首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Prostaglandins: a novel synthesis of ±-PGF1αviacyclopentane-1,3-dione derivatives
【24h】

Prostaglandins: a novel synthesis of ±-PGF1αviacyclopentane-1,3-dione derivatives

机译:前列腺素:±-PGF1αviacyclopentane-1,3-dione衍生物的新合成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1985 Prostaglandins: A Novel Synthesis of -PGF,a via Cyclopentane-I ,3-dione Derivatives Gianfranco Cainelli," Mauro Panunzio," t Alessandro Bongini, Daria Giacomini, Roberto Danieli, Giorgio Martelli, and Giuseppe Spunta Universita degli Studi di Bologna and lstituto dei Composti del Carbonio Contenenti Eteroatomi e lor0 Applicazioni, C.N. R., Via Tolara di Sotto 89, 40064 Ozzano Emilia, Italy An efficient synthesis of PGF,. via cyclization of an easily available acyclic precursor is described. Thus, alkylation of ethyl acetoacetate with ethyl a-iodo-oleate to give (l),followed by cyclization with LDA, provided an expeditious route to the cyclopentanedione (2).Sequential protection by means of ethylene glycol and selective deprotection of (2) afforded the rnonoacetal (4) in good yield.Stereospecific reduction of (4) by L-Selectride, followed by deacetalization and stereospecific reduction with NaBH,, efficiently furnished the derivative (8).Oxidative cleavage of the side-chain of (8) after protection of the hydroxy group with dihydropyran led in good yield to compound (10),which was converted into PGF, according to literature procedures. Substituted cyclopentane-l,3-diones may be easily obtained by base-induced cyclization of a y-ketoester.' This reaction appears very promising for the synthesis of prostaglandins since it allows the one-step preparation of a PG-ring containing two oxygen functionalities in the correct position and actual or potential forms of the two side-chains in the natural trans configuration equation (l).This simple and direct approach has, however, received only scant attention until now owing to the lack of reliable chemoselective methods of discriminating between the two ring-carbonyls.* We report here a simple and efficient solution to this problem which we illustrate with a novel and stereoselective synthesis of compound (lo), a useful intermediate in PGF, synthesis. The acyclic precursor chosen for our synthesis is 3,4-bis(ethoxycarbony1)eicos-1l(a-en-2-0ne (l),easily prepared by alkylation of ethyl acetoacetate with ethyl a-iodo-oleate and potassium carbonate in dimethylformamide (DMF).4 Cycliza- tion of (1) with lithium di-isopropylamide (LDA) in tetrahydrofuran (THF) at room temperature afforded in good yield the expected cyclopentane- 1,3-dione (2).Concerning the stereochemistry of the two side-chains, the thermodynamically more stable trans configuration is expected to be formed under equilibrium conditions, since it is known that prostaglandin precursors bearing activating groups directly linked to the cyclopentane ring easily undergo base- or acid-induced equilibration to the trans i~omer.~Moreover the trans configuration of the two protons at C-8 and C-12 (prostaglandin numbering) in (2) has been demonstrated by 'H n.m.r. analysis using the double-irradiation technique. The value of 2.5 Hz for the coupling constant between 8-H and 12-H is consistent with the assigned trans configuration.6 To follow our synthetic strategy it was necessary to reduce stereospecifically the two carbonyl groups into the correspond- ing alcohols with the proper configuration. Since the highly enolized 1,3-diketone system could be directly reduced only t Present address C.S.F.M.-C.N.R.,Via Selmi 2,I-40126 Bologna, Italy.under rather drastic conditions to give complex mixtures of products, it was necessary to protect regioselectively one of the two ring carbonyls. This proved to be a rather difficult task since the two carbonyls behave very similarly towards a large number of reagents. Finally, we utilized the remarkable difference in the rate of hydrolysis shown by the corresponding ethylideneacetals. This difference may be ascribed to the electron-withdrawing effect of the ester group, which reduces the reactivity of the dioxolane ring in the P-position.Treatment of (2) with excess of ethylene glycol in boiling benzene in the presence of a catalytic amount of toluene-p- sulphonic acid with azeotropic removal of water led to the corresponding bisacetal (3) in good yield. The monoacetal (4) was then obtained as a single product by carefully controlled exposure of (3) to sulphuric acid in methylene dichloride in the presence of silica gel at room temperature until no more starting material was detected by t.1.c.' It is worth mentioning that this difference in the rate of hydrolysis seems to be general for bis(ethylideneaceta1s) of this kind.' The structure of compound (4) has been determined by its spectroscopic properties and by the lack of U.V.absorption under basic conditions which excluded the presence of a carbonyl group in a P-position to the ester group. Reduction of (4) with NaBH, in ethanol proceeded stereospecifically to give the corresponding 9P-alcohol(5b). The absence of the 9a-isomer (5a) was ascertained by 13C n.m.r. spectroscopic analysis. Treatment of (4) with PBPH (lithium perhydro-9b-borataphenalene) in THF at -78 "C gave instead a mixture of (5a) and (5b) in the ratio 70:30. To achieve the stereoselective conversion of (4) into the desired 9a-isomer (Sa), it was necessary to use L-Selectride in THF at -78 "C.The configuration of the C-9 hydroxy group of (5a) and (5b) was confirmed by 13Cn.m.r.spectroscopy (Table). In fact the 13C n.m.r. spectra of (5a) and (5b)showed the signals of C-8 and C-9 to be more shielded in (5a) than in (5b).' Moreover it is well known that reduction of the C-9 carbonyl by hindered borohydrides in Prostaglandin precursors bearing a side-chain at C-8 affords the a-isomer as a single, or at least the major, isomer." The 9a-hydroxyacetal(5a) was then hydrolysed to the corresponding ketone (6) by protracted treatment (6 h) with the sulphuric acid-silica gel system. The structure and the stereorelationship of the substituents in compound (6) were in agreement with the n.m.r. spectra. Moreover the U.V. spectrum, recorded in ethanol in the presence of a small amount of sodium ethoxide, showed a maximum at 282 nm characteristic for the p- 204 J.CHEM.SOC. PERKIN TRANS. I 1985 Et02CrR' CO, Et 0 CO, Et (3) (4) OH @:C"'"' 0 CO, Et 0 OH (5a)cx isomer (6)R2=H (10) (5b) p isomer (7)R2-THP OH Table. l3 C N.m.r. chemical shifts and assignments for cyclopentanoid derivatives a Compound Carbon (2) (3) (4) (5b) (54 (6) (12) (13) (14) (15) c-8 47.8 48.0 52.7 49.8 47.4 47.0 49.8 46.6 28.1 26.1 c-9 201.8 114.1 211.1 74.9 70.9 68.7 74.3 72.6 22.8 22.3 c-10 105.0 48.1 48.4 45.9 46.7 48.9 43.9 45.4 34.9 34.5 c-11 197.6 1 13.6 112.3 115.1 117.6 209.9 77.0 72.0 76.5 74.1 c-12 56.7 59.8 56.4 59.3 58.5 58.4 58.9 53.5 53.2 50.3 C0,Et 170.0 170.8 170.5 172.0 172.0 170.2 175.3 174.2 175.3 174.1 a Chemical shifts in p.p.m.downfield from Me Spectra were taken in C,D, at 20.00 MHz in the Fourier mode with a Varian FT80 spectrometer. Prostaglandin numbering. ketoester enolate. Compound (6) was then converted into the tetrahydropyranyl derivative (7) in quantitative yield by treatment with excess of 3,4-dihydro-2H-pyran in methylene dichloride using pyridinium toluene-p-sulphonate (PPTS) as acidic catalyst.' ' Compound (7) could be stereospecifically and quantitatively reduced to the corresponding 1la-hydroxy derivative (8) on exposure to NaBH, in aqueous ethanolic solution. The pyranyl group appears to be a critical factor for the stereoselective reduction of the C-11 carbonyl, since direct reduction of the unprotected a-hydroxy ketone (6)led to a mix- ture of the isomeric alcohols (12) and (13).The stereochemistry of the hydroxy group on C-11 was demonstrated by depro- tection of (8) and comparison of the n.m.r. spectrum of the single alcohol thus obtained with that of the mixture of (12) and (13) arising from the reduction of (6)with NaBH,. It was thus possible to assign all the signals to both alcohols and the fact that the signals of C-11 and C-12 are more deshielded in (12) than in (13) allowed us to assign the trans configuration to this j~nction.~Moreover the chemical shifts of trans-2-ethoxy-carbonylcyclopentanol (14) and cis-2-ethoxycarbonylcyclo-pentanol l2 (15) are perfectly consistent with our assignment (Table).The remainder of the synthesis proved trivial. Conversion of (8) into its bispyranyl ether (9) and oxidative cleavage of the double bond of the side-chain by the periodate- permanganate reagent,' followed by hydroxy deprotection and esterification of the carboxylic acid thus obtained with ethereal diazomethane, afforded the expected derivative (10) in good yield. The diol(l0) constitutes an interesting intermediate for the synthesis of PGs and has already been converted into PGF,, (11) according to the literature pr0~edure.l~ Work is now in progress to develop further this synthetic approach to unsaturated PGs by appropriate choice of the side-chain. Experimental General.-1.r. spectra were recorded as films on a Perkin- Elmer 710 B spectrophotometer and 'H and I3C n.m.r.spectra were determined in CDCl, or C,D, solutions on Varian EM 390 and Varian FT 80 instruments respectively; chemical shifts are expressed as values in p.p.m. from internal standard SiMe,. J. CHEM. SOC. PERKIN TRANS. I 1985 Mass spectra were taken on a Varian MAT 111 instrument (70 eV). U.V. spectra were recorded on a 402 UVS Perkin-Elmer instrument. T.1.c. was performed on silica gel sheets (1 B2F Baker) and column chromatography on a Chromatospac Prep. 10 (Jobin-Yvon instrument) using silica gel (H 60 Merck). Materials.-Commercially available starting materials were used without prior purification, unless otherwise stated. THF was obtained anhydrous and oxygen-free by distillation over sodium benzophenone ketyl under argon.Methylene dichloride was distilled over P2OS. Di-isopropylamine was refluxed over molecular sieves (Type 4A, Fluka) and distilled at atmospheric pressure. n-Butyl-lithium (1 5 solution in hexane), PBPH (0.5~ in THF), and L-Selectride (lithium tri-s-butylborohydride, 1~ in THF) were purchased from Aldrich. 3,4-Bis(ethoxycarbonyl)eicos-ll(Z)-en-2-one (l).-Ethyl acetoacetate (4.6 ml, 0.036 mol) was added to a suspension of powdered and dried (overnight; 100'C) K2C03 (5 g, 0.035 mol) in DMF (30 ml). The suspension was stirred at room temperature for 15 min and then ethyl a-iodo-oleate (15.6 g, 0.036 mol) was added in one portion and the mixture was stirred overnight. The reaction mixture was quenched with dil.(1 :1) HCl and extracted with ether. The organic layers were washed several times with dil. HCl in order to eliminate DMF. After the extract had been dried (Na,S04), the solvent was removed on a rotary evaporator and the oily residue was chromatographed at medium pressure to give diester (1) (12 g, 76) (Found: C, 70.9; H, 10.5. C26H4605 requires C, 71.19; H, 10.57); m/z 438 (M+); vmax.(neat)1 740br s cm-'; 6, (90 MHz; CDCI,) 5.37 (2 H, t), 4.1 (4 H,2q),3.75-3.70(1H,2d,J10.5Hz),3.10(1Hm),2.20-2.17 (3 H, s),2.00 (4 H, m) and 1.6-0.9 (31 H, m). 4,5-trans-4-Ethoxycarbonyl-5-hexadec-7(Z)-enylJcyclopen-tane-1,3-dione. (2).-n-Butyl-lithium (1 8.7 ml; 15 solution in hexane) was added at 0 "C under argon to a stirred solution of di-isopropylamine (4 ml, 28 mmol) in THF (20 ml).After 30 min the LDA solution was withdrawn and added dropwise by means of a syringe to a solution of diester (1) (6.13 g 14 mmol) in THF (60 ml) maintained at 0 "C. The reaction mixture was allowed to reach room temperature and was then stirred for 3 h. The mixture was quenched with aqueous HCl (30 ml of a 1 :1 solution) and extracted with ether (500 ml), the extract was washed with brine and dried (Na2S04), and the solvent was removed under reduced pressure. The crude reaction product was purified by medium-pressure chromatography (ether as eluant). The title compound was isolated as a clear, pale yellow oil(3.44 g, 63) (Found: C, 73.65; H, 10.3. C24H4(@4 requires C, 73.43; H, 10.27); m/z 392 (M'); vmax.(neat) 1 730s and 1 650s cm-'; 6, (90 MHz; CDC1,) 8.8 (1 H, br s), 5.37 (2 H, t), 5.3 (1 H, s),4.25 (2 H, q), 3.3 (1 H, d, J2.5 Hz), 3 (1 H, m), 2.0(4 H, m), and 1.74.9(28 H, m).4,5-trans-4-Ethoxycarbonyl-5-hexadec-7(Z)-enylJcyclopen-tane- 1,3-dione Bis(ethy1ene metal) (3)-A mixture of dione (2) (2.65 g, 6.8 mmol), benzene (80 ml), and toluene-p-sulphonic acid (30 mg) was treated with ethylene glycol (3 ml, 53 mmol) and refluxed in a Dean-Stark trap. The mixture was extracted with ether and the extract was washed successively with 10 aqueous NaHCO, and then water to give bisacetal(3) (2.71 g, 82) with a good degree of purity (Found: C, 69.8; H, 10.10. C2aH4806 requires: C, 69.96; H, 10.07); m/z 480 (M'); Vmax.(film)1 730s and 1 090s Cm-'; 6, (90 MHZ; C6D6) 5.4 (2 H, t),4.1(2H,q),3.6(8H,m),3.1(2H,brs),2.2(2H,m),2.0(4H, m), and 1.7-1.0 (28 H, m).43- trans-4- Ethoxy carbonyl- 5- hexade~-7(Z)-enyQcyclopen-tane- 1,3-dione-3-ethylene Acetal (4).-A solution of sulphuric acid (0.5 ml of a 50 aqueous solution) was added to a continuously magnetically stirred suspension of silica gel C7.5 g; Silica Gel 60, Merck (for column chromatography), 7230 Mesh in methylene dichloride (20 ml). After 2-3 min, the water phase disappeared due to absorption on the silica gel surface. The acetal (3) (2.47 g, 5.1 mmol) was added and the mixture was stirred at room temperature for 2 h. The solid phase was separated by suction filtration on a sintered glass funnel and then was washed several times with methylene dichloride.The combined filtrates were washed successively with aqueous sodium hydrogen carbonate, brine, and water. Evaporation of the solvent under reduced pressure gave pure monoacetal(4) as an oil (2.0 g, 90) (Found: C, 71.7; H, 10.2. C2,H,,OS requires C, 71.52; H, 10.16); m/z 436 (M+); Vmax.(fih)1 740br s cm-'; 6, (90 MHz; C6D6) 5.5 (2 H, t), 4.1 (2 H, q), 3.55 (4 H, m), 3.1 (2 H, m), 2.8-2.45 (2 H, ABq, J 18 Hz), 2.2 (4 H, m), and 1.M.9 (28 H, m). 2,3-trans-3,4-cis-2-Ethoxycarbonyl-3-hexadec-7(Z)-enylJ-4-hydroxycyclopentanone Ethylene Acetal(5a).-A solution of L-Selectride (IM in THF) (5 ml, 5 mmol) was slowly added to a stirred solution of ketone (4) (2.08 g, 4.8 mmol) in THF (30 ml) under argon at -78 "C.After 4 h the temperature was allowed to rise to 0°C and the excess of reagent was hydrolysed by addition of water. 3~ Aqueous sodium hydroxide (1.96 ml, 5.88 mmol) was then added followed by 30 H,O, (2.2 ml, 19.2 mmol) and the mixture was stirred at 0°C for 1 h. Ethereal work-up followed by flash chromatography gave the alcohol (5a) as an oil (1.40 g, 67) (Found: C, 71.3; H, 10.6. C26H4605 requires C, 71.19; H, 10.57); m/z 420 (M' -H20); vmax.(film) 3 500br and 1 730s Cm-'; 6, (90 MHZ; C6D6) 5.5 (2 H, t), 4.05 (2 H, q), 4.00 (1 H, m), 3.60 (4 H, m), 3.00 (3 H, m), 2.05 (1 H, d, J8 Hz), 2.05 (4 H, m), 1.4 (1 H, m), and 1.34.9 (28 H, m). 2,3- trans- 3,4-cis-2- Ethoxycarbonyl- 3- hexadec-7(Z)-enyfl-4- hydroxycyclopentanone (6).-Protracted treatment (6 h) of the acetal (5a) (1.4 g, 3.2 mmol) in methylene dichloride with the sulphuric acid-silica gel system, following the above reported procedure for compound (4), led to ketone (6) (1.0 g, 78) (Found: C, 73.6; H, 10.8, C2$204 requires C, 73.05; H, 10.73);m/z 394 (M'), 376 (M' -H20), and 348; vmax.(film) 3 500br, 1 755s, and 1 720s cm-'; 6, (90 MHz; CDCl,) 5.3 (2 H, t), 4.4 (1 H, m), 4.2 (2 H, q), 2.8-2.3 (4 H, m), 2.05 (4 H, m), and 1.84.8(29 H, m).2,3- t r ans- 3,4- t ran s-2- Ethoxy carbonyE-3- hexadec- 7( Z)-enyg -4-hydroxycyclopentanone Ethylene Acetal(5b).-A solution of ketone (4) (0.750 g, 1.7 mmol) in ethanol was added dropwise at 0°C to a stirred suspension of NaBH, (0.30 g, 8 mmol) in ethanol (20 ml, 95 solution).The resulting solution was stirred at this temperature for 2 h, then excess of reagent was destroyed with 1 hydrochloric acid. The mixture was extracted with ether (3 x 30 ml). The combined extracts were dried (MgSO,) and evaporated to give crude acetal(5b) as an oil (0.630 g, 82) whose purity was estimated by t.1.c. and '3C n.m.r. analysis to be 100 (Found: C, 71.3; H, 10.6. C26H4605 requires C, 71.19; H, 10.57); m/z 438 (M') and 420 (M' -H2O); Vmax.(film) 3 500br and 1 730s cm-'; 6" (90 MHz; C6D6) 5.45 (2 H, t), 4.1 (2 H, q), 4.0(1 H, m), 3.55 (4 H, m), 2.7 (3 H, m), 2.2 (1 H, d, J8 Hz), 2.1 (4 H, m), 1.7 (1 H, m), and 1.54.8 (28 H, m). 2,3-trans-3,4-cis-2-Ethoxycarbonyl-3-~exadec-7(Z)-eny~-4-(tetrahydropyran-2-yloxy)cyclopentanone(7).-A solution of hydroxyketone (6) (1.00 g, 2.5 mmol) and dihydropyran (0.5 ml, 5.5 mmol) in dry methylene dichloride (25 ml) containing PPTS (0.05 g, 0.2 mmol) was stirred for 4 h at room temperature.The solution was then diluted with ether and washed once with brine to remove the catalyst. Evaporation of the solvent gave an essentially quantitative yield of the ketoether (7) (1.10 g, 92) (Found: C, 72.8; H, 10.5. C,,H5005 requires C, 72.86; H, 10.54);m/z478 (M') and 393 (M' -THP); vmax.(film) 1 755s, 1 730~, and 1 020s Cm-'; 6, (90 MHZ; C6D6) 5.5 (2 H, t), 4.7- 3.8 (6 H, m), 3.4-2.3 (4 H, m), 2.1 (4 H, m), 1.84.8 (34 H, m). 1,2-trans-2,3- trans-3,4-cis-2- Ethoxycarbonyl-3- hexadec-7(Z)-eny~-4-(tetrahydropyran-2-yZoxy)cyclopentanol @).-A solution of ketone (7) (1.10 g, 2.3 mmol) in ethanol (10 ml) was added dropwise at 0 "C to a suspension of ethanol (20 ml), water (5 ml), and NaBH, (0.3 g, 8 mmol).After a further 1 h at 0 "C the mixture was treated with sodium chloride until the solution was saturated and the mixture was then extracted with ether (4 x 30 ml). The combined extracts were dried (MgSO,) and evaporated to give the crude alcohol (8)as an oil. This material was purified by column chromatography on silica gel with hexane-cthyl acetate (7 :3) as eluant to give compound (8)as a pale yellow oil (0.6 g, 54) (Found: C, 72.3; H, 10.9. C29H5205 requires C, 72.46; H, 10.90); m/z 480 (M+);vmax.(film)3 500br, 1 730~, and 1 020 cm-': 6, (90 MHz; C,jD6) 5.7 (2 H, t), 5.1-3.8 (7 H, m), 3.G2.6 (5 H, m), and 2.M.8 (38 H, m).1,2-trans-2,3-trans-3,4-cis-2-Ethoxycarbonyl-3-hexadec-7 (Z)-eny lJ-1,4- bis( re trahydropyran-2-y loxy )cy clopen tane (9).-A solution of the alcohol (8) (0.6 g, 1.25 mmol) and di- hydropyran (0.2 ml, 2.4 mmol) in dry methylene dichloride (15 ml) containing PPTS (0.030 g) was stirred overnight at room temperature. Usual work-up gave ester (9) as an oil (0.680 g, 96) (Found: C, 71.7; H, 10.6. C34H6006 requires C, 72.34; H, 10.71); mlz 479 (M+ -THP); vmaX(film) 1730 cm-I; 6, (90 MHZ; C6D6) 5.5 (2 H, t), 5.G3.7 (10 H, m), 3.3.2 (2 H, m), and 2.W.8 (46 H, m). 1,5-cis-3,4-trans-4,5-trans-4-Ethoxycarbonyl-5-(6-methoxy-carbony1hexyl)cyclopentane-1,3-dioZ (lo).-The periodate-per-manganate solution used was prepared by dissolving sodium periodate (2.24 g) and potassium permanganate (0.04 g) in slightly warm distilled water (500 ml).A mixture of the diether (9) (0.200 g, 0.35 mmol), pure t-butyl alcohol (90 ml), and the oxidiser solution (150 ml) was brought to pH ca. 8-9 by addition of powdered potassium carbonate, and the mixture was then stirred at room temperature for 7 h. The mixture was acidified with 2~ HC1 and treated with powdered sodium metabisulphite (disodium pyrosulphite, Na,S,O,) to convert all the periodate into iodide (the solution at the end of the reaction was colourless). The t-butyl alcohol was stripped off by low-pressure distillation, and the remaining mixture was extracted with ethyl acetate (3 x 30 ml), washed * Prostaglandin numbering.J. CHEM. SOC. PERKIN TRANS. I 1985 with brine, and dried (Na2S0,). After evaporation of the extract, the remaining oil was treated with methanol (0.1 ml) and ether (20 ml), and ethereal diazomethane was added at 0 "C. After 15 min AcOH (1 ml) was added and the mixture was allowed to reach room temperature. The solvent was distilled off on a water-pump and the residue, purified by flash-chromatography, gave diester (10) (0.060 g, 57) as an oil (Found: C, 60.5; H, 8.9, C16H2806 requires C, 60.74; H, 8.92); m/z 298 (M' -H,O) and 271; vmax.(film) 3 450 and 1 730 cm-'; 6,(90MHZ;C,D,)4.5(1 H,m),4.0(2H,q),3.95(1 H,m),3.4(3 H, S), 2.8 (2 H, m), and 2.34.9 (19 H, m); 6, (80 MHz; C6D6) 175.2 (CO,Et), 173.7 (CO,Me), 77.2 (C-11), 74.5 (C-9), 60.5 (OCH,), 59.1 (C-12), and 51.0 (OCH,), 49.7 (C-8), 43.8 (C-lo), 34.0 (C-2), 29.7, 29.4, and 29.2 (C-4, -5, and -6), 28.1 (C-7), 25.1 (C-3), and 14.2 p.p.m.(OCH,CH,).* Acknowledgements This research was assisted financially by a grant from the National Research Council (Progetto Finalizzato Chimica Fine e Secondaria del C.N.R.) References 1 R. Bucourt, A. Pierdet, G. Costerousse, and E. Tromanoff, Bull. SOC. Chim. Fr., 1965, 645. 2 P. F. Deal, J. C. Bancock, and F. H. Lincoln, J.Am. Chem. SOC.,1966, 88, 3131; 0.G. Plantema, H. de Koning, and H. 0.Huisman, Red. Trav. Chim. Pays-Bas, 1983, 102, 268; 1977, 96, 129. 3 M. V. Rathke and A. Lindert, Tetrahedron Lett., 1971, 3995. 4 D. A. White, Synth. Commun., 1977, 7, 559. 5 M. Miyano and M. A. Stealey, J. Org. Chem., 1975, 40, 1748; N. Finch, L. Della Vecchia, J. J. Fitt, R. Stephani, and J. Vlattas, J. Org. Chem., 1973,38, 4412. 6 H. B. Kagan, 'Stereochemistry,' George Thieme Verlag: Stuttgart, 1977, vol. 1, p. 89. 7 F. Huet, A. Lechevallier, M. Pellet, and J. M. Conia, Synthesis, 1978, 63. 8 G. Cainelli, M. Panunzio, G. Martelli, and G. Spunta, unpublished data. 9 H. J. Schneider, N. Nguyen-Ba, and F. Thomas, Tetrahedron, 1982, 38, 2327. 10 H. C. Brown and S. Krismamurthy, Tetrahedron, 1979,33,567; E. J. Corey and R. K. Varma, J. Am. Chem. SOC.,1971,93, 7320. 11 N. Miyashita, A. Yoshikoshi, P. A. Greco, J. Org. Chem., 1977,42, 3772. 12 N. Finch, J. J. Fitt, and H. S. Hsu, J. Org. Chem., 1975, 40, 206. 13 M. Jacobson, M. Beroza, and W. A. Jones, J. Am. Chem. SOC.,1961, 83, 49 19. 14 K. Kojma and K. Sakai, Tetrahedron Lett., 1972, 3333. Received 14th March 1984; Paper 41411
机译:J. CHEM. SOC. PERKIN 译.I 1985 前列腺素:& -PGF,a 通过环戊烷-I ,3-二酮衍生物的新型合成 Gianfranco Cainelli,“Mauro Panunzio,”t Alessandro Bongini、Daria Giacomini、Roberto Danieli、Giorgio Martelli 和 Giuseppe Spunta Universita degli Studi di Bologna 和 lstituto dei Composti del Carbonio Contenenti Eteroatomi e lor0 Applicazioni, C.N. R., Via Tolara di Sotto 89, 40064 Ozzano Emilia, 意大利 PGF的高效合成,.描述了通过环化易得的无环前体。因此,乙酰乙酸乙酯与 α-碘油酸乙酯烷基化得到 (l),然后用 LDA 环化,为环戊二酮提供了一条快速的途径 (2)。通过乙二醇的顺序保护和(2)的选择性脱保护使rnonoacetal(4)具有良好的收率。L-Selectride对(4)进行立体特异性还原,然后用NaBH进行脱乙酰化和立体特异性还原,有效地提供了衍生物(8)。在用二氢吡喃保护羟基后,(8)侧链的氧化裂解导致化合物(10)的产率很高,根据文献程序将其转化为PGF,%。取代的环戊烷-l,3-二酮可以很容易地通过碱诱导的y-酮酯环化而获得。该反应似乎对前列腺素的合成非常有希望,因为它允许一步制备含有两个氧官能团的PG环,该PG环在正确的位置和天然反式构型中两个侧链的实际或潜在形式[方程式(l)]。然而,由于缺乏区分两种环羰基的可靠化学选择性方法,这种简单而直接的方法直到现在才受到很少的关注。我们选择的无环前体是3,4-双(乙氧羰基1)二十碳-1l(a-烯-2-0ne(l),很容易通过乙酰乙酸乙酯与a-碘油酸乙酯和碳酸钾在二甲基甲酰胺(DMF)中的烷基化反应而制备.4 (1)与二异丙酰胺锂(LDA)在室温下在四氢呋喃(THF)中的环化反应,以良好的收率获得预期的环戊烷-1,3-二酮(2)。关于两条侧链的立体化学,预计在平衡条件下会形成热力学上更稳定的反式构型,因为已知携带与环戊烷环直接相连的活化基团的前列腺素前体很容易发生碱或酸诱导的反式 i~omer 平衡。~此外,(2)中C-8和C-12(前列腺素编号)两个质子的反式构型已通过使用双辐照技术的'H n.m.r.分析得到证明。8-H和12-H之间的耦合常数的2.5 Hz值与指定的反式构型一致.6为了遵循我们的合成策略,有必要将两个羰基的立体特异性还原为具有适当构型的相应醇。由于高度烯醇化的1,3-二酮体系只能直接还原 t 现在地址 C.S.F.M.-C.N.R.,Via Selmi 2,I-40126 Bologna, Italy.在相当激烈的条件下,为了得到复杂的产物混合物,有必要对两个环羰基中的一个进行区域选择性保护。这被证明是一项相当艰巨的任务,因为两种羰基对大量试剂的行为非常相似。最后,我们利用了相应的亚乙基缩醛在水解速率上的显着差异。这种差异可能归因于酯基的吸电子作用,它降低了二氧戊环在P位的反应性.(2)在催化量的甲苯-对磺酸存在下,在沸腾苯中用过量的乙二醇处理,共沸除去水导致相应的双缩醛(3)收率高。然后,在室温下,在硅胶存在下,通过仔细控制(3)暴露于二氯甲烷中的硫酸,直到t.1.c.没有检测到更多的起始材料,从而获得单缩醛(4)作为单一产物。值得一提的是,这种水解速率的差异对于这种双(亚乙基乙酰1s)来说似乎是普遍的。化合物(4)的结构是由其光谱性质和在碱性条件下缺乏紫外线吸收决定的,碱性条件下排除了在酯基的P位上存在羰基。用NaBH还原(4),在乙醇中进行立体特异性反应,得到相应的9P-醇(5b)。9a-异构体(5a)的缺失通过13C n.m.r.光谱分析确定。在-78“C下用PBPH(过氢-9b-硼苯酚锂)处理(4)的THF中,得到(5a)和(5b)的混合物,比例为70:30。为了实现(4)向所需的9a-异构体(Sa)的立体选择性转化,有必要在-78“C.通过13Cn.m.r.光谱(表)确认(5a)和(5b)的C-9羟基的构型。事实上,(5a)和(5b)的13C n.m.r.谱显示C-8和C-9的信号在(5a)中比在(5b)中更受屏蔽。'此外,众所周知,在C-8处带有侧链的前列腺素前体中,受阻硼氢化物对C-9羰基的还原使a-异构体成为单一或至少是主要的异构体。然后用硫酸-硅胶体系长时间处理(6 h),将9a-羟基缩醛(5a)水解为相应的酮(6)。化合物(6)中取代基的结构和立体关系与n.m.r.谱图一致。此外,在少量乙醇钠存在下在乙醇中记录的 U.V. 光谱显示 p-204 J.CHEM.SOC. PERKIN TRANS 在 282 nm 处具有最大值。I 1985 Et02CrR' CO, et 0 CO, et (3) (4) OH @:C“'”' 0 CO, et 0 OH (5a)cx 异构体 (6)R2=H (10) (5b) p 异构体 (7)R2-THP OH 表。l3 C N.m.r. 环戊烷衍生物的化学位移和分配 a 化合物碳 (2) (3) (4) (5b) (54 (6) (12) (13) (14) (15) c-8 47.8 48.8 0 52.7 49.8 47.4 47.0 49.8 46.6 28.1 26.1 C-9 201.8 114.1 211.1 74.9 70.9 68.7 74.3 72.6 22.8 22.3 C-10 105.0 48.1 48.4 45.9 46.7 48.9 43.9 45.4 34.9 34.5 C-11 197.6 1 13.6 112.3 115.1 117.6 209.9 77.0 72.0 76.5 74.1 C-12 56.7 59.8 56.4 59.3 58.5 58.5 58.458.9 53.5 53.2 50.3 C0,et 170.0 170.8 170.5 172.0 172.0 170.2 175.3 174.2 175.3 174.1 a 在傅里叶模式下,使用瓦里安 FT80 光谱仪在傅里叶模式下以 20.00 MHz 的 C,D 测量了 Me& Spectra 的 p.p.m.下场的化学位移。前列腺素编号。酮烯醇酯。然后,以甲苯对磺酸吡啶(PPTS)为酸性催化剂,用过量的3,4-二氢-2H-吡喃处理过量的二氯甲烷溶液,将化合物(6)转化为定量收率的四氢吡喃基衍生物(7)。' 化合物 (7) 在暴露于 NaBH 时,可以在乙醇水溶液中立体特异性和定量地还原为相应的 1la-羟基衍生物 (8)。吡喃基似乎是 C-11 羰基立体选择性还原的关键因素,因为未受保护的 a-羟基酮 (6) 的直接还原导致异构醇 (12) 和 (13) 的混合物。通过对(8)的去除和比较由此获得的单一醇的n.m.r.谱图与(6)与NaBH还原产生的(12)和(13)混合物的n.m.r.谱图,证明了C-11上羟基的立体化学。因此,可以将所有信号分配给两种醇,并且C-11和C-12的信号在(12)中比在(13)中更去屏蔽,这一事实使我们能够将反式构型分配给这个j~nction.~此外,反式-2-乙氧基羰基环戊醇(14)和顺式-2-乙氧羰基环戊醇l2(15)的化学位移与我们的分配完全一致(表)。其余的合成被证明是微不足道的。将(8)转化为其双吡喃醚(9),并用高碘酸盐-高锰酸酯试剂氧化裂解侧链的双键,然后用空灵的重氮甲烷对羧酸进行羟基脱保护和酯化,从而获得预期的衍生物(10)的良好收率。二醇(l0)是合成PGs的有趣中间体,并且已经转化为PGF,(11)根据文献pr0~edure.l~,目前正在通过适当选择侧链来进一步开发这种不饱和PG的合成方法。实验一般.-1.r.在 Perkin-Elmer 710 B 分光光度计上以胶片形式记录光谱,并分别在瓦里安 EM 390 和瓦里安 FT 80 仪器上的 CDCl 或 C、D 溶液中测定 'H 和 I3C n.m.r.光谱;化学位移表示为内部标准SiMe的p.p.m.值。J. CHEM. SOC. PERKIN 译.I 1985 质谱图是在瓦里安 MAT 111 仪器 (70 eV) 上拍摄的。UV光谱记录在402 UVS Perkin-Elmer仪器上。在硅胶片(1 B2F Baker)上进行T.1.c.,并使用硅胶(H 60 Merck)在Chromatospac Prep.10(Jobin-Yvon仪器)上进行柱层析。材料:除非另有说明,否则使用市售的起始材料,无需事先纯化。THF是在氩气下用二苯甲酮酮钠蒸馏得到的,无水无氧。二氯甲烷在P2OS上蒸馏。将二异丙胺回流到分子筛(4A型,Fluka)上,并在常压下蒸馏。正丁基锂(1 5%的己烷溶液)、PBPH(0.5~THF溶液)和L-Selectride(三S-丁基硼氢化锂,THF溶液1~)购自Aldrich。将3,4-双(乙氧羰基)二十碳-ll(Z)-烯-2-酮(l).-乙酰乙酸乙酯(4.6ml,0.036mol)加入粉末状悬浮液中,并在DMF(30ml)中干燥(过夜;100'C)K 2C03(5g,0.035mol)。将悬浮液在室温下搅拌15分钟,然后在一份中加入α-碘油酸乙酯(15.6g,0.036mol),并将混合物搅拌过夜。反应混合物用(1 :1) HCl淬火,用乙醚萃取。有机层用 di. HCl 洗涤数次以消除 DMF。提取物干燥(Na,S04)后,在旋转蒸发器上除去溶剂,并在中压下对油状残留物进行色谱,得到二酯(1)(12g,76%)(发现:C,70.9;H,10.5。C26H4605 要求 C,71.19;H,10.57%);m/z 438 (M+);vmax。(整齐)1 740br s cm-';6, (90 兆赫;CDCI,) 5.37 (2 H, t), 4.1 (4 H,2q),3.75-3.70(1H,2d,J10.5Hz),3.10 (1Hm),2.20-2.17 (3 H, s),2.00 (4 H, m) 和 1.6-0.9 (31 H, m)。4,5-反式-4-乙氧羰基-5-[十六烷-7(Z)-烯基J环戊烷-1,3-二酮。(2).-正丁基锂(1 8.7ml;己烷溶液)在氩气下0“C加入到二异丙胺(4ml,28mmol)的THF(20ml)搅拌溶液中。30分钟后,将LDA溶液取出,并通过注射器滴加到二酯(1)(6.13g,14mmol)的THF(60ml)溶液中,保持在0“C。将反应混合物加热至室温,然后搅拌3小时。将混合物用HCl水溶液(30ml的1:1溶液)淬灭并用乙醚(500ml)萃取,用盐水洗涤提取液并干燥(Na2S04),减压除去溶剂。粗反应产物经中压色谱法(乙醚为洗脱液)纯化。分离出标题化合物为透明的淡黄色油(3.44g,63%)(发现:C,73.65;H,10.3。C24H4(@4 需要 C, 73.43;H,10.27%);m/z 392 (米');vmax。(整齐)1 730 秒和 1 650 秒 cm-';6, (90 兆赫;CDC1,) 8.8 (1 H, br s), 5.37 (2 H, t), 5.3 (1 H, s),4.25 (2 H, q), 3.3 (1 H, d, J2.5 Hz), 3 (1 H, m), 2.0(4 H, m), and 1.74.9(28 H, m).4,5-反式-4-乙氧羰基-5-[十六烷-7(Z)-烯基J环戊烷-1,3-二酮 双(乙基1烯金属) (3)-二酮(2) (2) (2.65 g, 6.8 mmol) 的混合物, 苯(80ml)和甲苯对磺酸(30mg)用乙二醇(3ml,53mmol)处理,并在Dean-Stark捕集器中回流。将混合物用乙醚萃取,用10%NaHCO水溶液连续洗涤提取物,然后用水洗涤,得到纯度良好的双缩醛(3)(2.71g,82%)(Found:C,69.8;H,10.10。C2aH4806要求:C,69.96;H,10.07%);米/兹 480 (M');Vmax的。(胶片)1 730 年代和 1 090 年代 Cm-';6、(90 MHZ;C6D6) 5.4 (2 H, t)、4.1(2H,q)、3.6(8H,m)、3.1(2H,brs)、2.2(2H,m)、2.0(4H, m) 和 1.7-1.0 (28 H, m).43-反式-4-乙氧基羰基-5-[十六烷~-7(Z)-烯Q环戊烷-1,3-二酮-3-乙烯缩醛(4).-硫酸溶液(0.5ml 50%水溶液)加入连续磁搅拌的硅胶悬浮液C7.5 g;硅胶 60,默克(用于柱层析),7&230 目]在二氯甲烷(20 ml)中。2-3分钟后,由于硅胶表面的吸收,水相消失。加入缩醛(3)(2.47g,5.1mmol),并将混合物在室温下搅拌2小时。在烧结玻璃漏斗上通过抽滤分离固相,然后用二氯甲烷洗涤数次。合并后的滤液依次用碳酸氢钠水溶液、盐水和水洗涤。在减压下蒸发溶剂得到纯单缩醛(4)为油(2.0g,90%)(发现:C,71.7;H,10.2。C2,H,,OS 需要 C, 71.52;H,10.16%);米/兹 436 (M+);Vmax的。(FIH)1 740Br S cm-';6, (90 兆赫;C6D6) 5.5 (2 H, t)、4.1 (2 H, q)、3.55 (4 H, m)、3.1 (2 H, m)、2.8-2.45 (2 H, ABq, J 18 Hz)、2.2 (4 H, m) 和 1.M.9 (28 H, m)。将2,3-反式-3,4-顺式-2-乙氧羰基-3-[十六烷-7(Z)-烯基J-4-羟基环戊酮乙烯缩醛(5a).-L-选择性(IM in THF)(5ml,5mmol)的溶液缓慢加入到THF(30ml)中的酮(4)(2.08g,4.8mmol)在-78“C的氩气下搅拌的THF(30ml)溶液中。4 h后,让温度升至0°C,并通过加水将过量的试剂水解。然后加入3~氢氧化钠水溶液(1.96ml,5.88mmol),然后加入30%H,O(2.2ml,19.2mmol),将混合物在0°C下搅拌1 h。空灵检查,然后快速色谱法得到醇(5a)为油(1.40克,67%)(发现:C,71.3;H,10.6。C26H4605 要求 C,71.19;H,10.57%);分子式 420 (M' -H20);vmax。(胶片) 3 500br 和 1 730s Cm-';6、(90 MHZ;C6D6) 5.5 (2 H, t)、4.05 (2 H, q)、4.00 (1 H, m)、3.60 (4 H, m)、3.00 (3 H, m)、2.05 (1 H, d, J8 Hz)、2.05 (4 H, m)、1.4 (1 H, m) 和 1.34.9 (28 H, m)。2,3-反式-3,4-顺式-2-乙氧羰基-3-[六-十二-7(Z)-烯基-4-羟基环戊酮(6).-用硫酸硅胶体系在二氯甲烷中对缩醛(5a)(1.4g,3.2mmol)进行长时间的处理(6小时),按照上述报道的化合物(4)的程序,得到酮(6)(1.0g,78%)(发现:C,73.6;H, 10.8, C2&$204 需要 C, 73.05;H,10.73%);m/z 394 (M')、376 (M' -H20) 和 348;vmax。(胶片) 3 500br, 1 755s, and 1 720s cm-';6, (90 兆赫;CDCl,) 5.3 (2 H, t), 4.4 (1 H, m), 4.2 (2 H, q), 2.8-2.3 (4 H, m), 2.05 (4 H, m), and 1.84.8(29 H, m).2,3- t r ans- 3,4- t ran s-2- 乙氧基羰基E-3-[ 十六烷- 7( Z)-烯基-4-羟基环戊酮 乙烯缩醛(5b).-酮(4)(0.750 g,1.7 mmol)乙醇溶液在0°C下滴加到搅拌的NaBH悬浮液中, (0.30g,8mmol)的乙醇溶液(20ml,95%溶液)。将所得溶液在该温度下搅拌2小时,然后用1%盐酸破坏过量的试剂。用乙醚(3×30ml)萃取混合物。将合并的提取物(MgSO)干燥并蒸发,得到粗缩醛(5b)为油(0.630g,82%),其纯度由t.1.c估计。和 '3C n.m.r. 分析为 100%(发现:C,71.3;H,10.6。C26H4605 要求 C,71.19;H,10.57%);m/z 438 (M') 和 420 (M' -H2O);Vmax的。(胶片) 3 500br 和 1 730s cm-';6 英寸(90 MHz;C6D6) 5.45 (2 H, t), 4.1 (2 H, q), 4.0 (1 H, m), 3.55 (4 H, m), 2.7 (3 H, m), 2.2 (1 H, d, J8 Hz), 2.1 (4 H, m), 1.7 (1 H, m), 和 1.54.8 (28 H, m)。2,3-反式-3,4-顺式-2-乙氧羰基-3-[~exadec-7(Z)-烯~-4-(四氢吡喃-2-基氧基)环戊酮(7).-羟基酮(6)(1.00g,2.5mmol)和二氢吡喃(0.5ml,5.5mmol)在含有PPTS(0.05g,0.2mmol)的干燥二氯甲烷(25ml)中溶液在室温下搅拌4小时。然后用乙醚稀释溶液,并用盐水洗涤一次以除去催化剂。溶剂的蒸发使酮醚(7)(1.10g,92%)基本上定量收率(Found: C, 72.8;H,10.5。C,,H5005 需要 C, 72.86;H,10.54%);m/z478 (M') 和 393 (M' -THP);vmax。(胶片)1 755s、1 730~、1 020s Cm-';6、(90 MHZ;C6D6) 5.5 (2 H, t), 4.7- 3.8 (6 H, m), 3.4-2.3 (4 H, m), 2.1 (4 H, m), 1.84.8 (34 H, m).1,2-反式-2,3-反式-3,4-顺式-2-乙氧羰基-3-[十六烷-7(Z)-烯~-4-(四氢吡喃-2-yZoxy)环戊醇@).-将酮(7)(1.10g,2.3mmol)在乙醇(10ml)中的溶液在0“C下滴加到乙醇(20ml),水(5ml)和NaBH(0.3g,8mmol)的悬浮液中。在0“C下再1小时后,用氯化钠处理混合物,直到溶液饱和,然后用乙醚(4×30ml)萃取混合物。将合并的提取物(MgSO)干燥并蒸发,得到粗醇(8)作为油。该物质在硅胶上用柱层析法纯化,以己烷-乙酸乙酯(7:3)为洗脱液,得到化合物(8)为淡黄色油(0.6g,54%)(发现:C,72.3;H,10.9。C29H5205 要求 C,72.46;H,10.90%);米/兹 480 (M+);vmax。(薄膜)3 500br, 1 730~, and 1 020 cm-': 6, (90 MHz;C,jD6)5.7(2 H,t),5.1-3.8(7 H,m),3.G2.6(5 H,m)和2.M.8(38 H,m).1,2-反式-2,3-反式-3,4-顺式-2-乙氧羰基-3-[十六-1,4-双(三氢吡喃-2-y氧基)cy氯丁烷(9).-醇(8)(0.6g,1.25mmol)和二氢吡喃(0.2ml,2.4mmol)在含有PPTS(0.030g)的干燥二氯甲烷(15ml)中在室温下搅拌过夜。常规检查给予酯(9)作为油(0.680g,96%)(发现:C,71.7;H,10.6。C34H6006要求 C,72.34;H,10.71%);mlz 479 (M+ -THP);vmaX(胶片) 1730 cm-I;6、(90 MHZ;C6D6) 5.5 (2 H, t), 5.G3.7 (10 H, m), 3.&3.2 (2 H, m) 和 2.W.8 (46 H, m)。1,5-顺式-3,4-反式-4,5-反式-4-乙氧羰基-5-(6-甲氧基-羰基-1己基)环戊烷-1,3-二氮(lo).所用的高碘酸盐-锰酸酯溶液是通过将高碘酸钠(2.24g)和高锰酸钾(0.04g)溶解在微温的蒸馏水(500ml)中制备的。通过加入碳酸钾粉,将二醇(9)(0.200g,0.35mmol),纯叔丁醇(90ml)和氧化剂溶液(150ml)的混合物调至pH约8-9,然后将混合物在室温下搅拌7小时。将混合物用2~HC1酸化,并用焦亚硫酸二钠粉(焦亚硫酸二钠,Na,S,O,)处理,使所有高碘酸盐转化为碘化物(反应结束时溶液无色)。通过低压蒸馏除去叔丁醇,并用乙酸乙酯(3×30ml)萃取剩余的混合物,洗涤*前列腺素编号。I 1985 年用盐水干燥(Na2S0,)。提取液蒸发后,用甲醇(0.1ml)和乙醚(20ml)处理剩余油,并在0“C下加入空灵重氮甲烷。15分钟后加入AcOH(1ml),使混合物达到室温。在水泵上蒸馏出溶剂,残留物通过快速色谱法纯化,得到二酯(10)(0.060g,57%)作为油(发现:C,60.5;H,8.9,C16H2806要求C,60.74;H,8.92%);m/z 298 (M' -H,O) 和 271;vmax。(胶片) 3 450 和 1 730 cm-';6,(90MHZ;C,D,)4.5(1 H,m),4.0(2H,q),3.95(1 H,m),3.4(3 H,S),2.8(2 H,m)和2.34.9(19 H,m);6, (80 MHz;C6D6) 175.2 (CO,Et)、173.7 (CO,Me)、77.2 (C-11)、74.5 (C-9)、60.5 (OCH)、59.1 (C-12) 和 51.0 (OCH)、49.7 (C-8)、43.8 (C-lo)、34.0 (C-2)、29.7、29.4 和 29.2 (C-4、-5 和 -6)、28.1 (C-7)、25.1 (C-3) 和 14.2 p.p.m.(OCH,CH,)。参考文献 1 R. Bucourt, A. Pierdet, G. Costerousse, and E. Tromanoff, Bull.SOC. Chim.Fr.,1965年,第645页。2 P. F. Deal, J. C. Bancock, and F. H. Lincoln, J.Am. Chem. SOC.,1966, 88, 3131;0.G. Plantema, H. de Koning, 和 H. 0.豪氏威马, Red.特拉夫·奇姆。Pays-Bas, 1983, 102, 268;1977, 96, 129.3 M. V. Rathke 和 A. Lindert,Tetrahedron Lett.,1971 年,第 3995 页。4 D.A.怀特,合成器。Commun., 1977, 7, 559.5 M. Miyano 和 M. A. Stealey, J. Org. Chem., 1975, 40, 1748;N. Finch, L. Della Vecchia, J. J. Fitt, R. Stephani, and J. Vlattas, J. Org. Chem., 1973,38, 4412.6 H. B. Kagan,“立体化学”,George Thieme Verlag:斯图加特,1977 年,第 1 卷,第 89 页。7 F. Huet、A. Lechevallier、M. Pellet 和 J. M. Conia,《综合》,1978 年,第 63 页。8 G. Cainelli、M. Panunzio、G. Martelli 和 G. Spunta,未发表的数据。9 H. J. Schneider, N. Nguyen-Ba, and F. Thomas, Tetrahedron, 1982, 38, 2327.10 H. C. Brown 和 S. Krismamurthy,四面体,1979,33,567;EJ Corey 和 RK Varma, J.美国化学SOC.,1971,93, 7320.11 N. Miyashita, A. Yoshikoshi, P. A. Greco, J. Org. Chem., 1977,42, 3772.12 N. Finch, J. J. Fitt, and H. S. Hsu, J. Org. Chem., 1975, 40, 206.13 M. Jacobson, M. Beroza, and W. A. Jones, J. Am. Chem. SOC.,1961, 83, 49 19.14 K. Kojma 和 K. Sakai,Tetrahedron Lett.,1972 年,第 3333 页。收稿日期:1984年3月14日;文档 41411

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号