首页> 外文期刊>journal of chemical physics >A study on the orientation of imidazoles on copper as corrosion inhibitor and possible adhesion promoter for electric devices
【24h】

A study on the orientation of imidazoles on copper as corrosion inhibitor and possible adhesion promoter for electric devices

机译:A study on the orientation of imidazoles on copper as corrosion inhibitor and possible adhesion promoter for electric devices

获取原文
           

摘要

The structure of various imidazoles on the surfaces of copper and gold mirrors has been studied by Fourier transform infrared reflectionndash;absorption spectroscopy in order to elucidate the molecular mechanisms of corrosion inhibition of metal surfaces by imidazoles. Heptadecylimidazole, undecylimidazole, phenylimidazole, and imidazole were used to investigate the orientation of the imidazole ring and the accompanying side groups. When a gold mirror was withdrawn slowly from an ethanol solution of undecylimidazole, the imidazole ring adsorbed onto the surface flatly and the Cndash;C bond of the hydrocarbon chain became parallel to the surface. A similar trend was observed on all imidazole derivatives studied. The orientation of the outer layers was disturbed when the thickness was increased. With a copper mirror, the structure of the imidazole at room temperature depended on the method of adsorption. A slowly withdrawn sample showed a predominant complex formation whereby the solution placed dropwise on the copper surface showed a combination of complexes, randomly oriented layers, and oriented layers similar to gold. The heat treatment at 80thinsp;deg;C eliminated the difference caused by the adsorption methods. Upon complex formation, the orientation of the imidazole became random. This complex is tentatively assigned to diundecylimidazolato copper(II), an inner complex with copper. Further heat treatment at 150thinsp;deg;C yielded another complex. The structure of undecylimidazole adsorbed from an acidic aqueous solution on a copper mirror has also been studied. The imidazole adsorbed very rapidly to form a thick layer due to the acceleration of complex formation by the activated imidazole ring. A similar structure in the imidazole layers was obtained both from an ethanol solution and an acidic aqueous solution. However, coadsorption of the small amount of acid used remains to be a question. Again, the heat treatment at 150thinsp;deg;C yielded the infrared spectrum similar to the complex obtained from the ethanol solution.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号