首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Metabolites ofAspergillus ustus. Part 3. Structure elucidation of austalides G–L
【24h】

Metabolites ofAspergillus ustus. Part 3. Structure elucidation of austalides G–L

机译:Aspergillus ustus的代谢物。第 3 部分。austalides G–L的结构解析

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1985 363 Metabolites of Aspergi//us ustus. Part 3. Structure Elucidation of Austalides G-L ' R. Marthinus Horak," Pieter S. Steyn, and Robert Vleggaar National Chemical Research Laboratory, Council for Scientific and Industrial Research, P.0.Box 395, Pretoria 0001, Republic of South Africa Christiaan J. Rabie National Research Institute for Nutritional Diseases, Medical Research Council, P. 0.Box 70, Tygerberg7505, Republic of South Africa The structure elucidation of austalides G-L, chemical derivatization, is described. In an accompanying paper the isolation of 12 meroterpenoid metabolites, austalides A-L, from cultures of Aspergillus ustus (Bainier) Thom. and Church (strain MRC 1163) and the structure elucidation of six of these metabolites, austalides A- F (1(6) are described. We now report the structure elucidation of the austalides G-L (7(12) based on a detailed study of their high-field 'H and n.m.r.spectra, chemical derivatizations, and comparison with the austalides A-F. Austalides G (7),t C2,H3,09, and H (8),C2,H,,0,, are the minor metabolites in the austalide series and probably represent the products of a branch-point in the biosynthetic pathway leading to the highly oxygenated austalides A-F ~(1F-W~I. OCH3 28 33 34 (1) A: R'=COCH3, R2 =H (2) 8: R'=H, ~2 =H 31 32 ( 31 C : R' =COCH3, R2 = OCOCH-J (4)0: R' =H, R2 = OCOCH3 ( 5) E : R' =COCH3, R2 = OH (6) F: R' =H, R2 = OH (7) G: R=COCH3 (8) H: R=H The U.V.maxima (Amax. 221 and 267 nm) of austalides G and H compare well with the corresponding data of austalides A-F. The i.r. absorption band of the C-17 carbonyl groups in the metabolites is masked by that of the phthalide carbonyl group (Amax. 1 740 cm-I). The electron impact mass spectra of these two methyl esters exhibited intense M+ -18 peaks which arise through the facile loss of the elements of water from the based on a study of their H and 3Cn.m.r. spectra and molecular ion. This loss is consistent with the presence of the tertiary hydroxy group at C- 15. The location of the 0-acetyl group at C-13 in austalide G (7) followed from the chemical shift (6,5.391) of the 13-H proton. This proton is part of a four-proton spin system, the first-order analysis of which was confirmed by selective irradiation of the C-13 and C-14 protons in a series of proton-proton decoupling experiments (see Figure 1).The broad singlet at 6, 1.593 which disappeared on addition of deuterium oxide to the sample, is assigned to the proton of the C-15 hydroxy group. The 13Cn.m.r. data of austalide G are in agreement with the proposed structure. The low-field chemical shift of C-14 S, 51.67, 'J(CH) 126.2 Hz is probably due to the inductive effect of the two oxygen atoms which are two bonds removed. The 0' (9) I : R1=OCOCH3, R2=H (10) J : R' = H, R~ = OH (11) K : R1 = R2 =H (12) L : R' = OH, R~=H (18) R' = H, R~=D (19) R' = OD, R2 = D presence of an aliphatic methyl ester is evident from the singlet at 6, 174.47 (C-17) and the quartet at 6, 51.67 'J(CH) 146.6 Hz, C-281 in the single frequency n.0.e.13C~pectrum.~*~ -f The numbering of austalides G, H, K, and L is in accord with the system used for austalides A-F, and 16 is, therefore, omitted. 364 J. CHEM. SOC. PERKIN TRANS. I 1985 Figure 1. The ('H,'H) connectivity pattern of austalide G (7). Values in Hz Alkaline hydrolysis of austalide G (0.1M-potassium hydroxide in methanol) yielded a single product which was identical with austalide H (8). Significantly, the 'H n.m.r. signal of the C-13 methine proton (6,4.629) of austalide H appears as an unresolved multiplet, 0.762 p.p.m. upfield in comparison to the corresponding resonance in the 'H spectrum of austalide G.This signal changed to a well-resolved multiplet (J3.7, 3.1, and 2.5 Hz) upon addition of deuterium oxide to the sample. The location of the secondary hydroxy group at C-13 was demonstrated, using the deuteriated sample, by selective irradiation of the 14-H resonance (6, 1.322, J 2.5 Hz) in a homonuclear decoupling experiment, which changed the 13-H signal to a double doublet (J3.7 and 3.1 Hz). Austalide I (9),m.p. 236-238 "C analysed for C27H3408and had M+ 486. The presence of the phthalide chromophore was evident from the absorption maxima at h,,,, 221 and 266 nm in the U.V. spectrum. The i.r. spectrum of the metabolite had v,,,, 1720-1 750 cm-', assigned to the C-3, C-33, and C-17 carbonyl groups.The presence of the 0-acetyl moiety at C-13 in austalide I was inferred from the chemical shift of the 13-H proton resonance (6, 5.407, m). This resonance changed to a double doublet (J 4.2, 1.9 Hz) on selective irradiation of the doublet signal (6, 1.862, J 3.9 Hz) assigned to 14-H. The single frequency n.0.e. 3Cn.m.r. spectrum of austalide I showed the presence of three doublets at 6,45.94 'J(CH) 125.4 Hz, 55.35 'J(CH) 120.6 Hz, and 69.92 'J(CH) 151.0 Hz. The chemical shift and coupling constant of the last resonance are diagnostic of the oxygen-bearing carbon atom, C-13. The assignment of the doublet signals at 6,45.94 (C-21) and 55.35 (C-14) is based on chemical-shift considerations. The chemical shift of the resonance at 6, 174.40,ascribed to C- 17, compares well with the chemical shift of the carbonyl carbon atom in seven-membered lac tone^.^ The facile ring-opening of seven- membered lactones on treatment with acid is well documented and can be taken as proof of the presence of such a f~nctionality.~,~For this reason, a solution of austalide 1(9)in a mixture of dichloromethane and methanol was treated with anhydrous hydrogen chloride generated in situ by the addition of thionyl chloride to the reaction mixture.8 After 2 h at room temperature the ester (13), M+ 500, was obtained in 73 yield.Significant features of the 'H n.m.r. spectrum of (13) in comparison with that of austalide I are the unresolved multiplets at 6,4.893 and 4.939 ascribed to the protons of the exocyclic methylene group.A three-proton singlet at 8, 3.683 is indicative of the protons of a methyl ester. It is evident that under these experimental conditions opening of the lactone ring in austalide I leads firstly to the formation of austalide G (7). The facile loss of water from the hydroxy-isopropyl group in (7) then generates the exocyclic methylene moiety. Austalide J (lo), C25H3207, has the characteristic U.V. and i.r. data of austalides A-I, and M+ 444.Although the molecular ions of austalide I (9) and J (10) differ by 42 mass units, austalide J is not simply the deacetyl derivative of austalide I. This was apparent from a comparison of the respective 'H and 13Cn.m.r. data. The resonances at 6, 1.862 and 5.407, assigned respectively to the C-14 and C-13 protons in austalide I were both absent in the 'H spectrum of austalide J.The 13C n.m.r. spectrum of austalide J showed three resonances (6, 75.85, 79.58,and 91.33) due to oxygen-bearing, quaternary, sp3 carbon atoms but none of which could be assigned to an oxygen- bearing methine carbon atom. Austalide J is, therefore, oxygenated at C-14, and as a result it can contain either a six- or a seven-membered lactone ring. This ambiguity was resolved by the chemical shift (6, 173.38) of the lactone carbonyl carbon atom. The corresponding carbon atom in six-membered lactone rings resonates at ca. 6, 167.4 In the preceding paper' it is shown that treatment of the lactone (14) with a methanolic solution of potassium hydroxide followed by acidic work-up leads to the formation of the hemi- ortho ester (15) in high yield (see Figure 2).Austalide J could (14) ii1i OH (15) Figure 2. Transformation of the lactone (14) into the hemi-ortho ester (15). (i) KOH-MeOH, (ii) 0.1~HC1 conceivably exist in solution in equilibrium with its hemi- ortho ester form (17) which could be trapped by methylation. Although the broad-band proton-decoupled '3C n.m.r. spectrum of austalide J in both chloroform and methanol is consistent in each case only with the lactone form (lo), the ortho ester (16) was obtained in 90 yield when austalide J was treated with hydrogen chloride in anhydrous methanol. The same product was also formed by methylation of austalide J J.CHEM. SOC. PERKIN TRANS. I 1985 CHq cH3 OCH3 28 (16) with methyl iodide and potassium carbonate in dry acetone. The efficient conversion of austalide J into its ortho ester form proceeds in each case to completion as methylation of (17) shifts the equilibrium between (10) and (17). CH? ?H3 0Y (10) OH (17) Figure 3. Proposed equilibrium between austalide J (10) and its hemi- ortho ester (17) The 'H n.m.r. spectrum of (16) displayed a three-proton singlet at 6, 3.411, characteristic of the ortho ester methyl protons (28-H) in the austalides A-F (1)-(6). The corresponding methyl carbon atom gives rise to a signal at 6, 48.74 in the '3Cn.m.r. spectrum. The facile transformation of austalide J into the ortho ester (16) indicates that the compound has the same relative configuration as austalide D (14s) and provides chemical proof of the structure. The change in descriptor for this chral centre compared with the corresponding chiral centre in austalide D is merely the result of the sequence rules of the Cahn-Ingold- Prelog system.Austalide K (ll), C2!H?205, and austalide L (12), C2,H3,06, have U.V. data similar to those of austalides A-J. The i.r. spectra of each of these two metabolites showed an absorption band at v,,,. 1700 cm-l, characteristic of a carbonyl group (C- 17) in a six-membered ring.g A number of signals in the 'H n.m.r. spectrum of austalide K (11) exhibited extensive fine structure as a result of multiple geminal and vicinal proton-proton coupling (Figure 4).The resonances of the C-12, C-13, and C-14 protons appear as deceptively simple multiplets in the 'H n.m.r. spectrum since one vicinal and both geminal proton-proton coupling constants have the same magnitude. Extensive 'H-('H) homonuclear decoupling experiments were, therefore, necessary to analyse the various multiplets and assign them to specific protons. The resultant proton-proton connectivity pattern is illustrated in 365 1 0 0 OCH3 'I (6.9)' Figure 4. The ('H,'H) connectivity pattern of austalide K (11). Values in Hz Figure 4. The 13-Ha proton is assigned to the eight-line multiplet at 6,1.785 (J 13.9, 13.9, 13.9, and 3.0 Hz) since it is the only proton with an antiperiplanar orientation with two different neighbouring protons (12-H, and 14-H).The magnitude of the geminal coupling constant of the C-18 protons can be explained by the presence of a carbonyl group at C-17 (see Figure 4). A singlet resonance at 6,216.23 in the '3Cn.m.r. spectrum of austalide K was assigned to the carbonyl carbon atom, C-17. The corresponding carbon aton in 4,4-dimethyl-3-ketosteroids resonates at ca. Sc 216." The chemical-shift values of the C-14 S, 54.07 D, 'J(CH) 120.9 Hz and C-15 (6,47.09 S) resonances confirmed the lack of oxygenation at these centres. The structural assignment of austalide K (11) is corroborated by the results obtained from an n.m.r. study of its deuteriated derivative (18), obtained by refluxing the compound in a solution of sodium methoxide in O-2Hmethanol.'2 As a result of the base-catalysed ring-opening of the phthalide moiety in the compound, the reaction mixture was acidified during work- up with deuteriated acid obtained from a 1:l mixture of deuterium oxide and acetyl chloride.A comparison of the 'H n.m.r. spectrum of (18) with that of austalide K shows that the signals assigned to the C-18 protons are absent. In addition, the C-19 protons give rise to an AX spin system (J 13.3 Hz). The broad-band proton-decoupled 3C n.m.r. spectrum of the deuteriated derivative (18) showed 24 singlet signals plus an ill-resolved multiplet (6, 33.50) of very low relative intensity. This multiplet, assigned to C-18, is centred upfield (A6 -0.41 p.p.m.) from the resonance position of C-18 in the spectrum of austalide K (ll).13 The relatively low intensity of the C-18 signal in the spectrum of (18) is due to the loss of n.0.e.and the fact that it is split into five lines as a result of spin coupling with the two deuterium atorns.l4 Furthermore, the C-19 signal exhibits an upfield shift (AS -0.08 p.p.m.) whereas the C-17 resonance is shifted downfield (A6 0.13 p.p.m.).'2*13 These isotope shifts support the structural assignment of austalide K( 11). The structural assignment of austalide L(12) is based on the same approach as described for austalide K. First-order analysis of the multiplets in the 'H n.m.r. spectrum of austalide L yielded the chemical shifts and coupling constants.The values of the coupling constants, as corroborated by 'H-{'H} decoupling experiments, indicated the geminal and vicinal proton-proton coupling patterns in the molecule, as outlined in Figure 5. The deuteriated derivative (19) of austalide L was obtained as described above for austalide K. The presence of three deuterium atoms in the molecule is evident from the mass Figure 5. The ('H,'H) connectivity pattern of austalide L (12). Values in Hz spectral data. The H n.m.r. spectrum lacks the signals assigned to the C-14 hydroxy group and the C-18 methylene protons, and the signal assigned to the C-19 protons of (19) appears as a pair of doublets (J 12.9 Hz). A comparison of the 13Cn.m.r. data of the trideuterioketone (19) and of austalide L (12) indicated an upfield shift (A6 -0.10 p.p.m.) for the C-19 resonance whereas the (2-14 signal is shifted downfield (A6 0.11 p.p.m.).Deuteriation at C-18 in (19) causes an upfield shift (A6 -0.15 p.p.m.) instead of a downfield shift ' see austalide K (ll) in the resonance position of the C-17 carbonyl carbon atom due to the presence of the C-14 hydroxy group. The austalides, e.g. austalide D (4), are biosynthetically derived from 6-farnesyl-5,7-dihydroxy-4-methylphthalide,a known intermediate in the biosynthesis of mycophenolic acid,' by stereospecific ring closure to give austalide K (ll).3 Hydroxylation at C-14 of austalide K (11) proceeds with retention of configuration to give austalide L (12). An enzymatic Baeyer-Villiger oxidation (retention of configura- tion) produces the seven-membered hydroxy-lactone ring of austalide J (10) with the correct stereochemical orientation of the substituents for in vivo cyclisation to an ortho ester.This cyclisation was demonstrated in vitro for austalide J (10) (see above). The detailed biosynthetic studies on the austalides will be described in a subsequent publication. ExperimentalFor general directions see reference 1. Alkaline Hydrolysis of Austalide G (7).-Austalide G (10 mg) was hydrolysed according to the procedure described in reference 1 to give the diol (8) (8 mg, 87), identical with an authentic sample of austalide H (8). Acid-catal
机译:J. CHEM. SOC. PERKIN 译.I 1985 363 Aspergi//us ustus 的代谢物。第 3 部分。Austalides G-L ' R. Marthinus Horak的结构解析,“Pieter S. Steyn和Robert Vleggaar国家化学研究实验室,科学和工业研究委员会,P.0.Box 395,比勒陀利亚0001,南非共和国 Christiaan J. Rabie 国家营养疾病研究所,医学研究委员会,P. 0.Box 70,Tygerberg7505,南非共和国 austalides G-L的结构解析, 化学衍生化,被描述。在随附的论文中,从 Aspergillus ustus (Bainier) Thom 培养物中分离出 12 种类甲萜类代谢物 austalides A-L。和Church(菌株MRC 1163)和其中六种代谢物的结构解析,Austalides A-F[(1&(6)]被描述。我们现在报告了Austalides G-L [(7&(12)]的结构解析,基于对它们的高场'H和n.m.r.光谱的详细研究,化学衍生化以及与austalides A-F的比较。Austalides G (7),t C2,H3,09 和 H (8),C2,H,,0,是 Austalide 系列中的次要代谢产物,可能代表了导致高氧化 Austalides A-F ~(1F-W~I. OCH3 28 33 34 (1) A: R'=COCH3, R2 =H (2) 8: R'=H, ~2 =H 31 32 ( 31 C : R' =COCH3, R2 = OCOCH-J (4)0: R' =H, R2 = OCOCH3 ( 5) E : R' =COCH3, R2 = OH (6) F: R' =H, R2 = OH (7) G: R=COCH3 (8) H: R=H 最大值 (Amax.221 和 267 nm) 的 austalides G 和 H 与 austalides A-F 的相应数据进行了较好的比较。代谢物中C-17羰基的I.R.吸收带被邻苯二甲醚羰基(Amax.1 740 cm-I)的吸收带所掩盖。通过对两种甲酯的H和3Cn.m.r.光谱和分子离子的研究,这两种甲酯的电子冲击质谱表现出强烈的M+-18峰,这是由于水元素的简单损失而产生的。这种损失与C-15处三羟基的存在一致。0-乙酰基团在澳醇 G (7) 中 C-13 的位置遵循 13-H 质子的化学位移 (6,5.391)。该质子是四质子自旋系统的一部分,其一级分析通过一系列质子-质子解耦实验中对 C-13 和 C-14 质子的选择性辐照得到证实(见图 1)。在样品中加入氧化氘后消失的 6, 1.593 处的宽单线态被分配给 C-15 羟基的质子。澳泰元素G的13Cn.m.r.数据与所提出的结构一致。C-14 [S, 51.67, 'J(CH) 126.2 Hz] 的低场化学位移可能是由于两个氧原子的感应效应,这两个氧原子是两个键被移除。0' (9) I : R1=OCOCH3, R2=H (10) J : R' = H, R~ = OH (11) K : R1 = R2 =H (12) L : R' = OH, R~=H (18) R' = H, R~=D (19) R' = OD, R2 = D 从单线态6, 174处可以明显看出脂肪族甲酯的存在。47 (C-17) 和 6, 51.67 ['J(CH) 146.6 Hz, C-281 在单频 n.0.e.13C~pectrum.~*~ -f Austalides G、H、K 和 L 的编号与用于 austalides A-F 的系统一致,因此省略了 16。 364 J. CHEM. SOC. PERKIN TRANS.I 1985 图 1.Austalide G 的 ('H,'H) 连接模式 (7)。以Hz为单位,澳醇G(0.1M-氢氧化钾的甲醇溶液)碱性水解得到与澳醇H相同的单一产物(8)。值得注意的是,与澳大利亚元素 G 的 'H 光谱中的相应共振相比,澳式 H 的 C-13 甲质子 (6,4.629) 的 'H n.m.r. 信号显示为未分辨的倍数,0.762 p.p.m.在同核解耦实验中,通过对14-H共振(6,1.322,J 2.5 Hz)的选择性辐照,使用氘化样品证明了C-13处的二级羟基的位置,该实验将13-H信号更改为双双峰(J3.7和3.1 Hz)。Austalide I (9),m.p. 236-238 “C分析了C27H3408,并有M+ 486。从紫外光谱中 h,,,, 221 和 266 nm 处的最大吸收值可以明显看出邻苯二甲醚发色团的存在。代谢物的i.r.谱图为v,,,,1720-1 750 cm-',分为C-3、C-33和C-17羰基。从13-H质子共振(6,5.407,m)的化学位移推断出澳定物I中C-13位点存在0-乙酰基部分。在选择性照射分配给 14-H 的双峰信号 (6, 1.862, J 3.9 Hz) 时,该共振变为双双峰 (J 4.2, 1.9 Hz)。单频 n.0.e.3Cn.m.r.光谱显示,在6,45.94 ['J(CH) 125.4 Hz]、55.35 ['J(CH) 120.6 Hz]和69.92 ['J(CH) 151.0 Hz]处存在3个双峰。最后共振的化学位移和耦合常数是对含氧碳原子C-13的诊断。在6,45.94(C-21)和55.35(C-14)处分配双峰信号是基于化学位移的考虑。共振在6, 174.40处的化学位移,归因于C-17,与七元紫胶色调中羰基碳原子的化学位移相比较^.^ 七元内酯在用酸处理时容易开环是有据可查的,可以作为这种f~nctionality存在的证据.~,~为此,在二氯甲烷和甲醇的混合物中,通过向反应混合物中加入亚砜,用原位生成的无水氯化氢处理了澳大利亚胺1(9)的溶液.8室温下2小时后,得到的酸(13),M+500,收率为73%。与澳式 I 相比,(13) 的 'H n.m.r. 光谱的显着特征是 6,4.893 和 4 处的未解析多重子。939归因于外环亚甲基的质子。8, 3.683 处的三质子单重态表示甲酯的质子。很明显,在这些实验条件下,澳醇 I 中内酯环的开口首先导致澳醇 G 的形成 (7)。(7)中羟基异丙基的水分很容易损失,然后产生外环亚甲基部分。Austalide J (lo), C25H3207, 具有 austalides A-I 和 M+ 444 的特征 U.V. 和 i.r. 数据.尽管 austalide I (9) 和 J (10) 的分子离子相差 42 个质量单位,但 austalide J 不仅仅是 austalide I 的脱乙酰衍生物.从对各自的'H和13Cn.m.r.数据的比较中可以明显看出这一点。6、1.862 和 5.407 处的共振分别分配给澳泰元素 I 中的 C-14 和 C-13 质子,在澳泰胺 J 的 'H 光谱中均不存在。因此,Austalide J 在 C-14 处氧化,因此它可以包含六元或七元内酯环。这种歧义通过内酯羰基碳原子的化学位移(6,173.38)得到解决。六元内酯环中相应的碳原子在约6,167处共振。4 在前面的论文中,表明用氢氧化钾的甲醇溶液处理内酯 (14),然后进行酸性处理,导致以高产率形成半邻位酯 (15)(见图 2)。Austalide J can (14) ii1i OH (15) 图 2.将 &内酯 (14) 转化为半邻位酯 (15)。(i) KOH-MeOH, (ii) 0.1~HC1 可以想象地与可被甲基化捕获的半邻位酯形式 (17) 平衡存在于溶液中。尽管氯仿和甲醇中澳醇J的宽带质子解耦'3C n.m.r.谱图仅与内酯形式(lo)一致,但当澳醇J在无水甲醇中用氯化氢处理时,邻位酯(16)的收率为90%。同样的产物也是由澳杉烯酸酯甲基化形成的 J J.CHEM. SOC. PERKIN TRANS.I 1985 CHq cH3 OCH3 28 (16) 与碘甲烷和碳酸钾在干燥丙酮中。在每种情况下,当 (17) 的甲基化改变 (10) 和 (17) 之间的平衡时,澳醇 J 有效转化为其邻酯形式的过程直到完成。CH??H3 0Y (10) OH (17) 图 3.Austalide J (10) 与其半邻位酯 (17) 之间的平衡 (16) 的 'H n.m.r. 谱图显示 6, 3.411 处有三质子单重态,这是自定酯 A-F 中邻位酯甲基质子 (28-H) 的特征 [(1)-(6)]。相应的甲基碳原子在'3Cn.m.r.中产生6,48.74的信号。光谱。澳式丁胺 J 向原位酯 (16) 的简单转化表明该化合物具有与澳式丁胺 D (14s) 相同的相对构型,并提供了结构的化学证明。与Austalide D中相应的手性中心相比,该chral中心的描述符的变化仅仅是Cahn-Ingold-Prelog系统的序列规则的结果。Austalide K (ll), C2!H?205 和澳醇 L (12)、C2、H3、06 的 UV 数据与澳醇 A-J 相似。这两种代谢物的 i.r. 谱图显示 v 处有一个吸收带,,,.1700 cm-l,六元环中羰基(C-17)的特征.g 由于多个双子和邻近质子-质子偶联,澳定物 K (11) 的 'H n.m.r. 光谱中的许多信号表现出广泛的精细结构(图 4)。C-12、C-13 和 C-14 质子的共振在 'H n.m.r. 光谱中显示为看似简单的多重子,因为一个邻近和两个双质子-质子耦合常数具有相同的大小。因此,有必要进行广泛的'H-('H)均核解耦实验,以分析各种多重子并将它们分配给特定的质子。由此产生的质子-质子连接模式如图 4 所示 365 1 0 0 OCH3 'I (6.9)' 。澳极元素 K 的 ('H,'H) 连接模式 (11)。以 Hz 为单位的值 图 4.13 公顷的质子被分配给 6,1.785 处的八线倍数(J 13.9、13.9、13.9 和 3。0 Hz),因为它是唯一一个具有两个不同相邻质子(12-H 和 14-H)的反平面方向的质子。C-18质子的双偶联常数的大小可以通过C-17处羰基的存在来解释(见图4)。在'3Cn.m.r.光谱中,6,216.23处的单线态共振被分配给羰基碳原子C-17。4,4-二甲基-3-酮类固醇中相应的碳aton在Sc 216左右产生共振。C-14 [S, 54.07 D, 'J(CH) 120.9 Hz] 和 C-15 (6,47.09 S) 共振的化学位移值证实了这些中心缺乏氧合。澳醇 K (11) 的结构分配得到了对其氘代衍生物 (18) 的 n.m.r. 研究结果的证实,该结果是通过将化合物在 [O-2H] 甲醇中的甲醇钠溶液中回流而获得的。l 氧化氘和乙酰氯的混合物。将(18)的'H n.m.r.谱与澳定物K的谱进行比较表明,分配给C-18质子的信号不存在。此外,C-19质子产生了AX自旋系统(J 13.3 Hz)。氘代衍生物 (18) 的宽带质子解耦 3C n.m.r. 谱显示 24 个单线态信号和一个相对强度非常低的分辨不良的多重粒子 (6, 33.50)。分配给C-18的这个倍数位于上场(A6 -0.41 p.p.m.),从C-18在Austalide K(ll)光谱中的共振位置开始.13在(18)的光谱中C-18信号的强度相对较低是由于n.0.e.的损失,以及由于与两个氘腔的自旋耦合,它被分成五条线的事实.l4此外, C-19信号表现出上场偏移(AS -0.08 p.p.m.),而C-17谐振下场偏移(A6 0.13 p.p.m.)。2*13 这些同位素位移支持了澳定元素 K( 11) 的结构分配。澳式锂 L(12) 的结构分配基于与澳大利亚化物 K 相同的方法,对澳式锂 L 的 'H n.m.r. 光谱中的多重体进行一级分析,得出了化学位移和偶联常数。耦合常数的值,如'H-{'H}解耦实验所证实的那样,表明了分子中的双子和邻近质子-质子耦合模式,如图5所示。如上所述,获得澳醇 L 的氘代衍生物 (19)。从质量图5可以明显看出分子中存在三个氘原子。澳旦酰胺 L 的 ('H,'H) 连接模式 (12)。Hz 光谱数据中的值。H n.m.r.谱缺少分配给C-14羟基和C-18亚甲基质子的信号,分配给(19)的C-19质子的信号显示为一对双峰(J 12.9 Hz)。对三氘酮 (19) 和澳泰胺 L (12) 的 13Cn.m.r. 数据的比较表明,C-19 共振的上场偏移 (A6 -0.10 p.p.m.),而 (2-14 信号下场偏移 (A6 0.11 p.p.m.)。由于 C-14 羟基的存在,(19) 中 C-18 处的氘化导致 C-17 羰基碳原子共振位置的上场位移 (A6 -0.15 p.p.m.) 而不是下场位移 ' [参见澳定物 K (ll)]。澳醇类药物,例如澳醇 D (4),是生物合成来源于 6-法尼基-5,7-二羟基-4-甲基邻苯二甲醚,6-法尼基-5,7-二羟基-4-甲基邻苯二甲醚,通过立体特异性闭环得到澳醇 K (ll).3 澳醇 K (11) 在 C-14 位点的羟基化继续保留构型,得到澳醇 L (12)。酶促 Baeyer-Villiger 氧化(保留配置)产生澳大利亚胺 J (10) 的七元羟基内酯环,取代基具有正确的立体化学取向,用于体内环化为邻酯。这种环化在体外证明了澳大利亚胺 J (10)(见上文)。关于Austalides的详细生物合成研究将在随后的出版物中描述。实验性有关一般方向,请参阅参考文献 1。根据参考文献1中描述的程序水解Austalide G(7)-Austalide G(10mg)的碱性水解,得到与Austalide H(8)的真实样品相同的二醇(8)(8mg,87%)。将澳<酰胺I(9)-氯化亚砜(1ml)的酸-催化转化加入到澳胺I(8mg)的二氯甲烷-甲醇(1:1 v / v;10ml)的冷却溶液中,并在室温下搅拌溶液2小时。将反应混合物用乙醚(50ml)稀释,用水(2×50ml),饱和碳酸氢钠水溶液(2×50ml)和水(3×50ml)洗涤,并干燥(MgS04)。溶剂蒸发得到酯(13)(6mg,73%)为白色无定形固体,[aID-69.7'(c 1.00),A,,,.222和267nm(分别为E 26 100和11 700),v,,,.1 740 cm-'(发现:M+,500.241。C28H3608需要 M, 500.241), 6H0.880 (3 H, s, 27-H), 1.190 (3 H, s, Me), 1.627 (1 H, d, J8.0 Hz, 21-H), 1.666- J. CHEM. SOC. PERKIN TRANS. 1 1985 1.739(2H,m),1.757-1.819(1H,m),1.811(3H,s,Me),1.986(3 H, s, Me), 2.023 (3 H, s, Me), 2.160 (1 H, d, J 2.5 Hz, 14-H)、2.264-2.298(2 H、m)、2.583(1 H、dd、J 15.8 和 2.2 Hz)、2.776(1 H、dd、J 18.4 和 8.0 Hz、22-H)、2.934(1 H、d、J 18.4 Hz、22-Ha)、3.683(3 H、s、28-H)、4.1 17(3 H、s、29-H)、4.893(1 H、m br、25-Ha)、4.939(1 H、 m br, 25-H,)、5.080-5.091 (1 H, m, 13-H) 和 5.096 (2 H, s, 1-H)。将澳醇G(7)-氯化亚砜(1ml)的酸催化脱水加入到澳醇G(5mg)的二氯甲烷-甲醇(1:1 v / v;5ml)的冷却溶液中,并在室温下搅拌溶液2小时。如前所述,检查得到的化合物(4mg,83%)与酯的真实样品相同(13)。将澳醇J(lo)-氯化亚砜(1ml)的酸催化转化加入到澳醇J(40mg)的二氯甲烷-甲醇(1:1 v / v;10ml)的冷却溶液中,并在室温下搅拌溶液2小时。像以前一样检查和丙酮的重结晶得到邻酯(16)(37mg,90%)为白色针状,m.p.239-241“C,[。ID-51.2英寸(c 1.00),A,,,.222 和 266 nm(分别为 E 27 800 和 12 100),v,,,, 1 745 cm-'(发现:M',458.229。C26H3407 需要 M, 458.231)、6,0.767 (3 H, s, 27-H)、1.202 (3 H, s, Me)、1.332 (3 H, s, Me)、1.445 (3 H, s, Me)、1.669 (1 H, ddd, J 13.7、4.5 和 2.7 Hz)、1.696-1.744 (2 H, m)、1.818-1.923 (2 H, m)、1.945 (1 H, ddd, J 13.7、13.7 和 4.5 Hz)、2.008 (3 H, s、 23-H)、2.039-2.136(2 H、m)、2.365(1 H、dd、J 7.3 和 1.6 Hz、21-H)、2.810(1 H、dd、J 18.8 和 7.3 Hz、22-H)、2.844(1 H、dd、J 18.8 和 1.6 Hz、22-Ha)、3.41 1(3 H、s、28-H)、4.095(3 H、s、29-H)和 5.093(2 H, S,1-H);6c 10.59 Q (C-23), 17.98 Q (C-27), 18.39 T (C-22), 22.01 Q, 24.84 Q, 27.14 Q, 29.73 T, 29.91 T, 30.78 T, 34.71 T, 36.48 D (C-21), 40.78 S (C-20), 48.74 Q (C-28), 61.93 Q (C-29), 68.20 T (C-1), 76.48 S (C-11), 83.94 S, 88.34 S, 107.33S, 114.31 S, 115.97S, 118.67 S (C-17), 145.44 S, 155.38 S, 158.52 S和 169.37 S (C-3)。在碳酸钾存在下,用甲基碘化物(10mg)在干丙酮(100ml)中用碘甲烷(1ml)回流处理Austalide J(10)。65小时后(t.1.c.对照)将反应混合物过滤,减压蒸发,得到白色无定形固体。从丙酮结晶该材料得到原酯(8mg,78%)为白色针状,与(16)的真实样品相同。根据参考文献2中描述的程序对Austalide K(ll)进行氘代,以得到氘代酮(18)(47mg,94%)作为白色玻璃杯,t.1.c。行为与起始材料相同(发现:M',414.236。C25H3,2H205 需要 M, 414.238)、6、0.698 (3 H, s, 27-H)、0.999 (3 H, s, Me)、1.090(3 H, s, Me)、1.163 (3 H, s, Me)、1.478 (1 H, d, J 13.3 Hz, 19-H、)、1.482 (1 H, dm, J 13.9 Hz, 14-H)、1.483 (1 H, d, J8.0 Hz, 21-H)、1.512 (1 H, dm, J 13.9 Hz, 13-H,), 1.617 (1 H, ddd, J 13.9, 13.9, and 4.2 Hz, 12-H,), 1.789 (1 H, dddd, J 13.9, 13.9, 13.9, and 3.5 Hz, 13-Ha), 2.016 (3 H, S, 23-H), 2.075 (1 H, d, J 13.3 Hz, 19-Ha), 2.263 (1 H, ddd,J13.9,3.0, and 3.0Hz,12-Ha),2.790(1H,dd,J18.5和8.0 Hz,22-H,)、2.913(1 H、d、J 18.5 Hz、22-H)、4.081(3 H、S、29-H)和5.087(2 H、s、1-H);10.51(C-23)、14.06(C-27)、18.15(C-22)、21.51、26.61、26.96、29.54、33.50 M(C-18)、37.49(C-20)、38.24、39.68(C-19)、46.95(C-21)、47.09(C-15)、54.07(C-14)、61.75(C-29)、68.07(C-1)、76.20(C-11)、107.18、114.29、115.14、145.38、155.23、158.45、169.17(C-3)和216.36(C-17)。Austalide L 的氘代 (12)。-Austalide L(30mg)被氘化(如上所述)得到氘代酮(19)(26mg,87%)作为白板,M.P. 206-207“C(来自苯- J.CHEM.SOC. PERKIN TRANS.I 1985 正己烷),与t.1.c.行为与起始材料相同(发现:M',431.238。C25H292H,0,需要 M, 431.239)、8H0.781 (3 H, S, 27-H)、1.092 (3 H, S, Me)、1.128 (3 H, S, Me)、1.167 (3 H, s, Me)、1.467 (1 H, ddd, J 13.4,4.0 和 4.0 Hz, 12-H,)、1.747 (1 H, d, J 12.9 Hz, 19-H)、1.970-2.028 (2 H、m、13-H 和 19-Ha)、2.015 (3 H, s, 23-H), 2.075 (1 H, ddd, J 13.4, 13.4, and4.0Hz,13-Ha), 2.156(1H,ddd,J13.4,13.4, and4.0Hz, 12-Ha), 2.254 (1 H, dd, J 7.0 and 1.9 Hz, 21-H), 2.7362329 (2 H, m, 22-H), 4.064 (3 H, s, 29-H), and 5.077 (2 H, s, 1-H);6,* 10.61 (C-23), 18.04 (C-22), 18.26 (C-27), 21.62, 23.57, 24.19, 26.81, 33.06 (C-19), 33.39, CU. 33.3 (C-ls),?40.72 (C-21)、41.23 (C-20)、56.62 (C-15)、61.85 (C-29)、68.16 (C-1)、76.12 (C-11)、79.64 (C-14)、107.23、114.40、115.84、145.41、155.29、158.59、169.35 (C-3) 和 216.25 (C-17)。某些峰的多重性表明 (C,D) 耦合.t 表现为弱的、部分模糊的多重峰。参考文献 1 第 2 部分见前文。2 R. M. Horak, P. S. Steyn, R. Vleggaar, and C. J. Rabie, J. Chem. SOC., Perkin Trans. 1, 1985, 345.3 A. E. de Jesus, R. M. Horak, P. S. Steyn, and R. Vleggaar, J. Chem. Soc., Chem. Commun., 1983, 716.4 J.B.Stothers,“碳-13核磁共振波谱”,学术出版社,纽约,1972年,第8章。5 J. B. Stothers,“碳-13 NMR波谱”,学术出版社,纽约,1972年,第5.6章 J. S. E. Holker, W. J. Jones, and P. J. Ramm, J.Chem. Soc. C, 1969,357.7 T. J. Simpson, J. Chem. SOC.,Perkin Trans.我, 1979, 21 18.8 R. A. Boissonnas, 圣加特曼, 宾夕法尼亚州Jaquenoud 和 J. P. Waller,Helv。噗噗。学报, 1955, 38, 1491.9 K. Nakanishi,“红外吸收光谱学”,Nankodo Company Ltd.,东京,1969 年,第 2 章。10 T. Takahashi,Tetrahedron Lett.,1964 年,第 565 页。11 S. Q. A. Rizvi 和 J. R. Williams, J. Org. Chem,, 1981, 46, 1127.12 T. J. Simpson 和 D. J. Stenzel, J.Chem. SOC.,Chem. Commun., 1982, 1074.13 G. E. Maciel, P. D. Ellis, and D. C. Hofer, J. Phys. Chem., 1967, 71, 2 160.14 C. Abell 和 J. Staunton, J. Chem. SOC.,Chem. Commun., 1981, 856.15 J. B. Stothers, C. T. Tan, A. Nickon, F. Huang, R. Sridhar, and R. Weglein, J. Am. Chem. Soc., 1972, 94, 8581.16 L. Canonica, W. Kroszczynski, B. M. Ranzi, B. Rindone, E. Santaniello, and C. Scolastico, J. Chem. SOC.,Perkin Trans.我,1972年,2639;L. Bowen, K. H. Clifford, and G. T. Philips, J. Chem. SOC., Chem. Commun., 1977, 949, 950;L. Colombo, C. Gennari, D. Potenza, C. Scolastico, and F. Aragozzini, 同上, 1979, 1021。17 J. M. Schwab,J.Am. Chem. SOC.,1981,103,1876 和其中引用的参考文献。收稿日期: 1984年6月7日;论文 41946

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号