...
首页> 外文期刊>Journal of Applied Physics >Dry laser cleaning of particles from solid substrates: Experiments and theory
【24h】

Dry laser cleaning of particles from solid substrates: Experiments and theory

机译:Dry laser cleaning of particles from solid substrates: Experiments and theory

获取原文
获取原文并翻译 | 示例

摘要

The experimental analysis of dry laser cleaning efficiency is done for certified spherical particle (SiO_(2), 5.0, 2.5, 1.0, and 0.5 μm) from different substrates (Si, Ge, and NiP). The influence of different options (laser wavelength, incident angle, substrate properties, i.e., type of material, surface roughness, etc.) on the cleaning efficiency is presented in addition to commonly analyzed options (cleaning efficiency versus laser fluence and particle size). Found laser cleaning efficiency demonstrates a great sensitivity to some of these options (e.g., laser wavelength, angle of incidence, etc.). Partially these effects can be explained within the frame of the microelectronics engineering (MIE) theory of scattering. Other effects (e.g., influence of roughness) can be explained along the more complex line, related to examination of the problem "particle on the surface" beyond the MIE theory. The theory of dry laser cleaning, based on one-dimensional thermal expansion of the substrate, demonstrates a great sensitivity of the cleaning efficiency on laser pulse shape. For the reasonable pulse shape this theory yields the threshold fluence by the order of magnitude larger than the experimental one. At the same time the theory, which takes into account the near-field optical enhancement and three-dimensional thermal expansion effects, yields the correct values for threshold.

著录项

  • 来源
    《Journal of Applied Physics 》 |2001年第5期| 2135-2142| 共8页
  • 作者单位

    Laser Microprocessing Laboratory, Department of Electrical Engineering and Data Storage Institute, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 英语
  • 中图分类 应用物理学 ;
  • 关键词

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号