...
首页> 外文期刊>Journal of geophysical research >Magnetic flux transport by dipolarizing flux bundles
【24h】

Magnetic flux transport by dipolarizing flux bundles

机译:Magnetic flux transport by dipolarizing flux bundles

获取原文
获取原文并翻译 | 示例
           

摘要

abstract_textpA dipolarizing flux bundle (DFB) is a small magnetotail flux tube (typically similar to 3 R-E in X-GSM and Y-GSM) with a significantly more dipolar magnetic field than its background. Dipolarizing flux bundles typically propagate earthward at a high speed from the near-Earth reconnection region. Knowledge of a DFB's flux transport properties leads to better understanding of near-Earth (X= -6 to -30 R-E) magnetotail flux transport and thus conversion of magnetic energy to kinetic and thermal plasma energy following magnetic reconnection. We explore DFB properties with a statistical study using data from the Time History of Events and Macroscale Interactions during Substorms mission. To establish the importance of DFB flux transport, we compare it with transport by bursty bulk flows (BBFs) that typically envelop DFBs. Because DFBs coexist with flow bursts inside BBFs, they contribute 65 of BBF flux transport, even though they last only similar to 30 as long as BBFs. The rate of DFB flux transport increases with proximity to Earth and to the premidnight sector, as well as with geomagnetic activity and distance from the neutral sheet. Under the latter two conditions, the total flux transport by a typical DFB also increases. Dipolarizing flux bundles appear more often during increased geomagnetic activity. Since BBFs have been previously shown to be the major flux transporters in the tail, we conclude that DFBs are the dominant drivers of this transport. The occurrence rate of DFBs as a function of location and geomagnetic activity informs us about processes that shape global convection and energy conversion./p/abstract_text

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号