【24h】

Challenges for Rechargeable Li Batteries

机译:可充电锂电池面临的挑战

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The challenges for further development of Li rechargeable batteries for electric vehicles are reviewed. Most important is safety, which requires development of a nonflammable electrolyte with either a larger window between its lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) or a constituent (or additive) that can develop rapidly a solid/ electrolyte-interface (SEI) layer to prevent plating of Li on a carbon anode during a fast charge of the battery. A high Li~+-ion conductivity (σ_(Li) > 10~(-4) S/cm) in the electrolyte and across the electrode/ electrolyte interface is needed for a power battery. Important also is an increase in the density of the stored energy, which is the product of the voltage and capacity of reversible Li insertion/extraction into/from the electrodes. It will be difficult to design a better anode than carbon, but carbon requires formation of an SEI layer, which involves an irreversible capacity loss. The design of a cathode composed of environmentally benign, low-cost materials that has its electrochemical potential μ_C well-matched to the HOMO of the electrolyte and allows access to two Li atoms per transition-metal cation would increase the energy density, but it is a daunting challenge. Two redox couples can be accessed where the cation redox couples are "pinned" at the top of the O 2p bands, but to take advantage of this possibility, it must be realized in a framework structure that can accept more than one Li atom per transition-metal cation. Moreover, such a situation represents an intrinsic voltage limit of the cathode, and matching this limit to the HOMO of the electrolyte requires the ability to tune the intrinsic voltage limit. Finally, the chemical compatibility in the battery must allow a long service life.
机译:本文综述了电动汽车锂充电电池的进一步发展所面临的挑战。最重要的是安全性,这需要开发一种不易燃的电解质,在其最低未占用分子轨道 (LUMO) 和最高占用分子轨道 (HOMO) 之间具有更大的窗口,或者一种可以快速形成固体/电解质界面 (SEI) 层的成分(或添加剂),以防止在电池快速充电期间在碳阳极上镀锂。动力电池需要电解液和电极/电解质界面上的高Li~+离子电导率(σ_(Li)>10~(-4) S/cm)。同样重要的是存储能量密度的增加,这是可逆锂插入/提取电极的电压和容量的乘积。很难设计出比碳更好的阳极,但碳需要形成SEI层,这涉及不可逆的容量损失。由环境无害的低成本材料组成的阴极的设计,其电化学电位μ_C与电解质的HOMO很好地匹配,并允许每个过渡金属阳离子获得两个Li原子,这将增加能量密度,但这是一个艰巨的挑战。当阳离子氧化还原对被“固定”在O 2p条带的顶部时,可以访问两个氧化还原对,但为了利用这种可能性,它必须在一个框架结构中实现,该框架结构可以接受每个过渡金属阳离子的多个Li原子。此外,这种情况代表了阴极的固有电压限值,并且将该限值与电解质的 HOMO 相匹配需要能够调整固有电压限值。最后,电池中的化学相容性必须允许较长的使用寿命。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号