...
首页> 外文期刊>Journal of geophysical research >Unprecedented Atmospheric Ammonia Concentrations Detected in the High Arctic From the 2017 Canadian Wildfires
【24h】

Unprecedented Atmospheric Ammonia Concentrations Detected in the High Arctic From the 2017 Canadian Wildfires

机译:Unprecedented Atmospheric Ammonia Concentrations Detected in the High Arctic From the 2017 Canadian Wildfires

获取原文
获取原文并翻译 | 示例
           

摘要

From 17-22 August 2017 simultaneous enhancements of ammonia (NH3), carbon monoxide (CO), hydrogen cyanide (HCN), and ethane (C2H6) were detected from ground-based solar absorption Fourier transform infrared (FTIR)spectroscopic measurements at two high-Arctic sites: Eureka (80.05 degrees N, 86.42 degrees W) Nunavut, Canada, and Thule (76.53 degrees N, 68.74 degrees W), Greenland. These enhancements were attributed to wildfires in British Columbia and the Northwest Territories of Canada using FLEXPART back-trajectories and fire locations from Moderate Resolution Imaging Spectroradiometer (MODIS) and found to be the greatest observed enhancements in more than a decade of measurements at Eureka (2006-2017) and Thule (1999-2017). Observations of gas-phase NH3 from these wildfires illustrate that boreal wildfires may be a considerable episodic source of NH3 in the summertime high Arctic. Comparisons of GEOS-Chem model simulations using the Global Fire Assimilation System (GFASv1.2) biomass burning emissions to FTIR measurements and Infrared Atmospheric Sounding Interferometer (IASI)measurements showed that the transport of wildfire emissions to the Arctic was underestimated in GEOS-Chem. However, GEOS-Chem simulations showed that these wildfires contributed to surface layer NH3 and NH4+ enhancements of 0.01-0.11 ppbv and 0.05-1.07 ppbv, respectively, over the Canadian Archipelago from 15-23 August 2017.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号