首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >A convenient reduction of activated olefins by zinc–copper couple
【24h】

A convenient reduction of activated olefins by zinc–copper couple

机译:通过锌-铜偶联互通方便地还原活性烯烃

获取原文
获取外文期刊封面目录资料

摘要

1. CHEM. SOC. PERKIN TRANS. I 1983 1219 A Convenient Reduction of Activated Olefins by Zinc-Copper Couple 6. Lucas Sondengam,' 2. Tanee Fomum, Georges Charles, and T. Mac Akam Department of Organic Chemistry, University of Yaounde, Cameroon ~~-Activated olefins of the types Ph,C=CXY, R2C=CXY, PhRCICXY, and RCH=CXY (where X and Y are electronegative substituents or one of them is a hydrogen atom) have been reduced to the corresponding saturated compounds in excellent yields by treatment with zinc-copper couple in boiling methanol. A number of reports have been made on the reductive pro- perties of the zinc-copper couple. Kupchan and Maruyama reported the reductive elimination of epoxides to give olefins in a one-step stereoselective reaction in which a cis-epoxide gave predominantly the trans-olefin, while trans-epoxides generated the cis-olefin as the major product.Further reduc- 0@ Ph tions of epoxides were carried out by Ekong et a12 These ICN workers also reported the reduction of a,B-unsaturated Ph/c=cHketones and diosphenolic compounds to the corresponding 'saturated 't compounds, notably in the reduction of anthothecol (1) and cedrelone (2). Other methods for the selective reduction of double bonds include the use of sodium borohydride on a,P-unsaturated acids and esters 3*4 and, in recent years, L-and K-selectride and t-butyl alcohol by Ph /OZEtFortunato and Ganem: 10 palladium-on-carbon and tri- ethyl-or tri-n-butyl-amine by Cortese and Heck: and Ph/ lithium amide by Melamed and Feit.' H We recently* reported the use of zinc-copper couple in (4)the stereospecific and quantitative reduction of carbon-carbon triple bonds to the corresponding olefins.Our method for reduction of the acetylenes was found to be much better than the palladium-catalysed reduction of acetylenes by coCortese and Heck; their method reduced e.g. hex-1-yne to give hex-l-ene as only 49 of a mixture of products, and the catalyst could further reduce the olefin to a mixture of hexane and other products, whereas with zinc-copper couple different acetylenes gave the alkene in near quantitative yield, 0 no other reduction products being formed.* As a continuation of our study of reactions with zinc-copper 'OAc couple, we have now found that activated olefins can be (6)conveniently and selectively reduced by this reagent to the (5) corresponding saturated compounds in near quantitative yields. Various activated olefins (7)--(18) were treated with zinc-copper couple in methanol under reflux for periods not exceeding 24 h.Work-up gave the saturated compound without problems those which arose in the low temperature Itwork (-78 "C)of Melamed and Feit 'and Fortunato and (7) (8) a; R=C-N3 Bruce (-70 "C)are avoided. b; R= CO,H Furthermore, we found no problem in reducing compounds with only one electron-withdrawing group such as (13) and (16), whereas similar compounds (3) and (4) could not be reduced by the Melamed and Feit method, which only works when there are two electron-withdrawing groups attached to the double bond.Also, ethyl cinnamate (lo), which was 0 0 reduced by the L-selectride method to a mixture of twenty- one compounds, is readily reduced in excellent yield to the corresponding saturated compound, no by-products being detected. We have also observed that compounds (11) (12 1 7 The term 'saturated 'is used in this paper in a limited sense and containing two conjugated double bonds with a conjugated refers to the saturation of the double bond being reduced even though X and Y are unsaturated functions both in the starting electronegative group, such as (8a) and (8b), are readily materials and in the products. reduced to the saturated derivatives. The range of com-pounds reduced in this way is given in the Table. RR'CFCXY -+ RRCH-CHXY We found that when the double bond was activated by a Me H 'C=C' AMe C02Me (13) (14) Ph /CNc=c H'--'Ph (16) CH=CHMe OH (17b) (18) lactone, as in 14,15-deoxybacunone (5) and dihydro-14,15- deoxygedunin (6), no reduction took place even over long periods and with large quantities of the couple.This is not due to steric hindrance in the vicinity of the double bond, however, as coumarin (17a) is similarly not reduced, while 3ethoxycarbonylcoumarin (17) is readily converted into the saturated derivative ;clearly an electron-withdrawing group between the double bond and the lactone carbonyl is neces- sary for the reduction to occur. Although the styrene chromophore is present in most of these compounds, it does not contribute to their reduction as shown by the fact that the double bond on the side chain in isoeugenol(17b) is unaffected. J.CHEM. SOC. PERKM TRANS. I 1983 Table. Reduction of olefins (8)-(18) by zinc-copper couple Amount used Product (1 mol) Time (h) yield (I 3.5 3 98 4.5 3 98 5.6 6 96 5.6 5 84 4.0 5 97 4.0 5 95 8 24 88 2.8 4 98 3.0 4 98 5.0 5 98 8.O 6 94 3.O 96 85 7 24 zinc dust; 30 g, 1 mol) were refluxed for 3 h in methanol (95, 100 ml). Work-up as above gave a crude product which was recrystallized from benzene to give tetrahydropiperic acid (0.97 g, 98), m.p. 95-96 "C; G(CDC13) 1.50-1.90 (4 H, m, CH2CH2CH2C02H), 2.30-2.80 (4 H, m, ArCHz CH2C02H),5.85 (2 H, s, OCH20), 6.60 (3 H, s, Ar), and 9.5 (1 H, br s, C02H, disappears on deutriation).Similarly piperine (1 -piperoylpiperidine) (8a) (1 g, 0.0035 mol) and zinc-copper couple were refluxed for 3 h. Work-up as usual gave a crude product which was hydrolysed to tetra- hydropiperic acid. 1,5-Diphenylpentan-3-one.-l,5-Diphenylpenta-l,4-dien-3-one (12) (1 g, O.Oo40 mol) was refluxed with zinc-copper couple (prepared from 30 g of zinc dust) in methanol-water (3 :1; 120 ml) for 5 h. Work-up gave a crude product which was passed through a silica-gel column and then recrystallized (methanol) to give 1,5-diphenylpentan-3-one(0.96 g, 95), m.p. 67-70 "C. 2,3-Diphenylpropionitrile.-2,3-Diphenylacrylonitrile (16) (1 g, 0.0048mol) and zinc-copper couple (30 g, 1 mol of zinc dust) were refluxed in methanol (95; 100 ml) for 5 h.After usual work-up, the crude product was passed through a silica-gel column and then recrystallized (hexane) to give 2,3-diphenylpropionitrile (0.99 g, 98), m.p. 66-68 "C. 3,3-Diphenyl-2-phenylsulphonylpropionitrile.-3 ,3-Diphenyl-Experimental 2-phenylsulphonylacrylonitrile9g (14) (1 g, 0.0028 mol)Zinc-copper couple was prepared as indicated el~ewhere.~*~ and zinc-copper couple (30 g of zinc dust) were refluxed in M.p.s were taken on a Kofler hot-stage apparatus and are uncorrected. Refractive indices were taken on a universal refractometer. 'H N.m.r. spectra were taken on a Perkin-Elmer R12 B spectrometer with deuteriochloroform as solvent, unless otherwise stated, and tetramethylsilane as internal standard.The n.m.r. data are given as 6 values. Wherever used, silica gel for columns refers to Merck silica gel, mesh 0.0634.200 nm. Products were isolated in all cases by the following procedure :the exhausted zinc-copper couple was filtered off (filter paper) and repeatedly washed with methanol (the reaction solvent); the filtrate was then diluted with distilled water and extracted with either chloroform or methylene dichloride (3 x 50 ml). The combined extracts were dried (Na2S0, or MgS0,J and evaporated under reduced pressure. Tetrahydropiperine and Tetrahydropiperic Acid.-Piperic acid (8b) 5-(3,4-methylenedioxyphenyl)penta-2,4-dienoic acid (1 g, 0.0045mol) and zinc-copper couple (prepared from methanol-water (3 :1) for 4 h.Work-up gave an oily product which was recrystallized from ethanol to give the propionitrile (0.99 g, 98),m.p. 170-172 "C; G(CDC13) 4.75 (1 H, d, Ph2-CHCH), 5.05 (1 H, d, Ph2CHCH), 7.35 (10 H, s, Ar), and 7.10-7.80 (5 H, m, Ar). 2-Benzoyl-3,3-diphenylpropionitrile.-2-Benzoyl-3,3-di-phenylacrylonitrile 9b (15) (1 g, 0.003 mol) was refluxed with zinc-copper couple (30 g of zinc dust) in methanol-water for 4 h. After usual work-up, the 2-benzoylpropionitrile was obtained as an oily product (0.99 g, 98) which did not crystallize. G(CDC1,) 2.30 (3 H, s, ArCH3), 3.50 (1 H, d, Ph2CHCH), 4.1 (1 H, d, Ph2CHCH), and 6.90-7.80 (14 H, m, Ar). Dihydro-3-ethoxycarbonylcoumarin.-3-Ethoxycarbonyl-coumarin 9c (17) (0.8 g, 0.0036 mol) was refluxed with zinc- copper couple (30 g of zinc dust) in methanol-water for 6 h.J. CHEM. soc. PERKIN TRANS. I 1983 Usual work-up gave a crude product which was passed through a silica-gel column to afford an oil (0.76 g, 94) (Found: C, 65.45; H, 5.45; 0, 29.1 C12H1204 requires C, 65.44; H, 5.49; 0,29.06). G(CDC13) 1.23 (3 H, t, CHZCH,), 2.10-2.40 (4 H, m, methylene H),3.60-4.40 (1 H, m, 349, and 7.10 (3 H, m, Ar). Ethyl 3-Phenylpropionate.-Ethyl cinnamate lo (10) (1 g, 0.0056 mol) was refluxed with zinc-copper couple in methanol for 5 h. After work-up, the product was distilled under reduced pressure. An oily colourless liquid was collected between 120 and 124 "C 25 mmHg (0.85 g, 84), nD 1.4960 (lit.," nD 1.4954). 5-Phenylpentunoic Acid.-5-Phenylpenta-2,4-dienoic acid lo (9) (1 g, 0.0057 mol) was refluxed with zinc-copper couple in methanol-water (3 : 1) for 6 h.The isolated oily crude product (0.98 g, 96) did not crystallize from any available solvent. G(acetone) 1.10-1.60 (4 H, m, ArCH2CH2CH2CH2C02H), 2.20-2.80 (4 H, m, ArCH2CH2CH2CH2C02H), and 7.30 (6 H, d, Ar and OH which disappeared on deuteriation). Dihydr0fagaramide.-Fagaramide (N-isobutyl-3,4-methyl-enedioxycinnamamide) (1 1) (1 g, 0.004 mol) was refluxed with zinc-copper couple in methanol-water (3 : 1) for 5 h. Usual work-up gave a crude product (0.98 g, 97) which was recrystallized from acetone to give dihydrofagaramide, m.p.102-104 "C. G(CDC13) 0.83 (3 H, s, Me), 0.93 (3 H, s, Me), 1.40-1.96 (1 H, m, CH), 2.28-2.60 (2 H, m, CH2), 2.80- 3.18 (4 H, t, ArCH2CH2), 5.90 (2 H, s, 0CH20), and 6.80 (3 H, s, Ar). Dihydr0veprisine.-Veprisine l2 (2,6-dihydro-7,8-dimeth-oxy-2,2,6-trimethylpyrano3,2-cquinolin-5-one)(1 8) (1 g, 0.003 mol) was refluxed with zinc-copper couple in methanol (100 ml) for 96 h. Usual work-up gave an oily crude product (0.96 g) which was passed through a silica-gel column to give a solid compound which was recrystallized from ethyl acetate-n-pentane to give dihydroueprisine (0.85 g, 85), m.p. 154-156 "C (Found: C, 67.3; H, 6.9; N, 4.65; 0, 22.2. C17HZ104N requires C, 67.31; H, 6.98; N, 4.0; 0, 21.10). G(CDC1,) 0.90 (6 H, d, Me x 2), 1.45 (3 H, t, CH2), 2.8 (2 H, t, CH3, 3.86 (3 H, s, NMe), 3.95 (6 H, s, OMe, x 2), 6.87 (1 H, d, Ar), and 7.82 (1 H, d, Ar).Methy2 IsovaZerute.-Methyl 3,3-dimethylacrylate (1 3) (1 g, 0.008 mol) was refluxed for 24 h with zinc-copper couple in methanol (200 ml). Usual work-up gave methyl iso-valerate (0.90 g, 88); nD 0.8800 (lit.," nD 0.8808). Attempted Reduction of Coumarin (17a).-Coumarin (1 g, 0.007 mol) was treated with zinc-copper couple in boiling methanol for 24 h. Work-up gave starting material (0.95 g) as shown by the spectral data and m.p. Attempted Reduction of Isoeugeno 1 (2-Methoxy-4-prop-l- enylphenol) (17b).-Isoeugenol (1 g, 0.006 mol) was treated with zinc-copper in boiling methanol for 120 h. Work-up gave starting material (0.96 g).References 1 S. M. Kupchan and M. Maruyama, J. Org. Chem., 1971, 30, 1187. 2 D. E. U. Ekong, J. I. Okogun, and B. L. Sondengam, J. Chem. Soc., Perkin Trans. I, 1975, 2118. 3 J. J. Eisch and A. M. Jacobs, J. Org. Chem., 1963,2145. 4 N. Prentice, L. S. Cuendet, and F. Smith, J. Am. Chem. Soc., 1956,4439. 5 J. M. Fortunato and Bruce Ganem, J. Org. Chem., 1976, 41, 2194. 6 N. A. Cortese and R. F. Heck, J. Org. Chem., 1978,43, 3985. 7 Uri Melamed and Ben Ami Feit, J. Chem. Soc., Perkin Trans. I, 1980, 1267. 8 B. L. Sondengam, G. Charles, and T. M.Akam, Tetrahedron Lett., 1980, 1069. 9 These compounds were synthesized by one of us (G. C.) follow- ing procedures described in (a)Bull. SOC.Chim. Fr., 1962, 1559; (6) idem., 1962, 1566; (c) idem., 1962, 1573. 10 F. G. Mann and B. C. Saunders in ' Practical Organic Chemistry,' 4thedn., Longmans, London, 1973, pp. 237, 279. 11 R. C. Weast and S. M. Selby, ' Handbook of Chemistry and Physics,' 4th edn., The Chemical Rubber Co., Ohio, 1966-67, 441 14. 12 J. F. Ayafor, B. L. Sondengam, and B. Ngadjui, Tetrahedron Lett., 1980, 3293. Received 28th July 1982 ;Paper 2/ 1297
机译:1. CHEM. SOC. PERKIN TRANS.I 1983 1219 锌铜电偶对活化烯烃的方便还原 6.卢卡斯·桑登甘(Lucas Sondengam),'2。Tanee Fomum、Georges Charles 和 T. Mac Akam 喀麦隆雅温得大学有机化学系 ~~-Ph,C=CXY,R2C=CXY,PhRCICXY和RCH=CXY(其中X和Y是电负性取代基或其中一个是氢原子)类型的活化烯烃通过沸腾甲醇中的锌铜对处理,以优异的收率还原为相应的饱和化合物。关于锌铜对的还原特性已经发表了许多报告。Kupchan 和 Maruyama 报道了在一步立体选择性反应中还原消除环氧化物以产生烯烃,其中顺式环氧化物主要产生反式烯烃,而反式环氧化物生成顺式烯烃作为主要产物。Ekong等人进行了进一步的还原-0@ Ph tions,这些ICN工作人员还报告了a,B-不饱和Ph/c=cH酮和二酚类化合物的还原,特别是蒽酚(1)和柏司令酮(2)的还原。选择性还原双键的其他方法包括对 a,P-不饱和酸和 3*4 酯使用硼氢化钠,以及近年来通过 Ph /OZEtFortunato 和 Ganem 对 L-和 K-选择和叔丁醇:Cortese 和 Heck 的 10% 碳上钯和三乙基或三正丁胺:和 Ph/Melamed 和 Feit 的酰胺锂。H 我们最近*报道了锌-铜偶在(4)中碳-碳三键的立体特异性和定量还原到相应烯烃中的应用。我们发现,我们的乙炔还原方法比coCortese和Heck钯催化的乙炔还原要好得多;他们的方法将十六-1-炔还原为仅49%的己烯,并且催化剂可以进一步将烯烃还原为己烷和其他产物的混合物,而使用锌铜偶,不同的乙炔使烯烃的收率接近定量,0不会形成其他还原产物。 我们现在发现,活化烯烃可以通过该试剂方便且选择性地还原为(5)相应的饱和化合物,收率接近定量。将各种活性烯烃(7)--(18)在甲醇中用锌铜偶在回流下处理不超过24 h。检查给出饱和化合物没有问题[那些在低温中产生的 Itwork (-78 “C)Melamed 和 Feit '和 Fortunato 和 (7) (8) a;R=C-N3 布鲁斯 (-70 “C)被避免]。b;R= CO,H 此外,我们发现只有(13)和(16)等一个吸电子基团的化合物没有问题,而类似的化合物[(3)和(4)]不能通过Melamed和Feit方法还原,该方法仅在有两个吸电子基团连接到双键时才有效。此外,肉桂酸乙酯(lo)通过L-选择法0 0还原为21种化合物的混合物,很容易以极好的收率还原为相应的饱和化合物,没有检测到副产物。我们还观察到化合物 (11) (12 1 7 术语“饱和”在本文中的使用是有限的,并且包含两个共轭双键和一个共轭的双键是指双键的饱和度被降低,即使 X 和 Y 在起始电负性基团中都是不饱和函数,例如 (8a) 和 (8b), 是容易的材料和产品。还原为饱和衍生物。以这种方式减少的 com-pounds 范围在表中给出。RR'CFCXY -+ RRCH-CHXY 我们发现,当双键被 Me H 'C=C' AMe C02Me (13) (14) Ph /CNc=c H'--'Ph (16) CH=CHMe OH (17b) (18) 内酯激活时,如 14,15-脱氧杆菌酮 (5) 和二氢-14,15-脱氧杜宁 (6),即使在长时间和大量的情况下也没有发生还原。然而,这并不是由于双键附近的空间位阻,因为香豆素 (17a) 同样没有还原,而 3乙氧羰基香豆素 (17) 很容易转化为饱和衍生物;显然,双键和内酯羰基之间的吸电子基团是还原发生的必要条件。尽管苯乙烯发色团存在于大多数这些化合物中,但它对它们的还原没有贡献,正如异丁香酚(17b)中侧链上的双键不受影响的事实所表明的那样。J.CHEM. SOC. PERKM 译.I 1983 表。锌铜耦合还原烯烃 (8)-(18) 使用量 产物 (1 mol) 时间 (h) 产率 (%I 3.5 3 98 4.5 3 98 5.6 6 96 5.6 5 84 4.0 5 97 4.0 5 95 8 24 88 2.8 4 98 3.0 4 98 5.0 5 98 8.O 6 94 3.O 96 85 7 24 锌粉; 30 克, 1mol)在甲醇(95%,100ml)中回流3小时。如上所述,得到粗产物,该粗产物由苯重结晶,得到四氢哌啶酸(0.97克,98%),熔点95-96“C;G(CDC13) 1.50-1.90 (4 H, m, CH2CH2CH2C02H), 2.30-2.80 (4 H, m, ArCHz CH2C02H),5.85 (2 H, s, OCH20), 6.60 (3 H, s, Ar) 和 9.5 (1 H, br s, C02H, 在去湿化时消失)。类似地,胡椒碱(1-哌啶基哌啶)(8a)(1g,0.0035mol)和锌铜对回流3小时。像往常一样进行检查,得到水解为四氢哌呋酸的粗产物。将1,5-二苯基戊-3-酮-l,5-二苯基-戊-l,4-二烯-3-酮(12)(1 g,O.Oo40 mol)与锌铜对(由30 g锌粉制备)在甲醇水(3 :1;120 ml)中回流5 h。检查得到粗产物,通过硅胶柱,然后重结晶(甲醇),得到1,5-二苯基戊-3-酮(0.96 g,95%),熔点67-70“C.2,3-二苯基丙腈.-2,3-二苯基丙烯腈(16)(1 g,0.0048mol)和锌铜对(30 g,1 mol锌粉)在甲醇中回流(95%;100 ml)5 h.经过常规的处理后,将粗产物通过硅胶柱,然后重结晶(己烷),得到2,3-二苯基丙腈(0.99 g,98%),熔点66-68“C.3,3-二苯基-2-苯磺基丙腈.-3,3-二苯基实验 2-苯磺基丙烯腈9g (14) (1 g,0.0028 mol)锌铜对如图所示制备el~ewhere.~*~和锌铜对(30 g锌粉)在M.p.s中回流,在Kofler热阶段装置上取,并且是未。在通用折光仪上测定折光率。'H N.M.R.除非另有说明,否则在Perkin-Elmer R12 B光谱仪上以氘氯仿为溶剂,以四甲基硅烷为内标采集光谱。n.m.r. 数据以 6 个值的形式给出。无论在哪里使用,色谱柱用硅胶是指默克硅胶,目数为0.0634.200 nm。所有情况下,产物均按以下程序分离:滤去耗尽的锌铜对(滤纸),并用甲醇(反应溶剂)反复洗涤;然后用蒸馏水稀释滤液,并用氯仿或二氯甲烷(3 x 50 ml)萃取。将合并的提取物干燥(Na2S0或MgS0,J)并在减压下蒸发。四氢胡椒碱和四氢哌啶酸(8b)[5-(3,4-亚甲二氧苯基)五-2,4-二烯酸](1g,0.0045mol)和锌铜对(由甲醇-水(3:1)制备4小时。G(CDC13) 4.75 (1 H, d, Ph2-CHCH), 5.05 (1 H, d, Ph2CHCH), 7.35 (10 H, s, Ar) 和 7.10-7.80 (5 H, m, Ar)。将2-苯甲酰基-3,3-二苯基丙腈-2-苯甲酰基-3,3-二苯基丙烯腈9b(15)(1g,0.003mol)与锌铜对(30g锌粉)在甲醇水中回流4 h。经过常规检查后,得到2-苯甲酰丙腈为油性产物(0.99 g,98%),不结晶。G(CDC1,) 2.30 (3 H, s, ArCH3), 3.50 (1 H, d, Ph2CHCH), 4.1 (1 H, d, Ph2CHCH) 和 6.90-7.80 (14 H, m, Ar)。二氢-3-乙氧羰基香豆素-3-乙氧羰基香豆素9c(17)(0.8g,0.0036mol)与锌铜对(30g锌粉)在甲醇水中回流6 h.J. CHEM. soc. PERKIN TRANS.I 1983 通常的检查得到一种粗产品,该产品通过硅胶柱以获得油(0.76 g,94%)(发现:C,65.45;H,5.45;0, 29.1 C12H1204 需要 C, 65.44;H,5.49;0,29.06%).G(CDC13)1.23(3 H,t,CHZCH),2.10-2.40(4 H,m,亚甲基H),3.60-4.40(1 H,m,349和7.10(3 H,m,Ar)。将3-苯基丙酸乙酯-肉桂酸乙酯lo(10)(1g,0.0056mol)与锌铜对在甲醇中回流5小时。处理后,将产品减压蒸馏。在120至124“C 25 mmHg(0.85g,84%),nD 1.4960(lit.,”nD 1.4954)之间收集油状无色液体。将5-苯基戊酸-5-苯基-2,4-二烯酸(1 g,0.0057 mol)与锌铜对在甲醇-水(3 : 1)中回流6 h,分离出的含油粗产物(0.98 g,96%)未从任何可用溶剂中结晶。G(丙酮)1.10-1.60(4 H,m,ArCH2CH2CH2CH2C02H),2.20-2.80(4 H,m,ArCH2CH2CH2CH2C02H)和7.30(6 H,d,Ar和OH在氘化时消失)。将二氢-fagaramide.-Fagaramide(N-异丁基-3,4-甲基二氧肉桂酰胺)(1 1)(1 g,0.004 mol)与锌铜对在甲醇-水(3 : 1)中回流5 h。通常的检查结果为粗产物(0.用丙酮重结晶98g,97%),得到二氢法加酰胺,m.p.102-104“C.G(CDC13)0.83(3 H,s,Me),0.93(3 H,s,Me),1.40-1.96(1 H,m,CH),2.28-2.60(2 H,m,CH2),2.80-3.18(4 H,t,ArCH2CH2),5.90(2 H,s,0CH20)和6.80(3 H,s,Ar)。将二氢-0维哌辛-l2(2,6-二氢-7,8-二甲基氧基-2,2,6-三甲基吡喃并[3,2-c]喹啉-5-酮)(1,8)(1g,0.003mol)与锌铜对在甲醇(100ml)中回流96小时。通常的检查得到油性粗产物(0.96 g),通过硅胶柱得到固体化合物,该固体化合物由乙酸乙酯-正戊烷重结晶,得到二氢乌司嘧啶(0.85 g,85%),熔点154-156“C(发现:C,67.3;H,6.9;N,4.65;0, 22.2.C17HZ104N 要求 C,67.31;H,6.98;N,4.0;0, 21.10%).G(CDC1,) 0.90 (6 H, d, Me x 2)、1.45 (3 H, t, CH2)、2.8 (2 H, t, CH3、3.86 (3 H, s, NMe)、3.95 (6 H, s, OMe, x 2)、6.87 (1 H, d, Ar) 和 7.82 (1 H, d, Ar)。Methy2 IsovaZerute.-3,3-二甲基丙烯酸甲酯(1,3)(1g,0.008mol)与锌铜对在甲醇(200ml)中回流24小时。常规检查给予异戊酸甲酯(0.90 g,88%);nD 0.8800(点亮,“nD 0.8808)。尝试还原香豆素(17a).-香豆素(1g,0.007mol)在沸腾的甲醇中用锌铜对处理24小时。检查得到起始材料(0.95 g),如光谱数据所示,m.p. 尝试还原异丁香酚 1(2-甲氧基-4-丙-l-烯基苯酚)(17b).-异丁香酚 (1 g, 0.006 mol)在沸腾甲醇中用锌铜处理120 h。检查得到起始材料(0.96 g)。参考文献 1 S. M. Kupchan and M. Maruyama, J. Org. Chem., 1971, 30, 1187.2 D. E. U. Ekong, J. I. Okogun, and B. L. Sondengam, J. Chem. Soc., Perkin Trans.我,1975 年,2118 年。3 J. J. Eisch 和 A. M. Jacobs, J. Org. Chem., 1963,2145.4 N. Prentice, L. S. Cuendet, and F. Smith, J. Am. Chem. Soc., 1956,4439.5 J. M. Fortunato 和 Bruce Ganem, J. Org. Chem., 1976, 41, 2194.6 N. A. Cortese 和 R. F. Heck, J. Org. Chem., 1978,43, 3985.7 Uri Melamed 和 Ben Ami Feit, J. Chem. Soc., Perkin Trans.我,1980 年,1267 年。8 B. L. Sondengam, G. Charles, and T. M.Akam, Tetrahedron Lett., 1980, 1069.9 这些化合物是由我们中的一个人(G.C.)按照(a)Bull中描述的程序合成的。SOC。噗噗。Fr., 1962, 1559;(6) 同上,1962年,第1566页;(c) 同上,1962年,第1573页。10 F. G. Mann 和 B. C. Saunders in 'Practical Organic Chemistry', 4thedn., Longmans, London, 1973, pp. 237, 279.11 R. C. Weast 和 S. M. Selby,《化学和物理手册》,第 4 版,俄亥俄州化学橡胶公司,1966-67 年,第 441 页 14.12 J. F. Ayafor, B. L. Sondengam, and B. Ngadjui, Tetrahedron Lett., 1980, 3293.收稿日期: 1982年7月28日 ;P aper 2/ 1297

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号