首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Keten dithioacetals. Part 22. Reaction of polarised ketoketen dithioacetals with dimethyl acetylenedicarboxylate
【24h】

Keten dithioacetals. Part 22. Reaction of polarised ketoketen dithioacetals with dimethyl acetylenedicarboxylate

机译:Keten 二硫代缩醛。第 22 部分。极化酮酮二硫代缩醛与乙炔二甲酸二甲酯的反应

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1983 Keten Dithioacetals. Part 22.' Reaction of Polarised Ketoketen Dithioacetals with Dimethyl Acetylenedicarboxylate Jai N. Vishwakarma, Hiriyakkanavar Ha,* and Hiriyakkanavar Junjappa Department of Chemistry, North- Eastern Hill University, Shillong 793003, Meghala ya, India Ketoketen dithioacetals (1a-e) react with dimethyl acetylenedicarboxylate (2) to give open-chain dienes (4a-e) respectively. The formation of these dienes is explained through ring opening of the cyclobutene formed by 2 + 2cycloadditions of (1 ) and (2). The cyclic ketoketen dithioacetal (9) reacted with (2) to give an unusual compound, which was characterized as thiapyran-2-one (1 0). A plausible mechanism for the formation of (1 0) has been suggested. While the reactions of simple keten 0,O-, S,S-, 0,N-,S,N-, and N,N-a~etals,'-~ and enamines with activated acetylenes have been reported in the literature to proceed through 2 + 2cycloadditions, the conjugated vinylketen 0,O-and dithioacetals with activated acetylenes are known to give either 4 + 2lcycloaddition products or open-chain Michael adduct~.~.' Similarly thioacylketen dithioacetals react with dimethyl acetylenedicarboxylate (DMAD) to give the cor- responding Diels-Alder adducts.8-10 However, the behaviour of polarized ketoketen dithioacetals with DMAD has received very little attention and the easy accessibility of these com- pounds from a wide variety of active methylene compounds warrants a systematic investigation. The present study was therefore undertaken as a part of our interest in the chemistry of ketoketen dithioacetals.' When the ketoketen dithioacetal (la), derived from aceto- phenone, was treated with DMAD (2) in benzene at room temperature, it was recovered unchanged.However (1 a) was found to react with (2) in refluxing xylene and, after 20 h, a I : 1 adduct was isolated in 20 yield. The yield of the adduct was further improved to 60 when (la) and (2) were heated neat at 170-180 "C.The 1 : 1 adduct was characterized as the diene (4a), apparently the result of cleavage of the cyclobutene ring (3) arising from the 2 + 2cycloaddition of the reactants (Scheme 1). The corresponding 4 + 2cycloadduct (6) was not detected from the reaction mixture. Of the two possible geometrical isomers (4a) and (5a), the isomeric structure (4a) was assigned on the basis of the chemical-shift value of the vinylic proton.Thus the 'H n.m.r. signal for the vinylic proton which appeared at 6 6.60 in (la) was shifted to lower field (6 7.40) in (4a) indicating strong deshielding due to the cis-methoxycarbonyl group on the adjacent carbon atom. The strong band at 1 630 cm-' in the i.r. spectrum due to the aromatic carbonyl group confirms the open-chain structure (4a), ruling out the formation of the 4 + 2cycloadduct (6). The ketoketen dithioacetals (I b-e) similarly reacted with DMAD (2) under identical conditions to yield the novel push-pull dienes (4b--e), respectively, in 52-58 overall yields.The spectral and analytical data of (4b-e) are des- cribed in Tables 1 and 2 respectively. The mass spectral fragmentations of the dienes (4) showed extremely weak molecular ion peaks (Table I), while the major fragment ions arose from M+ (4) (Scheme 1) via electrocyclic ring closure followed by loss of a methylmercapto group to give even- electron ions (7), which gave the base peaks (M+ -47) (Scheme 1). The cyclic ketoketen dithioacetal(8) having cis-configuration of carbonyl and bismethylthiomethylene groups did not yield any identifiable product under varying conditions. Either the unchanged compound (8) was recovered under mild conditions or an intractable tar was obtained at higher temperature. Similarly (9) and DMAD (2) under mild conditions did not r 'I R E I EC+ 111 -MeSO$Me":MeS 160-170°C5 E E SMe .R SMe or 'XSMe SMe E' 'SMe (5) J (7)(M+-47) 0 SMe react, but they gave a bright yellow crystalline solid in low yield (1604) when the reactants were heated in a steel bomb in xylene.The product was characterized as the thiapyran-2- one (10) (Scheme 2) on the basis of analytical and spectral data. It showed in its mass spectrum, the molecular ion peak at ni/z 360 (72) (C10H1606S).The i.r. spectrum showed two strong absorption bands at 1 740 and 1 720 cm-I which were I100 J. CHEM. SOC. PERKIN TRANS. I 1983 Table 1. Spectral data for dimethyl 4,4-bismethylthio- I -aroyl (or acyl)butadiene-2,3-dicarboxylates(4b-e) r v,,,.(KBr)h (cm-') 7 Yield Arom/ Compound M.P.("C) (I Ester CO alph CO MCDCI3) mlz (4b) (4c) (44 122-1 24 130-132 I 12-1 I 3 52 58 56 I 722, 1 703 I 725-1 704 1710, 1730 1 628 I 625 I 640 2.20 (s, 3 H, SCHj), 2.35 (s, 3 H, SCHJ), 3.6 (s, 2.30(~, 3 H, SCH,), 2.45 (s, 3 H, SCH,), 3.65 (s, 3 H, OCH3), 3.85 (s, 3 H, OCH,), 7.17 (s, 1 H, olefinic), 7.25-7.65 (m, 5 H, aromatic) 3 H, OCH3), 3.8 (s, 3 H, OCH3), 3.9 (s, OCH,), 7.55 (s, 1 H), 6.80-7.75 (m, A2BZ, 4 H aromatic) 3 H, OCH3),3.85 (s, 3 H, OCH,), 7.48 (s, 1 H, olefinic), 7.30-7.40 (m, A2B2, aromatic) 2.22 (s, 3 H, SCHj), 2.43 (s, 3 H, SCHj), 3.65 (s, 366 (8) 396 (2) 319(100) 349 (1 00) 444, 446 (1)397, (W 135-1 36 52 1712, 1685 1 645 2.22 (s, 3 H, SCH,), 2.30 (s, 3 H, SCHj), 2.48 (s, 399 (100)304 (2) 3 H, CH,), 3.67 (s, 3 H, OCH,), 3.88 (s, 3 H, OCH3), 257 (100) 7.67 (s, I H, olefinic) 0 rSMe: :MeS: Me0 ' E =C02Me E I t Scheme 2.due to the ester carbonyl groups. The other strong band at characteristic absorption in the visible region (above400 nm)." 1625 cm-' was assigned to the thiapyran-2-one carbonyl Final confirmation of the thiapyran-2-one structure (10) was group, which is in agreement with the reported values (I 620-derived from its I3C n.m.r. spectrum (Figure). The character- 1 634 cm-').'1*12 The 'H n.m.r. spectrum (CDCI3) exhibited an istic signal at 6 184 was assigned to the thiopyran carbonyl A2B2quartet at 6 3.08 (4 H) due to four methylene protons. carbon, while the thiocarbonyl carbon of pyran-2-thione is The three closely spaced singlets which appeared at 6 3.80, reported to appear at 6 196.'' 3.85,and 3.86 were assigned to the methoxy and two methoxy- The mechanistic pathway for the conversion of (9) into (10) carbonyl protons.The aromatic protons exhibited signals at thus appears to be an interesting series of rearrangements 6 6.79 (d, J 2.5 Hz, 4-H), 6.86 (dd, ./ 7 and 2.5 Hz, 2-H), and (Scheme 3). The formation of cyclobutene uia 2 + 2cyclo-8.02 (d, J 7 Hz, I-H). The U.V. spectrum (MeOH) of (10) addition followed by ring opening and electrocyclic ring showed absorption bands at A,,,,,. 233 (log E 4.08), 310 (4.19, closure in succession to give compound (15) is logical. The 336 (4.20), and 348sh nm (3.99), thus ruling out the alter- intermediate (1 5) appears to undergo either an interesting native pyran-2-thione I3*I4 structure (12), which shows 1,5-suprafacial shift of the methylthio group or a stepwise J.CHEM. SOC. PERKIN TRANS. I 1983 Table 2. Analytical data for compounds (4b-e) Analysis Calc. (Found ) r-*-Compound Mol. formula C H 4.91 (4.45) 5.07 (5.3)3.82 (3.55) 5.26 (5.35) S (12) 00 Figure. 13C N.m.r. chemical shifts of compound (10) in CDCL (measured at 40 MHz) recorded as 6 (p.p.m.) C-1 133.5d C-7 129.3 C-14 146.2 C-2 112.5d C-8 144.5 C-15 55.3~~ C-3 161.0 C-9 136.0 C-16 163.4 C-4 114.9d C-10 143.1 C-17 164.8 c-5 C-6 34.3 26.9t C-12 (2-13 184.0 138.9 C-18 C-19 52.6q 52.6q H Scheme 3.elimination-addition process leading to the dihydropyran intermediate (16). In the subsequent steps, the intermediate (16), which is susceptible to electrocyclic ring opening, undergoes cleavage to give an activated S-methyl ester intermediate (1 7), which on intramolecular ring closure and elimination of dimethyl sulphide yields the thiopyranone (10). The mass spectrum of (10) exhibited an interesting frag- mentation pattern. The molecular ion peak at m/z 360 (72) was followed by the most intense peak at m/z 328 (M+ -32, loo, C17H120S), which is possibly due to the ion (11) (Scheme 3). Although the loss of methanol in preference to the carbon monoxide in (10) appears to be unusual,16 the presence of the adjacent methoxycarbonyl favours elimination of methanol to give the ion (ll), as shown in Scheme 3.'' Experimental 1.r.spectra were determined on a Perkin-Elmer 297 spectro- photometer, while the U.V. spectrum was run on a Beckmann UV-26 spectrophotometer. IH N.m.r. spectra were deter-mined on a Varian EM-390 90 MHz n.m.r. spectrometer using Me4 as internal reference. Reactions of Aryl (or AlkyZ) 3,3-Bis(methylthio)vinyl Ketones (1 a)-( 1 e) with Dimethyl Acetylenedicarboxylate (2).-(a) Reaction of 2,2-bismethylthiovinyl p-methyl phenyl ketone (la) with DMAD (2) in xylene. A solution of the ketone (la) (2.38 g, 0.01 mol) and DMAD (2) (3.7 g, 0.22 mol) in dry xylene was refluxed for 20 h. Xylene was evapo- rated off under reduced pressure and the residue was chro- matographed on a silica-gel column. Elution with benzene- hexane (1 : 1) yielded dimethyl l,l-bismethylthio-4-(p-toluoyZ)-buta-l,3-diene-2,3-dicarboxylate(4a) (0.76 g, 20) as pale yellow solid which was crystallised from ether-hexane, m.p.110-1 12 "C, vmx. (KBr) 1 728,1708, and 1 630cm-'; G(CDC1J 2.2 (s, 3 H, SCHj), 2.35 (s, 3 H, SCH3), 2.4 (s, 3 H, CH3), 3.65 (s, 3 H, OCH3), 3.85 (s, 3 H, OCH3), 7.4 (s, 1 H, vinylic), and 7.05-7.60 (m A2B2, 4 H, arom) (Found: C, 56.4; H, 5.55. C18HZ005S2requires C, 56.84; H, 5.26). (b) Generalprocedure. A mixture of the keten dithioacetal(1) (0.01 mol) and DMAD (2) (0.02 mol) was heated at 170-180 "C for 6-7 h until the starting material had dis- appeared completely (t.1.c.).The reaction mixture was passed through a silica-gel column. Elution with benzene-hexane (1 : 1) yielded pure compounds (4a-e), which were further purified by crystallization from ether-hexane (Table 1). Reaction of (9) with DMAD (2).-A solution of compound (9) (2.1 g, 0.008 mol) and DMAD (2) (1.42 g, 0.1 mol) in dry xylene (20 ml) was heated in a sealed tube at 160-170 "C for 33 h. Xylene was removed under reduced pressure and the residue was chromatographed on a silica-gel column. Elution with 6 ethyl acetate in hexane gave compound(l0) as a bright yellow crystalline solid (0.43 g, 16), m.p. 141-143 "C (spectral data in text) (Found: C, 60.25; H, 4.75; S, 8.55. Ci!jH1606S requires C, 60.0;H, 4.75; S, 8.88); m/z 360 (M+,72), 329 (53), 328 (loo), 313 (19.7), 300 (14), 272 (14), 269 (27.7), 243 (19), and 242 (44).Acknowledgements We are thankful to Dr. S. M. S. Chauhan, University of Alberta, Edmonton, Canada for the mass spectra and Dr. (Mrs) J. Bannerjee, University of Calcutta for the 13Cn.m.r. spectrum. References 1 Part 21, S. Apparao, A. Rahman, H. Ila, and H. Junjappa, Sjwthesis, 1982, 792. Part 20, S. Apparao, A. Rahman, H. Ila, and H. Junjappa, Tetrahedron Lett., 1982, 23, 971. 2 K. C. Brannock, B. D. Burpitt, and J. G. Thweatt, J. Org. Chem., 1963, 28, 1697. 3 R. Gornpper, Angew. Chem., Int. Ed. Engl., 1969,8, 312. 4 S. Karlsson and J. Sandstrom, Acta Chem. Scand. Ser. B, 1978, 32, 141. 5 C. F. Huebner, L. Dorfman, M.M. Robison, E. Donoghue, W. G. Pierson, and P. Strachan, J. Org. Chem., 1963,28,3134. 6 M. Petrzilka and J. Ian Grayson, Synthesis, 1981, 760, 766 and references therein. 7 F. A. Carey and A. S. Court, J. Org. Chem., 1972, 37, 4474, 1926. 8 R. Okazaki, A. Kitamura, and N. Inamoto, J. Chem. Soc., Chem. Commun., 1975, 257. 9 M. Ooka, A. Kitarnura, R. Okazaki, and N. Inamoto, Bull. Chem. SOC.Jpn., 1978,51, 301. J. CHEM. SOC. PERKlN TRANS. 1 1983 10 D. B. J. Easton, D. Leaver, and T. J. Rawling, J. Chern. Soc., Perkin Trans. I, 1972, 41. I1 I. El-Sayed El-Kholy, F. K. Rafla, and M. M. Mishrikey, J. Chem. SOC.C, 1970, 1578. 12 D. Leaver, D. M. McKinnon, and W. A. H. Robertson,J. Chem. SOC.,1965, 34. 13 P. Beak, D. S. Mueller, and J. Lee, J. Am. Chem. Soc., 1974,96, 3867. 14 W. H. Pirkle and W. V. Turner, J. Org. Chem., 1975,40, 1617. 15 W. V. Turner and W. H. Pirkle, J. Org. Chem., 1974, 39, 1935. 16 W. H. Pirkle and W. V. Turner, J. Org. Chem., 1975,40, 1644. 17 H. Budzikiewicz, C. Djerassi, and W. H. Williams, ‘ Mass Spectrometry of Organic Compounds,’ Holden-Day, Inc., 1967, p. 180-182. Received 9th September 1982; Paper 211552
机译:J. CHEM. SOC. PERKIN 译.I 1983 Keten 二硫代缩醛。第22部分。极化酮酮二硫代缩醛与乙炔二甲酸二甲酯的反应 Jai N. Vishwakarma、Hiriyakkanavar Ha、* 和 Hiriyakkanavar Junjappa 东北山大学化学系,西隆793003,梅加拉亚,印度 酮烯二硫代缩醛 (1a-e) 与乙炔二甲酸二甲酯 (2) 反应,分别生成开链二烯 (4a-e)。这些二烯的形成是通过(1)和(2)的[2 + 2]环加成形成的环丁烯的开环来解释的。环状酮烯二硫代缩醛 (9) 与 (2) 反应生成一种不寻常的化合物,其特征是噻吡喃-2-酮 (1 0)。已经提出了形成(1 0)的合理机制。虽然文献中已经报道了简单的酮 0,O-、S,S-、0,N-,S,N- 和 N,N-a~etals,'-~ 和烯胺与活化乙炔的反应,但已知共轭乙烯基烯 0,O-和二硫代缩醛与活化乙炔得到 [4 + 2lcycloaddition 产物或开链 Michael 加合物~.~。类似地,硫酰基酮二硫代缩醛与乙炔二甲酸二甲酯 (DMAD) 反应,产生相应的 Diels-Alder 加合物。8-10 然而,极化酮二硫代缩醛与DMAD的行为很少受到关注,而且这些化合物很容易从各种活性亚甲基化合物中获得,因此需要系统的研究。因此,本研究是我们对酮二硫代缩醛化学兴趣的一部分。当从苯乙酮衍生的酮二硫代缩醛(la)在室温下用苯中的DMAD(2)处理时,其回收率保持不变。然而,发现(1 a)在回流二甲苯中与(2)反应,20小时后,以20%的收率分离出I:1加合物。当(la)和(2)在170-180“C下加热时,加合物的收率进一步提高到60%,1:1加合物被表征为二烯(4a),显然是反应物的[2 + 2]环加成引起的环丁烯环(3)裂解的结果(方案1)。从反应混合物中未检测到相应的[4+2]环加合物(6)。在两种可能的几何异构体(4a)和(5a)中,异构体结构(4a)是根据乙烯基质子的化学位移值分配的。因此,在 6 6.60 英寸 (la) 处出现的乙烯基质子的 'H n.m.r. 信号被转移到 (4a) 中的低场 (6 7.40),表明由于相邻碳原子上的顺式甲氧羰基而产生的强烈去屏蔽。1 630 cm-' 处的强带芳香族羰基的光谱证实了开链结构 (4A),排除了 [4 + 2]环加合物的形成 (6)。酮二硫代缩醛(I b-e)在相同条件下与DMAD(2)类似反应,分别产生新型推拉二烯(4b--e),总收率为52-58%。(4b-e)的光谱和分析数据分别在表1和表2中描述。二烯(4)的质谱碎裂显示出极弱的分子离子峰(表I),而主要碎片离子通过电环闭合从M+(4)(方案1)产生,然后失去甲基巯基基团,得到均匀的电子离子(7),从而产生碱基峰(M+ -47)(方案1)。具有羰基和双甲基硫代亚甲基顺式构型的环酮烯二硫代缩醛(8)在不同条件下未产生任何可识别的产物。在温和的条件下回收未改变的化合物(8),或在较高温度下获得难处理的焦油。类似地,(9)和DMAD(2)在温和条件下没有r 'I R E I EC+ 111 -MeSO$[Me“:MeS 160-170°C5 E E SMe 。R SMe 或 'XSMe SMe E' 'SMe (5) J (7)(M+-47) 0 SMe 反应,但当反应物在二甲苯中的钢弹中加热时,它们以低产率 (1604) 得到亮黄色结晶固体。根据分析和光谱数据,将产物表征为噻吡喃-2-酮(10)(方案2)。在质谱图中,它显示了 ni/z 360 (72%) (C10H1606S) 处的分子离子峰。I.R.谱图显示,在1 740和1 720 cm-I处有两条强吸收带,分别为I100 J. CHEM. SOC. PERKIN TRANS.I 1983 表 1.4,4-二甲基硫基二甲酯-I-芳基(或酰基)丁二烯-2,3-二羧酸酯(4b-e)的光谱数据 r v,,,.(KBr)h (cm-') 7 产量 Arom/ Compound M.P.(“C) (%I Ester CO alph CO MCDCI3) mlz (4b) (4c) (44 122-1 24 130-132 I 12-1 I 3 52 58 56 I 722, 1 703 I 725-1 704 1710, 1730 1 628 I 625 I 640 2.20 (s, 3 H, SCHj), 2.35 (s, 3 H, SCHJ), 3.6 (s, 2.30(~, 3 H, SCH,), 2.45 (s, 3 H, SCH,), 3.65 (s, 3 H, OCH3), 3.85 (s, 3 H, OCH,), 7.17 (s, 1 H, 烯烃), 7.25-7.65 (m, 5 H, 芳香族) 3 H, OCH3), 3.8 (s, 3 H, OCH3), 3.9 (s, OCH,), 7.55 (s, 1 H), 6.80-7.75 (m, A2BZ, 4 H 芳香族) 3 H, OCH3),3.85 (s, 3 H, OCH,), 7.48 (s, 1 H, 烯烃), 7.30-7.40 (m, A2B2, 芳香族) 2.22 (s, 3 H, SCHj), 2.43 (s, 3 H, SCHj), 3.65 (s, 366 (8%) 396 (2%) 319(100%) 349 (1 00%) 444, 446 (1%)397, (W 135-1 36 52 1712, 1685 1 645 2.22 (s, 3 H, SCH,), 2.30 (s, 3 H, SCHj), 2.48 (s, 399 (100%)304 (2%) 3 H, CH,), 3.67 (s, 3 H, OCH,), 3.88 (s, 3 H, OCH3), 257 (100%) 7.67 (s, I H, 烯烃) 0 rSMe&: [&:MeS: Me0 ' E =C02Me E I t 方案 2.由于酯羰基。另一个强带在可见光区域(400 nm以上)的特征吸收。“1625 cm-'被分配到噻喃-2-酮羰基 最终确认噻吡喃-2-酮结构(10)是组,这与报告的值一致(I 620-来源于其I3C n.m.r.谱图)。字符 - 1 634 cm-')。1*12 'H n.m.r. 谱 (CDCI3) 在 6 184 处表现出一个 istic 信号,由于 4 个亚甲基质子,在 6 3.08 (4 h) 处被分配给硫吡喃羰基 A2B2 四重奏。碳,而吡喃-2-硫酮的硫代羰基碳是出现在 6 3.80 的三个紧密间隔的单峰,据报道出现在 6 196。3.85和3.86被分配给甲氧基和两个甲氧基-将(9)转化为(10)羰基质子的机理途径。因此,芳香质子表现出的信号似乎是一系列有趣的重排 6 6.79 (d, J 2.5 Hz, 4-Hz)、6.86 (dd, ./ 7 和 2.5 Hz, 2-H) 和 (方案 3)。环丁烯的形成 uia [2 + 2]cyclo-8.02 (d, J 7 Hz, I-H)。(10)加环后开环和电环的紫外光谱(MeOH)在A处显示吸收带,,,,,.233(log E 4.08),310(4.19,连续闭合得到化合物(15)是合乎逻辑的。336 (4.20) 和 348sh nm (3.99) 因此排除了交替中间体 (1 5) 似乎经历了一个有趣的天然吡喃-2-硫酮 I3*I4 结构 (12),它显示了甲硫基的 1,5-面上位移或逐步 J.CHEM. SOC. PERKIN TRANS.I 1983 表 2.化合物分析数据 (4b-e) 分析计算% (发现 %) r-*-化合物分子式 C H 4.91 (4.45) 5.07 (5.3)3.82 (3.55) 5.26 (5.35) S (12) 00 图。13C N.m.r. 化合物 (10) 在 CDCL 中的化学位移(在 40 MHz 下测量)记录为 6 (p.p.m.) C-1 133.5d C-7 129.3 C-14 146.2 C-2 112.5d C-8 144.5 C-15 55.3~~ C-3 161.0 C-9 136.0 C-16 163.4 C-4 114.9d C-10 143.1 C-17 164.8 c-5 C-6 34.3 26.9t C-12 (2-13 184.0 138.9 C-18 C-19 52.6q 52.6q H 方案 3.消除-添加过程,得到二氢吡喃中间体 (16)。在随后的步骤中,易受电环开环影响的中间体(16)发生裂解,得到活化的S-甲酯中间体(1,7),在分子内闭环和消除二甲基硫化物时,产生硫吡喃酮(10)。(10)的质谱表现出有趣的碎片分布模式。在m/z 360处的分子离子峰(72%)之后,在m/z 328处达到最强的峰(M+ -32,loo%,C17H120S),这可能是由于离子(11)所致(方案3)。尽管(10)中甲醇的损失优于一氧化碳似乎是不寻常的,16但相邻甲氧羰基的存在有利于消除甲醇以产生离子(ll),如方案3所示。实验 1.r.光谱是在 Perkin-Elmer 297 分光光度计上测定的,而 U.V. 光谱是在 Beckmann UV-26 分光光度计上运行的。在瓦里安 EM-390 90 MHz n.m.r. 光谱仪上,使用 %Me4 作为内部参比,对 IH N.m.r. 光谱进行去向挖掘。芳基(或醇基Z)3,3-双(甲硫基)乙烯基酮(1,a)-(1,e)与乙炔二甲酸二甲酯(2)的反应。将酮(la)(2.38g,0.01mol)和DMAD(2)(3.7g,0.22mol)在干燥二甲苯中的溶液回流20小时。二甲苯在减压下蒸发掉,残留物在硅胶柱上彩色印刷。用苯-己烷(1:1)洗脱得到L,L-二甲基硫基-4-(对甲苯硫Z)-丁-l,3-二烯-2,3-二羧酸二甲酯(4a)(0.76g,20%)为淡黄色固体,由醚己烷结晶而成,m.p.110-1 12“C,vmx。(KBr) 1 728,1708 和 1 630cm-';G(CDC1J 2.2 (s, 3 H, SCHj), 2.35 (s, 3 H, SCH3), 2.4 (s, 3 H, CH3), 3.65 (s, 3 H, OCH3), 3.85 (s, 3 H, OCH3), 7.4 (s, 1 H, 乙烯基) 和 7.05-7.60 (m A2B2, 4 H, arom) (发现: C, 56.4;H,5.55。C18HZ005S2需要C,56.84;H,5.26%)。(b) 一般程序。将酮二硫代缩醛(1)(0.01mol)和DMAD(2)(0.02mol)的混合物在170-180“C下加热6-7小时,直到起始材料完全消失(t.1.c.)。将反应混合物通过硅胶柱。用苯-己烷(1:1)洗脱得到纯化合物(4a-e),通过醚己烷结晶进一步纯化(表1)。化合物(9)(2.1g,0.008 mol)和DMAD(2)(1.42g,0.将1mol)在干燥的二甲苯(20ml)中在160-170“C的密封管中加热33小时。减压除去二甲苯,并在硅胶柱上对残留物进行色谱分析。用6%乙酸乙酯的己烷溶液洗脱,得到化合物(l0)为亮黄色结晶固体(0.43g,16%),熔点141-143“C(文本中的光谱数据)(发现:C,60.25;H,4.75;S,8.55。Ci!jH1606S 需要 C, 60.0;H,4.75;S,8.88%);m/z 360 (M+,72)、329 (53)、328 (loo)、313 (19.7)、300 (14)、272 (14)、269 (27.7)、243 (19) 和 242 (44)。致谢 我们感谢加拿大埃德蒙顿阿尔伯塔大学的 S. M. S. Chauhan 博士提供的质谱图和加尔各答大学的 J. Bannerjee 博士(夫人)提供的 13Cn.m.r. 光谱。参考文献 1 第 21 部分,S. Apparao、A. Rahman、H. Ila 和 H. Junjappa,Sjwthesis,1982 年,第 792 页。第 20 部分,S. Apparao、A. Rahman、H. Ila 和 H. Junjappa,Tetrahedron Lett.,1982,23,971。2 K. C. Brannock, B. D. Burpitt, and J. G. Thweatt, J. Org. Chem., 1963, 28, 1697.3 R. Gornpper,Angew。Chem., Int. Ed. Engl., 1969,8, 312.4 S. Karlsson 和 J. Sandstrom, Acta Chem. Scand. Ser. B, 1978, 32, 141.5 C. F. Huebner, L. Dorfman, M.M. Robison, E. Donoghue, W. G. Pierson, and P. Strachan, J. Org. Chem., 1963,28,3134.6 M. Petrzilka 和 J. Ian Grayson, Synthesis, 1981, 760, 766 和其中的参考文献。7 F. A. Carey 和 A. S. Court, J. Org. Chem., 1972, 37, 4474, 1926.8 R. Okazaki, A. Kitamura, and N. Inamoto, J. Chem. Soc., Chem. Commun., 1975, 257.9 M.大冈,A.基塔努拉,R.冈崎和 N. Inamoto,公牛。化学 SOC.Jpn, 1978,51, 301.J. CHEM. SOC. PERKlN TRANS. 1 1983 10 D. B. J. Easton, D. Leaver, and T. J. Rawling, J. Chern.Soc., Perkin Trans.我,1972 年,41 岁。I1 I. El-Sayed El-Kholy, F. K. Rafla, and M. M. Mishrikey, J. Chem. SOC.C,1970年,1578年。12 D. Leaver, D. M. McKinnon, and W. A. H. Robertson,J. Chem. SOC.,1965, 34.13 P. Beak, D. S. Mueller, and J. Lee, J. Am. Chem. Soc., 1974,96, 3867.14 W. H. Pirkle 和 W. V. Turner, J. Org. Chem., 1975,40, 1617.15 W. V. Turner 和 W. H. Pirkle, J. Org. Chem., 1974, 39, 1935.16 W. H. Pirkle 和 W. V. Turner, J. Org. Chem., 1975,40, 1644.17 H. Budzikiewicz、C. Djerassi 和 W. H. Williams,“有机化合物的质谱法”,Holden-Day, Inc.,1967 年,第 180-182 页。收稿日期:1982年9月9日;纸211552

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号