首页> 外文期刊>Journal of geophysical research >Statistical study of magnetic cloud erosion by magnetic reconnection
【24h】

Statistical study of magnetic cloud erosion by magnetic reconnection

机译:Statistical study of magnetic cloud erosion by magnetic reconnection

获取原文
获取原文并翻译 | 示例
           

摘要

abstract_textpSeveral recent studies suggest that magnetic reconnection is able to erode substantial amounts of the outer magnetic flux of interplanetary magnetic clouds (MCs) as they propagate in the heliosphere. We quantify and provide a broader context to this process, starting from 263 tabulated interplanetary coronal mass ejections, including MCs, observed over a time period covering 17years and at a distance of 1AU from the Sun with Wind (1995-2008) and the two STEREO (2009-2012) spacecraft. Based on several quality factors, including careful determination of the MC boundaries and main magnetic flux rope axes, an analysis of the azimuthal flux imbalance expected from erosion by magnetic reconnection was performed on a subset of 50 MCs. The results suggest that MCs may be eroded at the front or at rear and in similar proportions, with a significant average erosion of about 40 of the total azimuthal magnetic flux. We also searched for in situ signatures of magnetic reconnection causing erosion at the front and rear boundaries of these MCs. Nearly similar to 30 of the selected MC boundaries show reconnection signatures. Given that observations were acquired only at 1AU and that MCs are large-scale structures, this finding is also consistent with the idea that erosion is a common process. Finally, we studied potential correlations between the amount of eroded azimuthal magnetic flux and various parameters such as local magnetic shear, Alfven speed, and leading and trailing ambient solar wind speeds. However, no significant correlations were found, suggesting that the locally observed parameters at 1AU are not likely to be representative of the conditions that prevailed during the erosion which occurred during propagation from the Sun to 1AU. Future heliospheric missions, and in particular Solar Orbiter or Solar Probe Plus, will be fully geared to answer such questions./p/abstract_text

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号