首页> 外文期刊>journal of chemical physics >Calculation of hyperfine coupling constants of the ground stateXthinsp;3Sgr;minus;of NH and B2
【24h】

Calculation of hyperfine coupling constants of the ground stateXthinsp;3Sgr;minus;of NH and B2

机译:Calculation of hyperfine coupling constants of the ground stateXthinsp;3Sgr;minus;of NH and B2

获取原文
           

摘要

Following a systematic examination of basis set and electron correlation effects, accurate hyperfine coupling constants have been determined for theXthinsp;3Sgr;minus;states of NH and B2using the multiconfiguration selfhyphen;consistenthyphen;field (MCSCF) restrictedndash;unrestricted (RU) response function approach. These species were chosen for study because their unpaired electrons reside in pgr; orbitals; so at the single configuration selfhyphen;consistenthyphen;field (SCF) approach, they display zero hyperfine coupling constants. The approach advocated here has been tested successfully on sgr;hyphen;radical species with unpaired electrons occupying sgr; orbitals; this work represents the extension to pgr;hyphen;radical species which are expected to be more difficult cases. In designing the atomic orbital basis sets, effects of uncontraction of the orbitals (to permit maximal flexibility especially in describing electron density near nuclei) and of addition of diffuse and tight functions were taken into account. Our final bases give hyperfine coupling constants that agree with numerical Hartreendash;Fock (HF) and with numerical complete active space valence (CASV) MCSCF results, which indicates that our basis sets are accurate enough to be used in further studies that treat electron correlation more accurately. For dealing with electron correlation in a manner that, based on our past experience, could provide the requisite over all accuracy in the final coupling constants, the CASV configuration spaces were systematically extended to larger CAS (complete active space) spaces using natural orbital occupation numbers to determine which orbitals to include in active spaces for each symmetry. Our final results compare favorably with the available experimental data. The results show that the hyperfine coupling constant for B in B2and N in NH results from a near cancellation of large and opposite signed core and valence contributions.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号