...
首页> 外文期刊>Journal of Applied Physics >Physical integrated diffusion-oxidation model for implanted nitrogen in silicon
【24h】

Physical integrated diffusion-oxidation model for implanted nitrogen in silicon

机译:Physical integrated diffusion-oxidation model for implanted nitrogen in silicon

获取原文
获取原文并翻译 | 示例

摘要

Scaling the gate oxide thickness is one of many process development challenges facing device engineers today. Nitrogen implantation has been used to control gate oxide thickness. By varying the dose of the nitrogen implant, process engineers can have multiple gate oxide thicknesses in the same process. Although it has been observed that nitrogen retards gate oxidation kinetics, the physics of how this occurs is not yet well understood. Since the retardation in oxide growth is due to the diffusion of nitrogen and its subsequent incorporation at the silicon/silicon oxide interface, the study of the diffusion behavior of nitrogen in silicon becomes important. Further, it is also necessary to study how this diffusion behavior impacts oxide growth. Models have been developed to explore these issues. The diffusion model is based on ab initio results and is compared to experimental results at two temperatures. The oxide reduction model is based on the diffusion of nitrogen to the surface. The surface nitrogen is coupled to the surface reaction rate of silicon and oxygen to moderate oxide growth.

著录项

  • 来源
    《Journal of Applied Physics 》 |2002年第4期| 1894-1900| 共7页
  • 作者单位

    Department of Electrical Engineering, Software for Advanced Materials Processing (SWAMP) Center, University of Florida, Gainesville, Florida 32611;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 应用物理学 ;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号