem., 1974,776.10 G. Toth、I. Hermecz 和 Z. Mtszbros、J.Heterocycl。化学, 1979,16, 1181.11 (a)H. Ahlbrecht, J. Blecher, and F. Krohnke, Tetrahedron Lett., 1969, 439;(b) H. Ahlbrecht和R.-D.Kalas, Justus Liebigs Ann. Chem., 1979,102.12 (a)K. Simon, Z. Meszaros, and K. Sasvari, Acta Crystallogr., 1975, B31,1702;(b)K. Sasvari 和 K. Simon, Acta Crystallogr., 1973, B29, 1245.13 F. Johnson, Chem. Rev., 1968,68,375.14 K.西蒙,上帝。朱戈斯尔。分。Kristalogr., 1980,15,87.收稿日期:1984年7月2日;论文 4/ 11 19

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号