首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Reconstruction of ringAof 3,4-dinor-2,5-seco steroids
【24h】

Reconstruction of ringAof 3,4-dinor-2,5-seco steroids

机译:3,4-二诺-2,5-固醇类固醇的重建

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1985 Reconstruction of Ring A of 3,4-Dinor-2,5-seco Steroids Robin 6. 6oar"t and Arvind C. Patel Department of Chemistry, Chelsea College, London SW36LX Methods for the reconversion of 3,4-dinor-2,5-seco steroids into the parent 4-en-3-one systems are discussed. In an efficient route, reaction of 17~-acetoxy-5,5-ethylenedioxy-3,4-dinor-2,5-secoandros-tan-2-al with ethoxyvinyl-lithium led to the corresponding 25-hydroxy-3-one. Acetylation followed by treatment with zinc dust in acetic acid then gave testosterone acetate. A similar series of reactions was performed in the progesterone series. We have previously reported a highly efficient route for the removal of atoms C-3 and C-4 from steroidal 4-en-3-ones.' The 3,4-dinor-2,5-seco 2-alcohol (1) thus obtained has recently been utilised as the starting point for a novel synthesis of 3-thia analogues of testosterone 'and of 4-nor-3-thia-androst-Sen-17p-01.~ We now report the results of work directed towards the reconversion of the dinor alcohol (1) into the original 4-en-3- one system.A major objective of this work was to assess the feasibility of using such methodology for the preparation of 3,4- 3C2-labelled steroids. Attempts to convert the alcohol (1) into the halide (2) met with failure. The most significant product isolated from these reactions was the bis ether (4). The same product (4) was also R4OAc OAc (1 1 R =OH (4) (2) R =Cl or Br (3) R =C-CH OAc Ro4P obtained from reaction of the alcohol (1) with toluene-p- sulphonyl chloride.However, treatment of the alcohol (1) with toluene-p-sulphinyl chloride gave a diastereoisomeric mixture of the 2-sulphinyloxy compounds (5) S 7.32 and 7.61 (each 2 H, d, ArH). Oxidation of this mixture with m-chloroperbenzoic acid (MCPBA) afforded a rather unstable product, the n.m.r. spectrum of which S 7.34 and 7.82 (each 2 H, d, ArH) was consistent with its formulation as the required toluene-p- sulphonate (6). Immediate reaction of this product with sodium acetylide in hexamethyl phosphoric triamide (HMPA), condi- t Present address: Janssen Pharmaceutica, 2340 Beerse, Belgium. 1See ref. 1 and Experimental section, this paper. (11) /'liii OAc 0(12) (14) 0 0 ii,iii.vi -0d (15) (16) Scheme.Reagents: i, LDA, (EtO),P(O)CH(OMe)CH,; ii, EtOCH=CH,, Bu'Li; iii, Ac,O, pyridine; iv, HCzCLi; v, HgO, H,SO,; vi, Zn, HOAc tions which had been shown to be optimum for the conversion of the model toluene-p-sulphonate (7) into the alkyne (8),5gave, however, none of the required product (3).Instead, a low yield of the bis ether (4) was isolated. Persistent participation of the 5,5-ethylenedioxy group in the reactions of the alcohol (1) led us to consider the readily available$ aldehyde (9) as an alternative starting point for the reconstruction of ring A. Of various Wittig-Horner reagents which might have been expected to undergo condensation with 1202 the aldehyde (9) to give overall addition of an acetyl synthon, the most promising was diethyl (1-methoxyethy1)phosphonate.Treatment of this phosphonate with lithium di-isopropylamide (LDA) at -95 "Cfollowed by addition of the aldehyde (9)led to isolation of the expected diastereoisomeric mixture of adducts (10) in 84 yield. We were, however, unsuccessful in our attempts to convert the adducts (10)into the required enol ether. Addition of ethoxyvinyl-lithium to 17P-acetoxy-5,S-ethyl-enedioxy-3,4-dinor-2,5-secoandrostan-2-a1(9) also proceeded smoothly. Chromatography of the reaction product on a silica gel column was accompanied by hydrolysis of the enol ether function and afforded the a-hydroxy ketone (ll),as a mixture of epimers at C-2, in 87 yield. Acetylation and crystallisation of the product from methanol gave a single epimer of the diacetoxy ketone (12).The same diacetate was also obtained by an alternative route as follows. Treatment of the aldehyde (9) with lithium acetylide in tetrahydrofuran (THF) gave the propargylic alcohols (13) in 75 yield. Acetylation, followed by hydration of the alkyne, then gave the diacetoxy ketone (12), albeit in an unoptimised yield of only 36. Finally, reductive cleavage of the 2-acetoxy group, hydrolysis of the 5,5-ethylene- dioxy group, and cyclisation of ring A were all achieved in a one- pot reaction employing zinc dust in refluxing acetic acid. Testosterone acetate (14) was isolated in 44 yield (Scheme). In an analogous series of reactions, 5,5;20,20-bis(ethylenedioxy)-3,4-dinor-2,5-secopregnan-2-a1(15) was converted via the ethoxyvinyl-lithium adduct into progesterone (16).It is thus established that 3,4-dinor-2,5-seco steroids are convenient substrates for the synthesis of both heteroatom- substituted steroid analogues 2,3and, potentially, of isotopically labelled natural steroids. Experimental General directions are as previously described. Reaction of 5,5-Ethylenedioxy-3,4-dinor-2,5-secoandrostane-2,17p-diol 17-Acetate (1) with Toluene-p-sulphonyl Chloride.- 5,5-Ethylenedioxy-3,4-dinor-2,5-secoandrostane-2,17~-diol17-acetate (1) (200 mg) was added to a sohtion of toluene-p- sulphonyl chloride (1 15 mg) in pyridine (4 ml) at 0 "C. After 24 h at 0 "C, the mixture was poured into water and extracted with ether.The extracts were washed successively with 2~-hydro- chloric acid and water, dried, and evaporated. The residue was chromatographed on a silica gel column (eluant 25 ethyl acetate in light petroleum) to yield the bis ether (4) (57 mg), m.p. 119-121 "C (Found: C, 72.2; H, 9.8. C,,H,,O, requires C, 72.4; H, 9.7); v,,,. 1 730 and 1 665 cm-'; 6 0.82, 1.02, and 2.04 (each 3 H, s, 18- and 19-H, and OAc respectively), 3.3-4.1 (6 H, m, OCH,CH,O and 2-H,), 4.65 (1 H, t, J 7 Hz, 17-Ha), and 5.02 (1 H, d, J 5 Hz, 6-H); m/z 348 (M', 100) and 305 (43). 53-Ethylenedioxy-3,4-dinor-2,5-secoandrostane-2,17~-dio~17-Acetate 2- Toluene-p-sulphinate (5).-A solution of V-ethyl- enedioxy-3,4-dinor-2,5-secoandrostane-2,17~-diol1 7-acetate (1) (175 mg) in ether (3 ml) was added dropwise to a solution of toluene-p-sulphinyl chloride (98 mg) and pyridine (42 mg) in ether (2 ml) at 0 "C.The mixture was allowed to warm to room temperature and after 5 h was washed successively with 2M-hydrochloric acid, aqueous 2hl-sodium carbonate, and satur- ated aqueous sodium chloride, dried, and evaporated. The residue was chromatographed on silica gel (eluant 20 ethyl acetate in light petroleum) to afford S-p-tolyl toluene-p- thiosulphonate (10 mg), m.p. 76-78 "C (lit.,' 76-77 "C) followed by the 2-toluene-p-sulphinate (5) (1 73 mg, 72), m.p. 123-126 "C; v,,,.. 1 740, 1 730, 1 250, and 1 130 cm-'; 6 0.78, 0.97, 2.03, and 2.42 (each 3 H, s, 18-and 19-H,, OAc, and ArCH, respectively), 3.6-4.3 (6 H, m, 2-H, and OCH,CH,O), 4.56 (1 H, t, J 7 Hz, 17-Ha), and 7.32 and 7.61 (each 2 H, d, J 7 J.CHEM. SOC. PERKIN TRANS. I 1985 Hz, ArH); m/z 365 (lo, M+-ArSO), 349 (62, M+ -ArSO,), and 99 (100). 53-Ethylenedioxy-3,4-dinor-2,5-secoandrostane-2,17p-did 17- Acetate 2-Toluene-p-sulphonate(6)and its Reaction with Sodium Acety1ide.-A solution of MCPBA (47 mg) in dichloromethane (2 ml) was added dropwise to a solution of the sulphinate ester (5) (100mg) in dichloromethane (2 ml) at 0 "C.After 2.5 h at 0 "C the mixture was washed successively with aqueous 2~-potas- sium carbonate and water, dried, and evaporated under reduced pressure at 0 "C to yield the toluene-p-sulphonate (6)as an oily residue (70 mg, 73); v,,,. 1 730,l 360,l 190, and 1 175 cm-'; 6 0.78,0.97, 2.03, and 2.45 (each 3 H, s, 18- and 19-H,, OAc, and ArCH, respectively), 3.8 (4 H, br s, OCH,CH,O), 3.9-4.3 (2 H, m, 2-H,), 4.57 (1 H, t, J 7 Hz, 17-Ha), and 7.34 and 7.82 (each 2 H, d, J 7 Hz, ArH).This material was used directly for the following experiment. Acetylene was bubbled through anhydrous liquid ammonia at -70 "C for 5 min. Sodium (0.5 g) was added. After 10 min, the passage of acetylene was stopped, the cooling bath was removed, and the ammonia was evaporated off by gentle warming under nitrogen. The residue was dissolved in HMPA (5 ml) and then the solution was saturated with acetylene at room temperature. A solution of the aforementioned toluene-p- sulphonate (70 mg) in HMPA (2 ml) was added dropwise to this solution.After 2 h the mixture was poured onto ice and extracted with hexane. Careful t.1.c. examination of the reacetylated product thus obtained showed that it contained none of the required alkyne (3).' The only characterised product was the bis ether (4). 17p-Acetoxy-5,5-ethylenedioxy-3,4-dinor-2,5-secoandrostan-2-a1 (9).-A solution of 5,5-ethylenedioxy-3,4-dinor-2,5-secoandrostane-2,17~-diol17-acetate (1)(400 mg) in dichloro- methane (5 mi) was added to a suspension of pyridinium chlorochromate (529 mg) and anhydrous sodium acetate (500 mg) in dichloromethane (10 ml). After the mixture had been stirred for 2 h, ether (50 ml) was added and the supernatant liquid was decanted. The insoluble residue was washed thoroughly with ether.The combined ether layers were passed through a short column of silica gel. Evaporation of the eluant gave the required 2-aldehyde (9) (330 mg, 83), m.p. 153- 156 "C (lit.,' 153-156 "C). Similar oxidation of 5,5;20,20-bis(ethylenedioxy)-3,4-dinor-2,5-secopregnan-2-01' afforded the corresponding aldehyde (15) (60),m.p. (from ethyl acetate-hexane) 175-177 "C (Found: C, 70.4; H, 9.4. C26H3605 requires C, 70.4; H, 9.2); vmaX,1710 cm-'; 6 0.76, 1.17, and 1.26 (each 3 H, s, 18-, 19-, and 21-H, respectively), 3.65-4.00 (8 H, m, 2 x OCH2CH,0), and 9.70 (1 H, t, J4 Hz, 2-H). Diet hy 1 (1-Methoxyethyl)phosphonate.-a-Chloroethylmethyl ether lo (25 g) and triethyl phosphite (40 g) were heated under reflux for 4.5 h. Vacuum distillation gave the title phosphonate (25.5 g, 4979, b.p.73-75 "C at 0.8 mmHg; vmax. (neat) 1 238 and 1 025 cm-'; 6 1.34 (6 H, t, J7 Hz), 1.48 (3 H, d, J 7 Hz), 3.50 (3 H, s), 3.60 (1 H, q, J7 Hz), and 4.18 (4 H, q, J7 Hz); m/z 184 (100) and 59 (29). Reaction of the 2-Aldehyde (9)with Diethyl (1-Methoxyethyl)- phosphonate.-A solution of di-isopropylamine (0.74 ml) in THF (10ml) was cooled to -78 "C and n-butyl-lithium (3.4 ml; 1.55~solution in hexane) was added. A solution of freshly distilled diethyl (1-methoxyethy1)phosphonate(0.9 g) in THF (2 ml) was then added during 5 min and the mixture was then cooled to -100 "C.To this mixture was added a solution of 17p- acetoxy-5,5-ethylenedioxy-3,4-dinor-2,5-se~oandrostan-2-a1(9) (340 mg) in THF (3 ml) dropwise during 20 min.After a further J. CHEM. SOC. PERKIN TRANS. I 1985 15 min at -100 "C, the mixture was allowed to warm to room temperature and was then poured into ether. The solution was washed successively with aqueous 50 citric acid, water, and 2~-sodium carbonate, dried, and evaporated. Chromatography of the residue on silica gel with 20 ethanol in ether as eluant gave a mixture of the diastereoisomeric adducts (10) as a gum (410 mg, 84); v,,,. (neat) 3 400, 1 220, and 1 030 cm-'; 6 0.75 and 0.80 (total 3 H, s, lS-H,), 1.08 and 1.13 (total 3 H, s, 19-H3), 3.40 and 3.47 (total 3 H, s, OMe), 3.98 (4 H, br s, OCH,CH,O), and 3.90-4.40 (4H, m, 2 x OCH,). Attempts to cleave this material to give the corresponding enol ether by pyrolysis or by using potassium t-butoxide or potassium hydride were not successful.Reaction of the 2-Aldehyde (9) with Ethoxyvinyl-lithium.-A solution ofethyl vinyl ether (450 mg) in THF (10 ml) was cooled under nitrogen to -78 "C and t-butyl-lithium (2.6 ml; 1.4~- solution in pentane) was added. As the mixture warmed, the yellow precipitate redissolved to give a colourless solution by 0 "C. The solution was cooled to -95 "C and a solution of the 2-aldehyde (9)(230 mg) in THF (4 ml) was added during 10 min. The mixture was allowed to warm to room temperature, aqueous 20 ammonium chloride was added, and the mixture was extracted with ether. The combined extracts were washed with water, dried, and evaporated to leave an oil (vmax.3 430, 1 665, and 1 620 cm-') which, upon chromatography on silica gel with 60 ethyl acetate in light petroleum as eluant, gave 55-ethylenedioxy-2,17~-dihydroxy-4,5-secoandrostan-3-one(200 mg, 87); v,,,.3 400 and 1 710 cm-'. Acetylation with acetic anhydride in pyridine at room temperature gave the corre- sponding diacetate (12) (195 mg, 81) as a mixture of epimers at C-2. Crystallisation from methanol afforded a pure single silica gel column with 40 ethyl acetate in light petroleum as eluant gave 5,5-ethylenedioxy-4,5-secoandrost-3-yne-2~,17p-diol 17-acetate (13) (160 mg, 75); vmax.3 450,3 300, and 1 730 cm-'; m/z 390 (M', 1) and 328 (100). Treatment with acetic anhydride in pyridine at room temperature gave the corre- sponding 2,17-diacetate (152 mg, 82); 6 0.82 and 1.07 (each 3 H, s, 18- and 19-H,), 2.04 and 2.06 (each 3 H, s,2 x OAc), 2.42 (1 H, d, J 2 Hz, 4-H), 4.0 (4 H, br s, OCH,CH,O), 4.60 (1 H, t, J 7 Hz, 17-Ha), and 5.85 (1 H, m, 2-H); m/z 432 (M', 2) and 99 (1w-Yellow mercury(I1) oxide (650 mg) was stirred with water (5 ml) and conc.sulphuric acid (0.8 ml). A solution of 53-ethylenedioxy-4,5-secoandrost-3-yne-2S,17~-dioldiacetate (50 mg) in dioxane (1 ml) was added to the mercury oxide solution (2 ml) and the mixture was stirred for 2.5 h before being extracted with chloroform. The extracts were washed with water, dried, and evaporated to give a mixture of the C-2 epimers of 2,17p-diacetoxy-5,5-ethylenedioxy-4,5-secoandrostan-3-one(12) (19 mg, 36), identical with material prepared as above.Treatment of 25,17p-Diacetoxy-5,5-ethylenedioxy-4,5-seco-androstan-3-one (12) with Zinc Dust.-The title compound (100 mg) and zinc dust (300 mg) were refluxed in glacial acetic acid (5 ml) for 12 h. The zinc dust was filtered off and washed thoroughly with ether. The combined organic layers were washed successively with 2~-sodium hydrogen carbonate and water, then dried and evaporated. The residue was separated by preparative layer chromatography (developer 30 ethyl acetate in light petroleum) to give testosterone acetate (14) (32 mg, 4473, m.p. 138-141 "C, identical in all respects with an authentic sample, and 17~-acetoxy-4,5-secoandrostane-3,5-dione (1 2 mg); 6 0.80,1.06,1.98, and 2.10 (each 3 H, s, 18- and 19- epimer of 2151 7~-diacetoxy-5,5-ethylenedioxy-4,5-secoandros-H,, OAc, and 4-H, respectively) and 4.58 (1 H, t, J7 Hz, 17-Ha); tan-3-one (12), m.p. 138-141 "C (Found: C, 66.55; H, 8.5.C,,H,,O, requires C, 66.6; H, 8.5); 6 (200 MHz) 0.80 (3 H, s, 18-H3), 1.12 (3 H, s, 19-H3), 2.04 (3 H, s, 17-OAc), 2.12 and 2.13 (total 6 H, each s, 2-OAc and 4-H,), 3.94.1 (4 H, m, OCH,CH,O), 4.56 (1 H, m, 17-Ha), and 5.40 (1 H, dd, J 2 and 8 Hz, 2-H); m/z 450 (M', 4) and 99 (100). Similarly, 5,5;20,20-bis(ethylenedioxy)-3,4-dinor-2,5-seco-pregnan-2-a1 (15) gave 2-acetoxy-5,5;20,20-bis(ethylenedioxy)-4,5-secopregnan-3-one (66) as a mixture of isomers at C-2; 6 0.78 (3 H, s, 18-H3), 0.96 and 1.03 (total 3 H, each s, 19-H,), 1.28 (6 H, s, 4-and 2l-H,), 2.02 (3 H, s, OAc), 3.80-4.10 (8 H, m, 2 x OCH,CH,O), and 5.62 (1 H, m, 2-H).Alternative Preparation of 2,17P-Diacetoxy-5,5-ethylenedioxy-4,5-secoandrostan-3-one (1 2)-Acetylene was bubbled in to THF (7 ml) cooled to -78 "C. n-Butyl-lithium (2.4 ml; 1.5~- solution in hexane) was then added dropwise. After 5 min, the mixture was cooled to -98 "C, the flow of acetylene was stopped, and a solution of 17P-acetoxy-5,5-ethylenedioxy-3,4-dinor-2,5-secoandrostan-2-a1(9) (200 mg) in THF (2 ml) was added dropwise. The mixture was stirred at -98 "C for 20 min, and then allowed to warm to room temperature. Water (15 ml) was added followed by solid potassium carbonate until the aqueous phase became pasty.The mixture was then extracted with ether. The combined extracts were washed with water, dried, and evaporated. Chromatography of the residue on a m/z 348 (M', 1), 330 (loo), and 278 (98). Similar reduction of 2~-acetoxy-5,5;20,20-bis(ethylenedioxy)-4,5-secopregnan-3-one (60 mg) with zinc dust (200 mg) for 15 h yielded progesterone (16) (14 mg, 3573, m.p. 128-130 "C, identical in all respects with an authentic sample. Acknowledgements We thank the S.E.R.C. for financial support. References 1 R. B. Boar, S. L. Jones, and A. C. Patel, J. Chem. SOC.,Perkin Trans. 1, 1982,513. 2 G. A. Flynn, J. Org. Chem., 1983,48,4125. 3 G. A. Flynn, Synth. Commun., 1984,14,301. 4 R. M. Coates and J. P. Chen, Tetrahedron ktt., 1967,2705. 5 A. C. Patel, Ph.D. Thesis, University of London, 1983. 6 See, for example, S.Warren, Chem. Ind. (London), 1980,824; A. F. Kluge and J. S. Cloudsdale, J. Org. Chem., 1979,44,4847. 7 J. E. Baldwin, G. A. Hofle, and 0.W. Lever, J. Am. Chem. SOC.,1974, 96,7125. 8 M. M. Midland, J. Org. Chem., 1975,40,2250. 9 M. Furukawa, T. Okawara, Y. Noguchi, and M. Nishikawa, Synlhesis, 1978,441. 10 H. R. Henze and J. T. Murchison, J. Am. Chem. SOC.,1931,53,4077. Received 24th October, 1984; Puper 4/1818
机译:J. CHEM. SOC. PERKIN 译.I 1985 3,4-二二醇-2,5-seco 类固醇 Robin 6 环 A 的重建。6oar“t 和 Arvind C. Patel 伦敦切尔西学院化学系 SW36LX 讨论了将 3,4-二诺-2,5-塞科类固醇重新转化为母体 4-烯-3-酮系统的方法。在一种有效的途径中,17~-乙酰氧基-5,5-乙烯二氧基-3,4-二醇-2,5-七雄糖-tan-2-醛与乙氧基乙烯基锂反应得到相应的25-羟基-3-酮。乙酰化,然后用醋酸中的锌粉处理,然后得到醋酸睾酮。在黄体酮系列中进行了类似的一系列反应。我们之前已经报道了一种从甾体4-烯-3-酮中去除原子C-3和C-4的高效途径。由此获得的 3,4-二诺-2,5-seco 2-醇 (1) 最近被用作睾酮的 3-硫杂类似物和 4-nor-3-硫杂雄甾-Sen-17p-01 的新型合成的起点~ 我们现在报告了将二醇 (1) 重新转化为原始 4-en-3-one 系统的工作结果。这项工作的一个主要目标是评估使用这种方法制备3,4-[3C2]标记类固醇的可行性。试图将酒精(1)转化为卤化物(2)的尝试失败了。从这些反应中分离出的最重要的产物是双醚 (4)。同样的产物(4)也是R4OAc OAc(1,1,R=OH,(4),(2)R=Cl或Br,(3)R=C-CH OAc,由醇(1)与甲苯-p-磺酰氯反应得到Ro4P。然而,用甲苯对磺酰氯处理醇(1)得到2-磺酰氧基化合物(5)[S 7.32和7.61(各2 H,d,ArH)]的非对映异构体混合物。该混合物与间氯过苯甲酸 (MCPBA) 氧化得到相当不稳定的产物,其 n.m.r. 谱图 [S 7.34 和 7.82(各 2 H, d, ArH)] 与其作为所需甲苯对磺酸盐的配方一致 (6)。本品与乙炔钠在六甲基磷酸三酰胺(HMPA)中的直接反应,目前地址:Janssen Pharmaceutica, 2340 Beerse, Belgium。1参见本文参考文献1和实验部分。(11) /'liii OAc 0&(12) (14) 0 0 ii,iii.vi -0d (15) (16) Scheme.Reagents: i, LDA, (EtO),P(O)CH(OMe)CH,;ii, EtOCH=CH,, Bu'Li;iii, Ac,O,吡啶;iv, HCzCLi;v, HgO, H,SO,;vi,Zn,HOAc已被证明是将模型甲苯对磺酸盐(7)转化为炔烃(8)的最佳方法,5但是,没有给出所需的产物(3)。取而代之的是,分离出低产率的双醚(4)。5,5-乙烯二氧基持续参与醇 (1) 的反应,导致我们考虑将现成的醛 (9) 作为重建环 A 的替代起点。在各种 Wittig-Horner 试剂中,可能预期会与 1202 醛 (9) 缩合以总体添加乙酰合成子,最有希望的是(1-甲氧基乙醚 1)膦酸二乙酯。用二异丙基酰胺锂(LDA)在-95“C下处理这种膦酸盐,然后加入醛(9),以84%的收率分离出预期的加合物(10)的非对映异构体混合物。然而,我们试图将加合物 (10) 转化为所需的烯醇醚没有成功。在17P-乙酰氧基-5,S-乙基-烯二氧基-3,4-二诺-2,5-西科雄甾烷-2-a1(9)中加入乙氧基乙烯基锂也进展顺利。在硅胶柱上对反应产物进行色谱分析,同时水解烯醇醚官能团,得到α-羟基酮(ll),作为C-2差向异构体的混合物,收率为87%。甲醇产物的乙酰化和结晶得到二乙酰氧基酮的单个差向异构体 (12)。相同的双乙酸酯也通过以下替代途径获得。用乙炔锂在四氢呋喃 (THF) 中处理醛 (9),炔丙醇 (13) 的收率为 75%。乙酰化,然后炔烃水合,然后得到二乙酰氧基酮 (12),尽管未优化的收率仅为 36%。最后,在回流乙酸中采用锌粉进行一锅反应,实现了2-乙酰氧基的还原裂解、5,5-乙烯-二氧基团的水解和环A的环化。乙酸睾酮 (14) 以 44% 的收率分离出来 (Scheme)。在一系列类似的反应中,5,5;20,20-双(乙烯二氧基)-3,4-二醇-2,5-七酚-2-A1(15)通过乙氧基乙烯基-锂加合物转化为黄体酮(16)。因此,可以确定 3,4-二诺-2,5-seco 类固醇是合成杂原子取代类固醇类似物 2,3 和潜在同位素标记的天然类固醇的方便底物。实验 一般方向如前所述。将5,5-乙烯二氧基-3,4-二酮-2,5-二雄甾烷-2,17p-二醇17-乙酸酯(1)与甲苯对磺酰氯反应。在0“C下24小时后,将混合物倒入水中并用乙醚萃取。提取液先后用2~-盐酸和水洗涤,干燥,蒸发。将残留物在硅胶柱(洗脱液25%乙酸乙酯的轻质石油溶液)上色谱,得到双醚(4)(57mg),熔点119-121“C(发现:C,72.2;H,9.8。C,,H,,O,需要 C,72.4;H,9.7%);v,,,.1 730 和 1 665 cm-';6 0.82、1.02 和 2.04(分别为3 H、s、18-H和19-H和OAc)、3.3-4.1(6 H、m、OCH、CH、O和2-H)、4.65(1 H、t、J 7 Hz、17-Ha)和5.02(1 H、d、J 5 Hz、6-H);m/z 348 (M', 100%) 和 305 (43)。53-乙烯二氧基-3,4-二诺-2,5-七雄甾烷-2,17~-二~17-乙酸酯 2-甲苯对亚磺酸酯(5).-将V-乙基-二氧基-3,4-二醇-2,5-七雄甾烷-2,17~-二醇1 7-乙酸酯(1)(175mg)在乙醚(3ml)中的溶液在0“C下滴加到甲苯-对磺酰氯(98mg)和吡啶(42mg)的乙醚(2ml)溶液中。 2hl-碳酸钠水溶液和饱和氯化钠水溶液干燥,蒸发。将残留物在硅胶(洗脱液20%乙酸乙酯的轻质石油溶液)上色谱,得到S-对甲苯基甲苯对硫代磺酸酯(10mg),熔点76-78“C(lit.,76-77”C),然后是2-甲苯对亚磺酸酯(5)(1 73mg,72%),熔点123-126“C;v,,,..1 740、1 730、1 250 和 1 130 cm-';6 0.78、0.97、2.03 和 2.42(分别为 3 H、s、18 和 19-H、OAc 和 ArCH)、3.6-4.3(6 H、m、2-H 和 OCH、CH、O)、4.56(1 H、t、J 7 Hz、17-Ha)和 7.32 和 7.61(各 2 H、d、J 7 J.CHEM. SOC. PERKIN TRANS.I 1985 Hz,ArH);m/z 365 (lo%, M+-ArSO)、349 (62, M+ -ArSO,) 和 99 (100)。53-乙烯二氧基-3,4-二诺-2,5-西雄甾烷-2,17p-二烯-17-乙酸酯 2-甲苯对磺酸酯(6)及其与乙酰1ide钠的反应.-将MCPBA(47mg)在二氯甲烷(2ml)中的溶液滴加到亚磺酸酯(5)(100mg)在0“C的二氯甲烷(2ml)溶液中,在0”C下2.5小时后,将混合物用2~-碳酸钾水和水连续洗涤,干燥,并在0“C下减压蒸发,得到甲苯对磺酸盐(6)作为油状残留物(70mg, 73%);v,,,.1 730,l 360,l 190 和 1 175 cm-';6 0.78、0.97、2.03 和 2.45(分别为 3 H、s、18 和 19 H、OAc 和 ArCH)、3.8 (4 H、br s、OCH、CH、O)、3.9-4.3 (2 H、m、2-H)、4.57 (1 H、t、J 7 Hz、17-Ha) 和 7.34 和 7.82(各 2 H、d、J 7 Hz、ArH)。该材料直接用于以下实验。将乙炔在-70“C下通过无水液氨鼓泡5分钟,加入钠(0.5g)。10 min后,停止乙炔通过,除去冷却浴,氮气下温和加热蒸发氨。将残留物溶于HMPA(5ml)中,然后在室温下用乙炔饱和溶液。将上述甲苯-对磺酸盐(70mg)在HMPA(2ml)中的溶液滴加到该溶液中。2小时后,将混合物倒入冰上并用己烷提取。小心t.1.c.对由此获得的再乙酰化产物的检查表明,它不含所需的炔烃(3)。唯一表征的产物是双醚(4)。17p-乙酰氧基-5,5-乙烯二氧基-3,4-二诺-2,5-七雄甾烷-2-A1 (9)。-将5,5-乙烯二氧基-3,4-二醇-2,5-二雄甾烷-2,17~-二醇17-乙酸酯(1)(400mg)在二氯甲烷(5mi)中的溶液加入到氯铬酸吡啶(529mg)和无水乙酸钠(500mg)在二氯甲烷(10ml)中的悬浮液中。混合物搅拌2小时后,加入乙醚(50ml)并倒出上清液。不溶性残留物用乙醚彻底洗涤。将组合的醚层通过一小根硅胶柱。洗脱液蒸发得到所需的2-醛(9)(330毫克,83%),熔点153-156“C(lit.,'153-156”C)。5,5的类似氧化;20,20-双(乙烯二氧基)-3,4-二诺-2,5-七酚-2-01'得到相应的醛(15)(60%),m.p.(来自乙酸乙酯己烷)175-177“C(发现:C,70.4;H,9.4。C26H3605 要求 C,70.4;H,9.2%);vmaX,1710 厘米-';6 0.76、1.17 和 1.26(分别为 3 H、s、18-、19-和 21-H)、3.65-4.00(8 H、m、2 x OCH2CH,0)和 9.70(1 H、t、J4 Hz、2-Hz)。将饲料hy 1(1-甲氧基乙基)膦酸酯-a-氯乙基甲醚(25 g)和亚磷酸三乙酯(40 g)在回流下加热4.5 h。减压蒸馏称膦酸盐(25.5 g,4979,b.p.73-75“C,0.8 mmHg;vmax。(整齐) 1 238 和 1 025 cm-';6 1.34 (6 H, t, J7 Hz)、1.48 (3 H, d, J 7 Hz)、3.50 (3 H, s)、3.60 (1 H, q, J7 Hz) 和 4.18 (4 H, q, J7 Hz);M/Z 184 (100%) 和 59 (29)。2-醛(9)与(1-甲氧基乙基)-膦酸二乙酯的反应。-将二异丙胺(0.74ml)在THF(10ml)中的溶液冷却至-78“C和正丁基锂(3.4ml;加入1.55~己烷溶液)。然后在 5 分钟内加入新鲜蒸馏的 (1-甲氧基乙醚1)膦酸二乙酯(0.9 g)在 THF (2 ml) 中的溶液,然后将混合物冷却至 -100 “C.To 该混合物加入 17p-乙酰氧基-5,5-乙烯二氧基-3,4-二诺-2,5-se~雄甾烷-2-A1(9)(340 mg)在 THF (3 ml) 中的溶液,滴加 20 分钟。经过进一步的J. CHEM. SOC. PERKIN TRANS.I 1985 15 min在-100“C下,将混合物加热至室温,然后倒入乙醚中。溶液用50%柠檬酸水溶液、水、2~-碳酸钠依次洗涤,干燥,蒸发。在硅胶上用20%乙醇乙醇的乙醚作为洗脱液对残留物进行色谱分析,得到非对映异构体加合物(10)作为胶(410mg,84%)的混合物;v,,,.(整齐)3 400、1 220 和 1 030 cm-';6 0.75 和 0.80(总 3 H、s、lS-H)、1.08 和 1.13(总 3 H、s、19-H3)、3.40 和 3.47(总 3 H、s、OMe)、3.98(4 H、br s、OCH、CH、O)和 3.90-4.40(4H、m、2 x OCH、)。试图通过热解或使用叔丁醇钾或氢化钾来裂解这种材料以得到相应的烯醇醚,但没有成功。将2-醛(9)与乙氧基乙烯基醚(450mg)在THF(10ml)中的乙氧基乙烯基锂-A溶液反应,在氮气下冷却至-78“C和叔丁基锂(2.6ml;加入1.4~-戊烷溶液)。随着混合物的升温,黄色沉淀物重新溶解,在0“C时得到无色溶液。将溶液冷却至-95“C,并在10分钟内加入THF(4ml)中的2-醛(9)(230mg)溶液。将混合物加热至室温,加入20%氯化铵水溶液,并用乙醚萃取混合物。将合并的提取液用水洗涤、干燥、蒸发,得到油(vmax.3 430、1 665和1 620 cm-'),在以60%乙酸乙酯为轻质石油溶液作为洗脱液的硅胶上层析,得到55-乙烯二氧基-2,17~-二羟基-4,5-七雄甾烷-3-酮(200 mg,87%);v,,,.3 400 和 1 710 cm-'。在室温下用乙酸酐在吡啶中乙酰化得到相应的二乙酸酯(12)(195mg,81%)作为C-2差向异构体的混合物。用甲醇结晶得到纯单硅胶柱,用40%乙酸乙酯在轻质石油中作为洗脱液得到5,5-乙烯二氧基-4,5-司康甾-3-炔-2~,17p-二醇17-乙酸酯(13)(160mg,75%);vmax.3 450,3 300 和 1 730 cm-';m/z 390 (M', 1%) 和 328 (100)。在室温下用吡啶中的乙酸酐处理得到相应的2,17-二乙酸酯(152mg,82%);6 0.82 和 1.07(各 3 H、s、18 和 19-H)、2.04 和 2.06(各 3 H、s、2 x OAc)、2.42(1 H、d、J 2 Hz、4-H)、4.0(4 H、br s、OCH、CH、O)、4.60(1 H、t、J 7 Hz、17-Ha)和 5。85 (1 小时、米、2 小时);将m/z 432(M',2%)和99(1w-黄汞(I1)氧化物(650 mg)与水(5 ml)和硫酸(0.8 ml)搅拌。将53-乙烯二氧基-4,5-司康甾-3-炔-2S,17~-二乙酸酯(50mg)的二氧六环溶液(1ml)加入到氧化汞溶液(2ml)中,搅拌混合物2.5小时,然后用氯仿萃取。将提取物用水洗涤、干燥并蒸发,得到 2,17p-二乙酰氧基-5,5-乙烯二氧基-4,5-七雄甾烷-3-酮 (12) (19 mg, 36%) 的 C-2 差向异构体的混合物,与上述制备的材料相同。用锌粉处理25,17p-二乙酰氧基-5,5-乙烯二氧基-4,5-seco-雄甾烷-3-酮(12)-标题化合物(100mg)和锌粉(300mg)在冰醋酸(5ml)中回流12小时。过滤掉锌粉,并用乙醚彻底清洗。合并后的有机层先后用2~-碳酸氢钠和水洗涤,然后干燥、蒸发。通过制备层色谱法(显影剂30%乙酸乙酯在轻石油中)分离残留物,得到醋酸睾酮(14)(32mg,4473,m.p.138-141“C,各方面均与真实样品相同,17~-乙酰氧基-4,5-司可雄甾烷-3,5-二酮(1 2mg);6 0.80、1.06、1.98 和 2.10(分别为 2151 7~-二乙酰氧基-5,5-乙烯二氧基-4,5-secoandros-H,、OAc 和 4-H)和 4.58(1 H、t、J7 Hz、17-H) 的 3 H、s、18- 和 19- 差向异构体;tan-3-one (12), m.p. 138-141 “C (发现: C, 66.55;H,8.5。C,,H,,O,需要C,66.6;H,8.5%);6 (200 MHz) 0.80 (3 H, s, 18-H3), 1.12 (3 H, s, 19-H3), 2.04 (3 H, s, 17-OAc), 2.12 和 2.13 (总计 6 H, 各 s, 2-OAc 和 4-H,), 3.94.1 (4 H, m, OCH,CH,O), 4.56 (1 H, m, 17-Ha) 和 5.40 (1 H, dd, J 2 和 8 Hz, 2-H);m/z 450 (M', 4%) 和 99 (100)。同样,5,5;20,20-双(乙烯二氧基)-3,4-二醇-2,5-seco-孕甾-2-A1 (15)得到2-乙酰氧基-5,5;20,20-双(乙烯二氧基)-4,5-七烯丙烯-3-酮(66%)作为C-2异构体的混合物;6 0.78 (3 H, s, 18-H3)、0.96 和 1.03 (总计 3 H,每个 s, 19-H、)、1.28 (6 H, s、4-和 2l-H、)、2.02 (3 H, s, OAc)、3.80-4.10 (8 H, m, 2 x OCH,CH,O) 和 5.62 (1 H, m, 2-H)。将2,17P-二乙酰氧基-5,5-乙烯二氧基-4,5-司康雄甾烷-3-酮(1,2)-乙炔的替代制备方法,在THF(7毫升)中起泡至冷却至-78“C.正丁基锂(2.4毫升;1.5~-己烷溶液)然后滴加。5分钟后,将混合物冷却至-98“C,停止乙炔的流动,并滴加17P-乙酰氧基-5,5-乙烯二氧基-3,4-二糖-2,5-二雄甾烷-2-a1(9)(200mg)在THF(2ml)中的溶液。将混合物在-98“C下搅拌20分钟,然后升温至室温。加入水(15ml),然后加入固体碳酸钾,直到水相变成糊状。然后用乙醚萃取混合物。合并的提取物用水洗涤、干燥并蒸发。m/z 348 (M', 1%)、330 (loo) 和 278 (98) 上的残留物色谱。类似还原2~-乙酰氧基-5,5;20,20-双(乙烯二氧基)-4,5-司康仑素-3-酮(60mg)与锌粉(200mg)15小时产生黄体酮(16)(14mg,3573,熔点128-130“C,在所有方面都与真实样品相同。致谢 我们感谢 S.E.R.C. 的财政支持。参考文献 1 R. B. Boar, S. L. Jones, and A. C. Patel, J. Chem. SOC.,Perkin Trans. 1, 1982,513.2 G. A. Flynn, J. Org. Chem., 1983,48,4125.3 G. A. Flynn,合成器。Commun., 1984,14,301.4 R. M. Coates 和 J. P. Chen,Tetrahedron ktt.,1967,2705。5 A. C. Patel,博士论文,伦敦大学,1983年。6 例如,见S.Warren, Chem. Ind. (London), 1980,824;A. F. Kluge 和 J. S. Cloudsdale, J. Org. Chem., 1979,44,4847.7 J. E. Baldwin, G. A. Hofle, and 0.W. Lever, J. Am. Chem. SOC.,1974, 96,7125.8 M.M.米德兰,J.Org.化学,1975,40,2250。9 M. Furukawa、T. Okawara、Y. Noguchi 和 M. Nishikawa,Synlhesis,1978,441。10 H. R. Henze 和 J. T. Murchison, J. Am. Chem. SOC.,1931,53,4077.收稿日期: 1984年10月24日;普珀 4/1818

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号