首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >3-Methylcyclohex-2-enone derivatives as initiators of cyclisation. Part 2. Monocyclisations to six-membered rings
【24h】

3-Methylcyclohex-2-enone derivatives as initiators of cyclisation. Part 2. Monocyclisations to six-membered rings

机译:3-甲基环己-2-烯酮衍生物作为环化引发剂。第 2 部分。从单环化到六元环

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. soc. PERKIN TRANS. I 1983 75 1 3-Methylcyclohex-2-enone Derivatives as Initiators of Cyclisation. Part 2.t Monocyclisations to Six-membered Rings Joseph A. Amupitan, Enamul Huq, Michael Mellor, Edward G. Scovell, and James K. Sutherland Chemistry Department, The Victoria University of Manchester, Manchester MI 3 9PL Cyclisation of 3-methylcyclohex-2-enones and the derived epoxides containing alkene, alkyne, and aryl side-chains yields bicyclo 4.4.0decane derivatives when the alkene or alkyne is electronically biased towards six-membered ring formation and when the alkene is electronically unbiased. We have examined the reaction of the epoxide (5) with a number of Lewis acids; varying quantities of cyclisation product (9) and ring-contracted dione (11) are formed.The structure of (1 1) derives from spectroscopic evidence v,,. (CHC13) 1745 and 1 715 cm-'; r 4.3 (1 H, m), 5.1 (2 H, m), 8.7 (3 H, s), alkaline hydrolysis to the acid (12) r 4.2 (1 H, m), 5.0 (2 H, m), 8.8 (3 H, d, J 7 Hz), and precedent.' Spectroscopic data for (9) v,, (CCI,) 3 495 and 1 715 cm-'; r(300 MHz) 5.23 (1 H, m), 5.28 (1 H, m), and 9.15 (3 H, s) established the part-structure (3), where C* is either C-1, -2, -3, or -10. The structures derived from C-1 and -2 bonding were rejected on mechanistic grounds leaving (9) and the bridged structure from C-3 bonding. The latter could be excluded by showing that the diols from borohydride reduc- tion had a CH(0H) n.m.r. signal of greater multiplicity than the two singlets required for the isomers of the bridged struc- ture.The cis ring junction in (9) follows from the existence of intramolecular hydrogen bonding. This is possible only in the 'non-steroid 'conformation of a cis-decalin as was con- firmed by the absence of such bonding in the 5a-and 5p-hydroxycholestan4ones kindly donated to us by Dr.J. R. Bull, Pretoria. In the Table the ratio cyclisation :ring con- traction for a variety of Lewis acids and solvents is sum- marked. If it is accepted that gas-phase metal-oxygen bond strengths give a rough measure of Lewis acidity for oxygen then a trend for the stronger Lewis acids giving more cyclis- ation product is discernible. In line with this, TiCI4-CH2CI2 converted (5) into the ketol(9) (40) and the diols (13) (23) without any ring-contracted product.This effect could arise from the C-O-metal bond in the cyclisation transition state + being stabilised to a greater extent than the GO-metal bond in the ring-contraction transition state. In the latter case the stronger the 0-metal bond, the less might be the resonance stabilisation. The enone (1) has been cyclised (using Ac,O-HClO,-EtOAc) to a decalone derivative? This is a preparatively more useful reaction than the epoxide cyclis- ation. The epoxide (6) was treated with BF3*OEt2-CH2C12 at -20 "C to give a complex reaction mixture from which (10) (20) T 4.30 (2 H, m), 9.00 (3 H, d, J 7 Hz), 9.15 (3 H, s) and (14) (40) r 4.63 (1 H, m), 8.35br (3 H, s), and 9.10 (3 H, s) were isolated.The ketone (14) was reduced with NaBH4 to a mixture of dioIs which on periodate oxidation gave a ketoaldehyde whose spectroscopic properties v,,. 1 730 and 1 715 cm-'; T 0.31 (1 H, t, J 1.5 Hz), 4.30 (1 H, m), 8.30 (3 H, t, J 1.6 Hz), and 8.83 (3 H, s) established that the double bond was not allylic to the hydroxy-group in (14).$ The two ketols (14) and (10) were again the major products f Part 1, preceding paper. It was necessary to carry out this degradation to establish that an unexpected rearrangement observed in another cyclisation had not occurred here. ci CH, 12 CH=CHz t(2 1 CH212 CH=CHMe CH, l2 C6H40Me -m (4 CH,,C=CH */ R (9) R=H (10) R=Me moH using TiCI4, BCl3, and SnCI4 as Lewis acids; the ratios of (14) :(10) were 3.4, 3.8, and 5.3 respectively.The experiment using BC13 was carried out at -20 "C in CH2Clz. When the reaction was conducted at -78 "C small amounts of the previously mentioned compounds were formed, but a new major (84) product appeared. It is formulated as (15) but only on mechanistic and spectroscopic grounds vmx. 3 600 cm-l; mass spec. 1 H exchangeable with 2H20; r 8.79 (3 H, s) and 9.10 (3 H, s). Cyclisation of the enone (2) with (CF3-CO)20-CF3COzH (which presumably occurs via the dienol trifluoroacetate) gave, after hydrolysis, the ketone (1 6) (23)A,,. (MeOH) 245 nm (E 12 600); vmx. 1 670 and 1 610 cm-'; T 8.91 (6 H, s), the ketol (17) (26) v,,,. 3 600 and 1 710 cm-'; r 6.65 (1 H, m, W, 27 Hz), 9.00 (3 H, d, J 7 Hz),and 9.35 (3 H,s) and the cis-isomer (18) (15) vmx 3 600 and 1710 cm-'; r 6.55 (1 H, m, W+25 Hz),9.01 (3 H, s), 752 J.CHEM. SOC. PERKIN TRANS. I 1983 Table Ratio Lewis acid Solvent (9) :(11) TiCI, AlCl3 CH2C12 CHZClz 00 3.0 FeC13 CHzC12 1.1 SnCll CHZCIZ 0.6 ZnClz CHZCIZ 0.3 BF,*OEtz BFj*OEtiBFj*OEt2 ZnClz CHZC12 C6H6 EtZO EtZO 0.8 0.6 0.1 0.1 Ratios determined by g.1.c. and 9.12 (3 H, d, J 8 Hz). The ring-junction stereochemistry of (17) and (18) is assigned using the chemical shifts of the angular methyl groups while the W, of the CH(0) protons are in accord with the secondary methyl and the hydroxy- groups being equatorial. In the formation of (15) and (16) the initially formed secondary carbonium ion is transformed to a tertiary carbonium ion either by H+ elimination-H+ addition or by 1,2-hydride migration.In the formation of (16) the latter route was established by carrying out the cyclisation with CF3COZ2H; one deuterium (v~,~~.2 170 cm-') was incorporated. On treatment with NaOH-HrO-dioxan this deuterium was exchanged. These results illustrate the difficulties of obtaining pre- paratively useful yields of cyclisation products when different termination mechanisms are evenly balanced. In the epoxide cyclisations control of the direction of elimination might be achieved using Fleming's device of R3Si elimination instead of H. This might also be applicable in the enone cyclisations and divert termination from the competing rearrangement and nucleophilic attack.Two participating groups which terminate cyclisation by a single mechanism are the acetylenic and aryl functions. Reaction of (7) with BF3*OEtr or SnCI4 in CHrC12 gave (19) (45) r 2.95 (1 H, m), 3.30 (2 H, m), 8.63 (3 H, s) and (20) (45) r 2.90 (2 H, d, J 7 Hz), 3.30 (2 H, m), and 8.75 (3 H, s). A mixture of (1 9) and (20) was reduced to diols with NaBH, and oxidised with periodate to give the ketoaldehydes derived from (19) h,,,,,. (EtOH) 274 nm (E 1 410); vmax, 1 725 and 1 710 cm-'; r 0.49 (1 H, t, J 1.6 Hz), 2.93 (1 H, dd, J8.5 and 7.5 Hz), 3.35 (2 H, m), 6.17 (3 H, s), and 8.54 (3 H, s) and (20) h,,,,,. (EtOH) 279 nm (E 1440); vnlnx. 1 730 and 1 710 cm-'; 'I0.44 (1 H, t, J 1.5 Hz), 2.89 (1 H, d, J 8.5 Hz), 3.29 (1 H, dd, J8.5 and 2.5 Hz), 3.43 (1 H, d, J2.5 Hz), 6.26 (3 H, s).and 8.68 (3 H, s). When TiCI, was used (19) and (20) were formed but the major product was formulated as the dihydrophenanthrene (21) (50) Xnli,x.(EtOH) 278 nm (E 29 800); r 2.40 (2 H, dt), 2.90 (2 H, m), 3.20 (2 H, m), 6.20 (3 H, s), 7.20br (4 H, s), and 7.65 (3 H, s). It is not obvious why TiCI4 should divert attack of the aryl ring from co-ordinated epoxide to co-ordinated carbonyl group. Cyclisation of the acetylene (8) with BF3*OEt, or TiCl, gave (22) (90) A,,,,. (CHC13) 3 480 and 1 715 cm-'; T 4.35 (1 H, s) and 9.05 (3 H, s). Degradation by borohydride reduction followed by periodate cleavage gave a keto-aldehyde whose properties supported structure (22).These experiments are in accord with prior result^.^ Where the alkene double bond is electronically unbiased then 6-endo- Trigonal-cyclisation formation is favoured over 5-exo-Trig. 6-endo-Digonal cyclisation is favoured only with a terminal alkyne7 Both u-and p-attack by the anisyl ring is not surpris- (17) (trans) (19) R'=H, RZ=OMe (18) (cis 1 (20) R'=OMe. R2=H (21) (22) ing but the equivalent rates of attack are and suggest an unselective and reactive cationic intermediate. From a pre- parative viewpoint only the alkyne cyclisations would appear to be useful. Experimental M.p.s were determined on a Kofler block and are uii-corrected. 1.r. spectra were recorded on a Perkin-Elmer 257 instrument in CHCIJ solution. N.m.r.spectra were recorded at 60 and 90 MHz on Perkin-Elmer R12B and R32 instru- ments using CDC13 as solvent. High-resolution mass spectra were measured on an AEI MS30 instrument on samples judged to be pure by t.1.c. The statement 'worked up in the usual way ' implies that the organic extract was washed with saturated brine, dried over Na2S04 or MgS04, and the solvent evaporated under reduced pressure. G.1.c. was carried out on a Perkin-Elmer F11 using a 6 ft PEGA column. Reaction of (5) with BF3-OEt2.-BF3*OEt2 (400 pl) was added to a stirred solution of (5)(120 mg) in CH2C12 (10 ml) at -20 "C under Nr. After 30 min water was added and the mixture extracted with CHZCI2. Work-up in the usual way gave an oil (103 mg) which contained three major components by g.1.c.Chromatography on silica gel (12 g) and elution with light petroleum (b.p. 40-60 "C)-ether (7: 3) gave the dione (11) (40 mg) (g.1.c. R, 1.8 min/l80 "C) (Found: C, 72.9; H, 8.9. C11H,,02 requires C, 73.3; H, 8.8) followed by the ketul(9) (30 mg) (g.1.c. R, 4.25 min/l80 "C (Found: C, 73.4; H, 9.0. CIIH,,02 requires C, 73.3; H, 8.8). Reduction of (9) with sodium borohydride gave an oily mixture of diols, r 4.41 (2 H, m) and 6.22-6.60 (1 H, m) (Found: M+, 182.131 1. C,,HI8O2requires M, 182.1307). Reaction of(5) with TiCl4.-TiC1, (250 pl) was added to a stirred solution of (5)(217 mg) in CHzClp at -20 "C. Work-up as above gave an oil (196 mg) which was chromatographed on silica gel.Elution with light petroleum (b.p. 40-60 "C)-ether (1 : 1) first gave an oil (52 mg) (mainly starting material) followed by (9) (67 mg). Elution with ether gave the diols (13) (42 mg), m.p. 115-123 "C (ethyl acetate) (Found: C, 66.6; H, 9.1. C11H180j requires C, 66.6; H, 9.2). Hydrolysis of the Dione (I l).-The crude product (100 mg) from reaction of BF3 and (5) was dissolved in EtOH (15 ml) and ~M-N~OH (15 ml) added. After being refluxed for 3 h the mixture was extracted with Et,O and worked up in the J. CHEM. SOC. PERKIN TRANS. I 1983 usual way to give (9). Acidification of the aqueous layer followed by Et20 extraction and work-up in the usual way gave the acid (12) (35 mg) as an oil m/z198; r 4.10 (1 H, m), 5.00 (2 H, m), and 8.80 (3 H, d, J 7 Hz).Reaction of (6) with BF3-OEt2.-BF3*OEt2 (0.5 ml) was added to a stirred solution of (6) (512 mg) in CH2C12 (35 ml) at -20 "C under a N2 atmosphere. After 2 h no epoxide remained (t-1.c.) and the mixture was diluted with water, extracted with ether, and worked up in the usual way to give an oil (526 mg). G.1.c. showed five main peaks with /I50 "C 2.23, 4.35, 4.76, 6.35, and 8.87 min in a ratio 5 :3 : 17 :7 :4. The crude product (512 mg) was dissolved in EtOH (20 ml) and 2~ NaOH (20 ml) added. After 2 h reflux dilution with water, extraction with CHC13, and work-up in the usual way gave an oil (450 mg). G.1.c. showed that the second peak had disappeared. Chromatography on silica gel and elution with light petroleum (b.p.40-60 "C)-Et20 (1 : 1) gave the ketol (14) (202 mg) as an oil R, (150 "C) 4.76 min (Found: C, 73.8; H, 9.2. C12H1802requires C, 74.2; H, 9.3) and the isomer (10) (105 mg) R, (150 "C) 6.35 min (Found: C, 74.1; H, 9.4). Degradation of (14).-The ketol(l4) (29 mg) in EtOH (1 ml) was reduced with NaBH, (40mg). After addition of water the EtOH was evaporated off and the residue extracted with Et20 and worked up in the usual way to give a mixture of oily diols (28 mg) (Found: M+, 196.1464. C12H2002requires M, 196.1463). The diols (19 mg) were dissolved in THF-water (3 :1 ;2 ml) and sodium periodate (54 mg) added. After being stirred overnight, the mixture was diluted with water and extracted with Et20; work-up in the usual way of the extract gave the ketoaldehyde (1 8 mg) (Found :M+: 194.1308.C12H18-O2requires M, 194.1307). Reaction of (6) with BC13.-BC13 (>2 equiv.) was added to the epoxide (6) (160 mg) in CH2CI2(5 ml) at -78 "C. After 2 h dilution with water, extraction with Et20, and the usual work-up gave an oil which was chromatographed on silica gel. Elution with hexane-Et20 (1 : 1) gave the chloride (15) (142 mg), m.p. 120-122 "C (light petroleum b.p. 60-80 "C) (Found: C, 62.7; H, 7.9; CI, 15.0. C12Hlv02Clrequires C, 62.5; H, 8.2; CI, 15.4). Cyclisation of (2).-A mixture of CF3C02H (8 ml) and (CF,C0)20 (4 ml) was added to the ketone (2) (500 mg). After 12 h water was added and the mixture evaporated to dryness under reduced pressure. The residue was hydrolysed with NaHC03-MeOH.Addition of water, extraction with Et,O, and the usual work-up procedure gave an oil (431 mg) which was separated by preparative t.1.c. on silica gel using hexane-Et20 (I :I) into three fractions. In order of increasing polarity these were the ketone (16) (116 mg) (Found: M+: 178.1358. Cl2HlY0requires M, 178.1358), the cis-isomer (18) (80 mg) (mlz 196), and the trans-isomer (17) (137 mg) (m/z 196). Cyclisation qf(7) with SnCI,.-SnCI, (0.8 ml) was added to a solution of (7) (200 mg) in CH2C12(10 ml) cooled to -20 "C under a N2 atmosphere. After 2 h addition of water followed by extraction with Et20 and work-up in the usual way gave a gum (205 mg). Chromatography on silica gel using light petroleum (b.p.40-60 "C)-Et20 (1 : 1) as eluant gave the ketol (20) (89 mg), m.p. 96-98 "C (Et20), v,,,,. 3 480 and 1710 cm-' (Found: C, 74.1; H, 7.8. CI6HZ0O3requires C, 73.8; H, 7.7) and the isomer (19) (91 mg) m.p. 123-124 "C (Et20)vmax.3 480 and 1 710 cm-I (Found: C, 73.8; H, 7.8). Similar results were obtained using BF3*OEt2. Degradation of the Mixture of (19) and (20).-The mixture of ketols (19) and (20) (208 mg) obtained as above was reduced with NaBH4 (202 mg) in EtOH (5 ml). The usual work-up gave a mixture of diols (202 mg) (Found: M+, 262.1571. C16HZ203requires M, 262.1 569). The diols (1 3 1 mg) in THF-water (3: 1) (4 ml) were oxidized with sodium periodate (269 mg) to give an oil (125 mg).Chromatography on silica gel light petroleum (b.p. 40-60 "C)-Et,O gave, first, the ketoaldehyde derived from (20) (46 mg) v",:,~.1 725 and 1 710 cm-'; h,,,,. 274 nm (E 1410); 'I: 0.49 (1 H, t, J 1.6 Hz), 2.93 (1 H, dd, J 8.5 and 7.5 Hz), 3.34 (2 H, m), and 8.54 (3 H, s) (Found: M+, 260.1411. CI6H20O3 requires M, 260.1412), then the ketoaldehyde ex. (19) (49 mg) 1 725 and 1 710 cm-I; h,,,,,,.279 nm (E 1440); r 0.45 (1 H, t, J 1.5 Hz), 2.89 (1 H, d, J 8.5 Hz), 3.29 (1 H, dd, J 8.5 and 2.5 Hz), 3.43 (1 H, d, J 2.5 Hz), and 8.68 (3 H, s) (Found: M+ : 260.141 4). Cyclisation of (7) with TiCI,.-The epoxide (7) (236 mg) was cyclised as above but using TiCI,. A viscous gum (241 mg) was obtained which was chromatographed on silica gel light petroleum (b.p.40-60 "C)-Et,O, 1 :I to give the dihydrophenanthrene (21) (120 mg), m.p. 70-71 "C (light petroleum b.p. 60-80 "C) (Found: M+ 224.1196. C16H16O requires M, 224.1201). Accurate combustion analyses ( >1) could not be obtained owing to facile oxidation of the com- pound. The ketols (19) and (20) were also isolated. Cyclisation of (8).-BF3-OEt2 (0.8 ml) was added to a solution of (8) (175 mg) in CH2C12(15 ml) at -20 "C under a N2 atmosphere. After 3 h the reaction was worked up as before to give a brown oil (220 mg) which crystallised with time at ambient temperature. A sample was recrystallised from light petroleum (b.p. 40-60 "C), m.p. 84-85 "C (Found: C, 61.8; H, 7.1; CI, 16.4. CIIHl,CIO, requires C, 61.5; H, 7.0; C1, 16.5). Similar results were obtained on cyclisation with TiCI4. Acknow1edgements We thank the University of Ahmadu Bello, Zaria, Nigeria, for leave of absence to J. A., the Bangladesh University of Engineering and Technology for leave of absence to E. H., and the S.E.R.C. for financial support to M. M. and E. G. S. References 1 H. 0. House and R. L. Wasson, J. Am. Chem. Soc., 1957, 79, 1488. 2 L. Brewer and G. M. Rosenblatt, Ado. High Temp. Cltetii., 1969, 2. 3 J. L. Cooper and K. E. Harding, Teirahedrott Lett., 1977, 3321. 4 L. M. Jackman and S. Sternhell, ' Applications of NMR Spec-troscopy in Organic Chemistry,' Pergamon, Oxford and New York,1969, 2nd edn., p. 243. 5 1. Fleming, A. Pearce, and R.L. Snowden, J. Chem. Soc., Chem. Commun., 1976, 182. 6 For reviews see W. S. Johnson, Bio-org. Chem., 1976, 5, 51; E. E. van Tamelen, Acc. Chem. Rex, 1975, 8, 152; J. K. Suther-land, Chem. Soc. Reu., 1980, 9, 265. 7 J. E. Baldwin, J. Chem. Soc., Chem. Commitn., 1976, 734. Receiued 27th July 1982; Paper 2/1294
机译:J. CHEM. soc. PERKIN 译.I 1983 75 1 3-甲基环己-2-烯酮衍生物作为环化的引发剂。第 2 部分:六元环的单环化 Joseph A. Amupitan、Enamul Huq、Michael Mellor、Edward G. Scovell 和 James K. Sutherland 曼彻斯特维多利亚大学化学系,曼彻斯特 MI 3 9PL 当烯烃或炔烃以电子方式偏向六元环形成时,3-甲基环己-2-烯酮和含有烯烃、炔烃和芳基侧链的衍生环氧化物的环化产生双环 [4.4.0]癸烷衍生物不偏不倚。我们已经检查了环氧化物 (5) 与许多路易斯酸的反应;形成不同数量的环化产物 (9) 和环收缩二酮 (11)。(1 1)的结构来源于光谱证据[v,,.(CHC13) 1745 和 1 715 cm-';r 4.3 (1 H, m), 5.1 (2 H, m), 8.7 (3 H, s)], 碱性水解成酸 (12) [r 4.2 (1 H, m), 5.0 (2 H, m), 8.8 (3 H, d, J 7 Hz)] 和先例。(9) [v,, (CCI,) 3 495 和 1 715 cm-'; r(300 MHz) 5.23 (1 H, m)、5.28 (1 H, m) 和 9.15 (3 H, s)] 的光谱数据确定了零件结构 (3),其中 C* 是 C-1、-2、-3 或 -10。来自 C-1 和 C-2 键合的结构因机理原因被拒绝,留下 (9) 和来自 C-3 键合的桥接结构。后者可以通过证明硼氢化物还原中的二元醇具有CH(0H)n.m.r来排除。信号的多重性大于桥接结构的异构体所需的两个单线态。(9)中的顺式环结源于分子内氢键的存在。这只有在顺式十氢萘的“非甾体”构象中才有可能,正如比勒陀利亚的 J. R. Bull 博士慷慨捐赠给我们的 5a 和 5p-羟基胆甾烷 4ones 中没有这种键合所证实的那样。在表中,标出了各种路易斯酸和溶剂的环化:环收缩率之比。如果人们认为气相金属-氧键强度可以粗略地测量氧的路易斯酸度,那么可以辨别出更强的路易斯酸产生更多环化产物的趋势。与此一致,TiCI4-CH2CI2 将 (5) 转化为酮醇 (9) (40%) 和二醇 (13) (23%) 而没有任何环收缩产物。这种效应可能是由于处于环化过渡态+的C-O-金属键比处于环收缩过渡状态的GO-金属键更稳定。在后一种情况下,0-金属键越强,共振稳定性就越低。烯酮 (1) 已环化(使用 Ac,O-HClO,-EtOAc)为十酮衍生物?这是一种比环氧化物环化反应更有用的反应。将环氧化物(6)在-20“C下用BF3*OEt2-CH2C12处理,得到(10)(20%)[T 4.30(2 H,m),9.00(3 H,d,J 7 Hz),9.15(3 H,s)]和(14)(40%)[r 4.分离出 63 (1 H, m)、8.35br (3 H, s) 和 9.10 (3 H, s)]。酮(14)与NaBH4还原为二元醛混合物,二元醛在高碘酸氧化时得到酮醛,其光谱性质[v,,.1 730和1 715 cm-';T 0.31 (1 H, t, J 1.5 Hz), 4.30 (1 H, m), 8.30 (3 H, t, J 1.6 Hz) 和 8.83 (3 H, s)] 证实了双键不是 (14) 中羟基的烯丙基。有必要进行这种降解,以确定在另一个环化中观察到的意外重排在这里没有发生。ci [CH, 12 CH=CHz t(2 1 [CH212 CH=CHMe [CH, l2 C6H40Me -m (4 [CH,],C=CH */ R (9) R=H (10) R=Me moH 以 TiCI4、BCl3 和 SnCI4 为路易斯酸,(14) :(10) 的比值分别为 3.4、3.8 和 5.3。使用BC13的实验在CH2Clz的-20“C下进行。当反应在-78“C下进行时,形成了少量的先前提到的化合物,但出现了新的主要产物(84%)。它被表述为(15),但仅基于机理和光谱基础[vmx.3 600 cm-l;质谱1 H可与2H20交换;r 8.79(3 H,s)和9.10(3 H,s)]。烯酮 (2) 与 (CF3-CO)20-CF3COzH(可能通过三氟乙酸二烯醇发生)的环化反应在水解后得到酮 (1 6) (23%)[A,,.(甲醇)245 nm (E 12 600);vmx. 1 670 和 1 610 cm-';T 8.91 (6 H, s)], 酮醇 (17) (26%) [v,,,.3 600 和 1 710 cm-';r 6.65 (1 H, m, W, 27 Hz), 9.00 (3 H, d, J 7 Hz) 和 9.35 (3 H,s)] 和顺式异构体 (18) (15%) [vmx 3 600 和 1710 cm-'; r 6.55 (1 H, m, W+25 Hz),9.01 (3 H, s), 752 J.CHEM. SOC. PERKIN TRANS.I 1983 表比 路易斯酸 溶剂 (9) :(11) TiCI, AlCl3 CH2C12 CHZClz 00 3.0 FeC13 CHzC12 1.1 SnCll CHZCIZ 0.6 ZnClz CHZCIZ 0.3 BF,*OEtz BFj*OEtiBFj*OEt2 ZnClz CHZC12 C6H6 EtZO EtZO 0.8 0.6 0.1 0.1 由 g.1.c 确定的比率。和 9.12 (3 H, d, J 8 Hz)]。(17) 和 (18) 的环结立体化学是使用角甲基的化学位移分配的,而 CH(0) 质子的 W 与仲甲基一致,羟基是赤道的。在(15)和(16)的形成中,最初形成的仲碳离子通过H+消除-H+加成或1,2-氢化物迁移转化为叔碳离子。在(16)的形成中,后一条路线是通过与CF3COZ2H进行循环而建立的;掺入一个氘(v~,~~.2 170 cm-')。在用NaOH-HrO-二恶烷处理时,交换了这种氘。这些结果表明,当不同的终止机制均匀平衡时,很难获得相对有用的环化产物产率。在环氧化物环化中,可以使用弗莱明的 R3Si 消除装置而不是 H 来实现消除方向的控制。这也可能适用于烯酮环化,并将终止从竞争性重排和亲核攻击中转移出来。通过单一机制终止环化的两个参与基团是乙炔和芳基功能。(7) 与 CHrC12 中的 BF3*OEtr 或 SnCI4 反应得到 (19) (45%) [r 2.95 (1 H, m), 3.30 (2 H, m), 8.63 (3 H, s)] 和 (20) (45%) [r 2.90 (2 H, d, J 7 Hz), 3.30 (2 H, m) 和 8.75 (3 H, s)]。将(1,9)和(20)的混合物用NaBH还原为二醇,并用高碘酸氧化得到由(19)[h,,,,,.衍生的酮醛(乙醇)274 nm (E 1 410);Vmax, 1 725 和 1 710 cm-';r 0.49 (1 H, t, J 1.6 Hz)、2.93 (1 H, dd, J8.5 和 7.5 Hz)、3.35 (2 H, m)、6.17 (3 H, s) 和 8.54 (3 H, s)] 和 (20) [h,,,,,.(环氧乙烷)279 nm (E 1440);VNLNX。1 730 和 1 710 cm-';'I0.44 (1 H, t, J 1.5 Hz), 2.89 (1 H, d, J 8.5 Hz), 3.29 (1 H, dd, J8.5 and 2.5 Hz), 3.43 (1 H, d, J2.5 Hz), 6.26 (3 H, s).和 8.68 (3 H, s)]。当使用TiCI时,分别形成(19)和(20),但主要产物配制成二氢菲(21)(50%)[Xnli,x.(EtOH) 278 nm(E 29 800);r 2.40 (2 H, dt)、2.90 (2 H, m)、3.20 (2 H, m)、6.20 (3 H, s)、7.20br (4 H, s) 和 7.65 (3 H, s)]。目前尚不清楚为什么 TiCI4 会将芳基环的攻击从配位环氧化物转移到配位羰基。乙炔 (8) 与 BF3*OEt 或 TiCl 的环化反应得到 (22) (90%) [A,,,,.(CHC13) 3 480 和 1 715 cm-';T 4.35 (1 H, s) 和 9.05 (3 H, s)]。通过硼氢化物还原降解,然后进行高碘酸裂解,得到酮醛,其性质支持结构 (22)。这些实验与先前的结果一致^.^ 其中烯烃双键在电子上是无偏的,则 6-内三角环化形成优于 5-外三角环化。6-内切-二角环化仅对末端炔烃有利7 茴香基环的 u 和 p 攻击都不是 surpris- (17) (反式) (19) R'=H, RZ=OMe (18) (顺式 1 (20) R'=OMe.R2=H (21) (22) ing,但等效的攻击速率是和提示非选择性和反应性阳离子中间体。从制备的角度来看,似乎只有炔烃环化是有用的。实验 M.p.s 是在 Kofler 块上确定的,并进行了 uii 校正。在 CHCIJ 溶液中的 Perkin-Elmer 257 仪器上记录 1.r. 光谱。使用 CDC13 作为溶剂,在 Perkin-Elmer R12B 和 R32 仪器上以 60 MHz 和 90 MHz 记录 N.m.r.谱图。在 AEI MS30 仪器上对 t.1.c 判断为纯净的样品进行高分辨率质谱测量。“以通常的方式加工”的说法意味着有机提取物用饱和盐水洗涤,用Na2S04或MgS04干燥,溶剂在减压下蒸发。G.1.c. 是在 Perkin-Elmer F11 上使用 6 英尺 PEGA 柱进行的。将(5)与BF3-OEt2.-BF3 * OEt2 (400 pl)的反应加入到CH2C12(10ml)中的(5)(120mg)搅拌溶液中,在-20“C下Nr。30分钟后加入水并用CHZCI2萃取混合物。以通常的方式进行检查,通过g.1.c.硅胶(12g)上的色谱法得到含有三种主要成分的油(103mg),并用轻质石油(b.p.40-60“C)-乙醚(7:3)洗脱,得到二酮(11)(40mg)(g.1.c.R, 1.8 min/l80 “C) (发现: C, 72.9;H,8.9。C11H,,02 需要 C, 73.3;H,8.8%),其次是酮(9)(30mg)(g.1.c。R,4.25 min/l80“C(发现:C,73.4;H,9.0。CIIH,,02 要求 C,73.3;H,8.8%)。用硼氢化钠还原(9)得到二醇的油性混合物,[r 4.41 (2 H, m)和6.22-6.60 (1 H, m)] (Found: M+, 182.131 1.C,,HI8O2需要M,182.1307)。将(5)与TiCl4.-TiC1反应(250 pl)加入到-20“C的CHzClp中(5)(217 mg)的搅拌溶液中。用轻质石油(b.p.40-60“C)-乙醚(1:1)洗脱,首先得到油(52mg)(主要是起始材料),然后是(9)(67mg)。用乙醚洗脱得到二醇(13)(42mg),熔点115-123“C(乙酸乙酯)(发现:C,66.6;H,9.1。C11H180j需要C,66.6;H,9.2%)。将BF3和(5)反应产生的粗产物(100mg)溶解在EtOH(15ml)中,加入~M-N~OH(15ml)。回流3 h后,将混合物用Et,O萃取,并在J. CHEM. SOC. PERKIN TRANS.我 1983 通常的给予方式 (9).水层酸化后,以通常的方式提取和Et20处理,得到酸(12)(35mg)作为油[m/z198;r 4.10(1 H,m),5.00(2 H,m)和8.80(3 H,d,J 7 Hz)]。将(6)与BF3-OEt2.-BF3 * OEt2 (0.5ml)的反应加入到(6)(512mg)在-20“C的CH2C12(35ml)中的搅拌溶液中,N2气氛下。2小时后,没有环氧化物残留(t-1.c.),将混合物用水稀释,用乙醚萃取,并以通常的方式处理得到油(526mg)。G.1.c.显示&/I50“C 2.23、4.35、4.76、6.35和8.87 min的5个主峰,比例为5 :3 : 17 : 7 : 4。将粗品(512mg)溶于EtOH(20ml)中,加入2~NaOH(20ml)。用水回流稀释2小时后,用CHC13提取,并以通常的方式进行检查,得到油(450mg)。G.1.c.显示第二个峰值已经消失。在硅胶上色谱并用轻质石油(b.p.40-60“C)-Et20(1:1)洗脱,得到酮醇(14)(202mg)作为油R,(150”C)4.76分钟(发现:C,73.8;H,9.2。C12H1802要求C,74.2;H,9.3%)和异构体(10)(105mg)[R,(150“C)6.35分钟](发现:C,74.1;H,9.4%)。(14)的降解.-EtOH(1ml)中的酮醇(l4)(29mg)用NaBH(40mg)减少。加入水后,将EtOH蒸发掉,并用Et20提取残留物,并以通常的方式处理,得到油性二醇(28mg)的混合物(Found:M+,196.1464。C12H2002需要M,196.1463)。将二醇(19mg)溶于THF-水(3:1;2ml)和高碘酸钠(54mg)加入。搅拌过夜后,将混合物用水稀释并用Et20萃取;以提取物的通常方式进行检查得到酮醛(1 8mg)(发现:M+:194.1308.C12H18-O2需要M,194.1307)。将(6)与BC13.-BC13(>2当量)的反应加入到环氧化物(6)(160mg)中的CH2CI2(5ml)中,在-78“C。用水稀释2小时后,用Et20萃取,通常的检查得到在硅胶上色谱的油。用己烷-Et20(1:1)洗脱得到氯化物(15)(142mg),熔点120-122“C(轻质石油b.p.60-80”C)(发现:C,62.7;H,7.9;置信区间,15.0。C12Hlv02Cl要求C,62.5;H,8.2;CI,15.4%)。将CF3C02H(8ml)和(CF,C0)20(4ml)的混合物(2)(500mg)的环化(2)-A混合物加入到酮(2)(500mg)中。加入水12小时后,将混合物减压蒸发至干。将残留物用NaHC03-MeOH水解,加入水,用Et,O萃取,然后按照常规的处理程序得到油(431mg),通过制备t.1.c分离。在硅胶上使用己烷-Et20(I:I)分成三级分。按极性增加的顺序,这些是酮(16)(116毫克)(发现:M+:178.1358。Cl2HlY0需要M,178.1358),顺式异构体(18)(80mg)(mlz 196)和反式异构体(17)(137mg)(m/z 196)。环化qf(7)与SnCI,.-SnCI,(0.将8ml)加入到(7)(200mg)的CH2C12(10ml)溶液中,在N 2气氛下冷却至-20“C。加入水2小时后,然后用Et20提取并以通常的方式进行检查,得到胶(205mg)。使用轻石油(b.p.40-60“C)-Et20(1:1)作为洗脱液得到酮醇(20)(89mg),熔点96-98”C(Et20),v,,,,.3 480 和 1710 cm-' (发现: C, 74.1;H,7.8。CI6HZ0O3要求C,73.8;H,7.7%)和异构体(19)(91mg)m.p.123-124“C(Et20)vmax.3 480和1 710cm-I(发现:C,73.8;H,7.8%)。使用BF3*OEt2获得了类似的结果。(19)和(20)混合物的降解-如上所述获得的酮醇(19)和(20)(208mg)的混合物在EtOH(5ml)中用NaBH4(202mg)还原。通常的检查结果是二醇(202毫克)的混合物(发现:M+,262.1571。C16HZ203需要M,262.1 569)。将THF-水(3:1)(4ml)中的二醇(1,3,1mg)与高碘酸钠(269mg)氧化,得到油(125mg)。硅胶[轻石油(b.p.40-60“C)-Et,O]的色谱法首先得到(20)(46mg)[v”,:,~.1 725和1 710 cm-'; h,,,,. 274 nm (E 1410);'I:0.49(1 H,t,J 1.6 Hz)、2.93(1 H,dd,J 8.5 和 7.5 Hz)、3.34(2 H,m)和 8.54(3 H,s)(发现:M+,260.1411。CI6H20O3需要M,260.1412)],然后是酮醛[例如(19)](49mg)1 725和1 710 cm-I;高,,,,,,.279海里(E 1440);r 0.45 (1 H, t, J 1.5 Hz), 2.89 (1 H, d, J 8.5 Hz), 3.29 (1 H, dd, J 8.5 和 2.5 Hz), 3.43 (1 H, d, J 2.5 Hz) 和 8.68 (3 H, s) (Found: M+ : 260.141 4).(7)与TiCI的环化,.-环氧化物(7)(236mg)如上所述环化,但使用TiCI,。得到粘稠的胶(241 mg),在硅胶[轻石油(b.p.40-60“C)-Et,O,1 :I]上色谱,得到二氢菲(21)(120 mg),熔点70-71”C(轻石油b.p.60-80“C)(发现:M+ 224.1196。C16H16O需要 M,224.1201)。由于化合物容易氧化,无法获得准确的燃烧分析(>1%)。酮(19)和(20)也被分离出来。将(8).-BF3-OEt2 (0.8ml)的环化加入到(8)(175mg)的CH2C12(15ml)溶液中,在N2气氛下,在-20“C下。3小时后,像以前一样进行反应,得到棕色油(220mg),在环境温度下随时间结晶。样品由轻质石油(b.p.40-60“C),m.p.84-85”C(发现:C,61.8;H,7.1;CI,16.4。CIIHl,CIO,要求 C,61.5;H,7.0;C1,16.5%)。在TiCI4的环化反应中获得了类似的结果。致谢1edgements 我们感谢尼日利亚扎里亚的艾哈迈杜贝洛大学向 J. A. 请假,感谢孟加拉国工程技术大学向 E. H. 请假,感谢 S.E.R.C. 对 M. M. 和 E. G. S. 的财政支持。 参考文献 1 H. 0.House 和 R. L. Wasson, J. Am. Chem. Soc., 1957, 79, 1488.2 L. Brewer 和 G. M. Rosenblatt,阿多。高温 Cltetii., 1969, 2.3 J. L. Cooper 和 K. E. Harding, Teirahedrott Lett., 1977, 3321.4 L. M. Jackman 和 S. Sternhell,“核磁共振波谱在有机化学中的应用”,佩加蒙,牛津和纽约,1969 年,第 2 版,第 243 页。5 1.Fleming, A. Pearce, and R.L. Snowden, J. Chem. Soc., Chem. Commun., 1976, 182.6 有关评论,请参阅 W. S. Johnson, Bio-org。化学, 1976, 5, 51;E. E. van Tamelen, Acc. Chem. Rex, 1975, 8, 152;J. K. Suther-land, Chem. Soc. Reu., 1980, 9, 265.7 J. E. Baldwin, J. Chem. Soc., Chem. Commitn., 1976, 734.1982年7月27日收款;文件 2/1294

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号