首页> 外文期刊>journal of chemical physics >Origin of the Temperature Dependence of the Ultrasonic ldquo;Rotational Relaxationrdquo; Time
【24h】

Origin of the Temperature Dependence of the Ultrasonic ldquo;Rotational Relaxationrdquo; Time

机译:Origin of the Temperature Dependence of the Ultrasonic ldquo;Rotational Relaxationrdquo; Time

获取原文
           

摘要

An investigation of the origin of the anomalous temperature dependence of the rotational equilibration time is reported. Systems of H2, D2, and N2have been studied. In each case the rotational system has been represented as a multilevel ensemble. The transition constantskijfor transitionsjthinsp;rarr;thinsp;iare obtained from a simple, linehyphen;ofhyphen;centers collision model and contain one common adjustable parameter which is fixed by fitting roomhyphen;temperature ultrasonic velocity dispersion data to the model. Equilibration rates are obtained via numerical solution of the master equation. Velocity dispersion curves are then calculated under the assumptions of gaseous ideality and rotational Boltzmann equilibrium at all times. The individual transition constantskijobtained in the formalism exhibit both positive and negative temperature coefficients depending upon theindash;jspacing. Positive coefficients are associated with large rotational spacing while negative values result from small spacings. The calculated ultrasonic velocity dispersion curves correspond to experiment with near quantitative accuracy over a 700deg;K temperature range. The ultrasonic frequency at which dispersion occurs decreases with increasing temperature, and this effect does not appear to be due to the negative temperature coefficient exhibited by the transition constants for the lowhyphen;Jstates. Likewise, the effect is not directly associated with a decrease in collision rate at unit pressure asTincreases. In general, it is concluded that the apparent negative temperature coefficient associated with the overhyphen;all ultrasonic equilibration process is due to the multilevel character of the system and to the fact that the adjacent level spacing increases linearly with rotational quantum number. It is shown that the equilibration process can not be adequately described by a simple relaxation expression with a single time constant, and the misleading character of the term ldquo;rotational relaxation timerdquo; is pointed out.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号