首页> 外文期刊>journal of chemical physics >Plasmon resonance broadening in small metal particles
【24h】

Plasmon resonance broadening in small metal particles

机译:Plasmon resonance broadening in small metal particles

获取原文
           

摘要

A quantum mechanical method based on the Kramersndash;Heisenberg dispersion relation is used to evaluate the dielectric response of small metal particles, and thereby to determine the influence of particle size on the widths of the plasmon resonance line shapes. Several different particle shapes are considered (sphere, cylinder, rectangular prism, spherical shell, and cylindrical shell) and for each shape a free electron Schrouml;dinger equation is used to determine conduction band energies and dipole matrix elements. The main emphasis in this work is on particle sizes large enough that only the first order deviations from the infinite size limit are important, and for such sizes we find that the size dependent contribution to the width can be expressed in terms of an effective lengthLeff. This effective length is found to depend on the direction of the external field relative to the particle symmetry axes, and on the shape of the particle. For compact shapes,Leffis accurately approximated by 0.65Lavalong each principal axis, whereLavis the ratio of particle volume to its projected area along the relevant axis. Comparison with previous classical and semiclassical calculations is considered, and for spherical particles, we find good agreement with the classical surface scattering model, differing by about 16percnt;. More significant differences are found for other shapes, most notably because the classical theory ignores the dependence of resonance width on the orientation of the field relative to the particle.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号