首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >The dienone–phenol rearrangement. Synthesis of spiro4.5dec-7-ene-6,9-dione
【24h】

The dienone–phenol rearrangement. Synthesis of spiro4.5dec-7-ene-6,9-dione

机译:二烯酮-苯酚重排。螺4.5癸-7-烯-6,9-二酮的合成

获取原文
获取外文期刊封面目录资料

摘要

964 J.C.S. Perkin IThe Dienone-Phenol Rearrangement. Synthesis of Spiro4.5dec-l-ene-6,g-dioneBy Randy1 G. A. Flynn and Paul D. Woodgate,' Chemistry Department, University of Auckland, New ZealandSpiroC4.51 dec-7-ene-6.9-dione (11) has been synthesized and identified as one component of the mixture formedon rearrangement of 6-hydroxybicyclo 4.4.0 deca-1.4-dien-3-one catalysed by boron trifluoride-ether complex.PREVIOUS work on the rearrangement of 6-hydroxy-bicyclo4.4.0deca-l,4-dien-3-one (I) catalysed by borontrifluoride-ether complex resulted in the identification0 0( I 1 (II) rm,of a neutral product as spiro4.5dec-7-ene-6,9-dione (11),this being the first reported isolation of a spiran inter-mediate from a dienone-phenol type rearrangement .2The structural assignment was based on the i.r., lHn.m.r., and mass spectra of (11) and its dihydro-derivative, spiro4.5decane-6,9-dione (111). However,since (11) was not isolated in a pure state and was anunknown compound, we undertook its unambiguoussynthesis to confirm our identification.The synthesis involved spiroannulation of cyclo-hexanone to produce spiro4.5decan-6-one (IV) , intro-duction of the 7,8-double bond by sequential bromin-ation and dehydrobromination, functionalization of theallylic C-9 position, and subsequent manipulation toproduce the desired oxidation level.The parent spiro-compound (IV) was synthesized 3 byreaction of the enolate of cyclohexanone with 1,4-G.I?. Burkinshaw, B. R. Davis, E. G. Hutchinson, P. D.Woodgate, and R.Hodges, J . Chem. SOC. ( C ) , 1971, 3002.For reviews see,A. J. Waring, Adv. Alicyclic Chem., 1966,1 ( 3 ) ; B. Miller in Mechanisms of Molecular Migration,' ed.B. S. Thyagaragan, Interscience, New York, 1968, p. 247.dibromobutane, and was isolated in 49 yield byspinning-band distillation. Preparative t.1.c. of thedistillation residue give the bis-annulation product,dispiro4.1.4.3tetradecan-6-one (V) in 24y0 yield.Bromination of (IV) was initially attempted withpyridinium hydrobromide perbromide. This reagenthas been used successfully to produce mono-a-bromo-ketones4 as it can be readily weighed out to liberate acm,precise (equimolar) amount of bi-oiiiiiie, thereby prevent-ing formation of the act-dibromo-derivative. In theevent, however, both 7-bromospiro4.5decan-6-one(VI) and 7,7-dibromospiro4.5decan-6-one (VII) wereformed.Treatment of the crude bromination productwith lithium bromide-lithium carbonate in dimetliyl-M. Mousseron, K. Jacquier, and H. Cristol, Bull. SOC. chilit.FJtancc?, 1957, 346.C. Djerassi and C. R. Scholz, J . .49nev. Chem. SOC., 1948, 70,417.Ia) Cm)exhibited characteristic ap-unsaturated carbonyl ab-sorptions at 1665 cm-l in the i.r.spectrum and at 227 nm(log E 3.79) in the U.V. spectrum. The i.r. spectrum ofthe bromo-enone (IX) showed a characteristic a-halogeno-@-unsaturated carbonyl peak at 1685 cm-l,and the 8-proton signal appeared in the lH n.m.r.spectrum as a triplet ( J 4 Hz) at 8 7.15.The co-production of the bromo-enone (IX) wassubsequently avoided by treating a solution of thespiro-ketone (IV) in tetrahydrofuran with bromine indichloromethane ; under these (non-basic) conditionsthe desired bromo-ketone (VI) was formed in quanti-tative yield. Its i.r. spectrum displayed carbonylabsorptions at 1727-5 and 1704.5 cm-l, correspondingto the equatorial and axial bromine conformers, re-spectively. Dehydrobromination of crude 7-bromospiro-4.5decan-6-one was best achieved by treatment withmagnesium oxide in dimet hylformamide under nitrogenat 120-140°.6 Spinning-band distillation of the totalproduct gave pure spiro4.5dec-7-en-6-one (VIII) in58 yield.The use of 1 ,5-diazabicyclo4.3.0non-5-enein refluxing benzene or in dimethylformamide at 100-110" also afforded (VIII) but in lower yields (27 and39 , respectively) .Attempted direct allylic oxidation of the enone (VIII)to the enedione (11) with either sodium chromate inacetic anhydride-acetic acid 7 or cerium( IV) ammoniumnitrate in acetic acid-water8 gave a complex mixture(t.1.c.) which was not further investigated, and aftertreatment of (VIII) with selenium dioxide in dimethylsulphoxideQ for 40 h more than 90 of the startingmaterial was recovered.It was therefore necessary toemploy a longer route to the desired compound. Re-action of unrecrystallized N-bromosuccinimide with theM. Rfiyano and C. R. Dorn, J. Ovg. Chem., 1972, 37, 268. ' J. A. Marshall and G. M. Cohen, J. Org. Chem., 1971,36, 877. * W. S. Trahanovsky and L. B. Young, J. Chem. SOC., 1965,5777.enone (VIII) in dry carbon tetrachloride afforded9-bromospiro4.5dec-7-en-6-one (X) in 57 yield afterpreparative t.1.c. Spectral absorptions at 1680 cm-l inthe i.r. and at 221 nm (log E 3.77) in the U.V. were in theexpected regions. In the lH n.m.r. spectrum virtualcoupling between the C-8 vinyl proton and the C-10methylene protons was demonstrated by irradiation ofthe C-9 proton signal, which caused the C-8 protonpattern to collapse to a clean doublet (J8,, 10.4 Hz).If the C-10 methylene protons and the C-9 methineproton are considered as an isolated ABX system, thenear equality of the observed Jssl0 values (7.6 and7-0 Hz) in conjunction with the appearance of two sharpsignals integrating for two protons at 6 2.40 and 2.50indicates that the observed pattern represents adeceptively simple spectrum due to (VA - VB) tending to0.Hence the real J values cannot be extracted by asimple first-order analysis. Nevertheless, the fact thatthe C-7 proton signal is split by coupling through to theC-9 proton allows the conclusion that this allylic torsionangle must be close to 90". Consequently, the moleculemust assume a dominant conformation such that thebromine atom is equatorial, as would be anticipatedfrom steric considerations (space-filling model).Attempted displacement of the bromine atom in (X)with lithium carbonate in either dioxan-water ordimethyl sulp hoxide-water afforded a seven-componentmixture.However, the bromo-enone was convertedinto 9-acetoxyspiro4.5dec-7-en-6-one (XI) by treatmentwith silver acetate in acetone a t room temperature.The i.r. and U.V. spectra showed the expected features,and in the lH n.m.r. spectrum a broad (W, 20 Hz) signalcentred at 8 5-72 attested to the predominantly axialorientation of the C-9 proton. The allylic acetate (XI)was hydrolysed by heating under reflux in methanol-water with a catalytic amount of sodium carbonate,preparative t .l.c. then yielding pure 9-hydroxyspiro-4.5dec-7-en-6-one (XII). Finally, spiro4.5dec-7-ene-6,g-dione (11) was obtained in 58 yield by oxidationof the allylic alcohol (XII) with manganese dioxide.Attempted oxidation of (XII) with silver carbonate-Celite lo returned starting material after heating underreflux for 7 h. The synthetic compound (11) wasidentical (i.r. and lH n.m.r. spectra; t.1.c.) with asample previously obtained from rearrangement of the9-quinol (I). Moreover, reduction of synthetic (11) withzinc-acetic acid afforded spiro4.5decane-6,9-dione (111) ,which showed identical spectral properties and nodepression of m.p. with a sample obtained from therearrangement product.This synthesis therefore con-firms our previous assignment and provides unambiguousevidence for the existence of a spiran intermediate inthe rearrangement of the $-quinol (I).The 70 eV mass spectra of all the spiro-compoundsreported above contained an intense peak, often theS A. N. Singh, A. B. Upadhye, M. S. Wadia, V. V. Mhaskar,10 M. Fetizon, M. Golfier, and J. Louis, Chem. Comm., 1969,and S. Dev, Tetrahedron, 1969, 25, 3855.1102966 J.C.S. Perkin 1base peak, whose formation can be rationalized by aMcLafferty rearrangement of a y-hydrogen atom fromthe cyclopentane ring, followed by allylic cleavage.Conformational Analysis of the Bvomo-ketone (VI) .-The carbonyl absorptions at 1727.5 and 1704.5 cm-l arisefrom the bromine-equatorial and bromine-axial con-formers, respectively.By studying the variation withtemperature of the relative areas of these peaks (Table)TABLE a ~ bT/K 258 273 288 303 318 333 34sAhe 77 70 65 64 60 57 34-did 23 22 22 23.5 24 23 23.54 These data were measured with CCl, as solvent by Dr. G . D.Meakins, University of Oxford, using an analogue computermethod of curve resolution. b A = : area; expressed so thatA h + A, = 100 at 268 I. Campbell,University of Otago, New Zealand. 1.r. spectra weremeasured for thin films on a Perkin-Elmer 237 spectrometer.1H N.m.r. spectra were measured for solutions in CDC1, orCCl, on a Varian T60 spectrometer: J(apparent) values arereported for non first-order signals.Assignments wereconfirmed by double resonance where practicable.Spivo4.5decan-6-one (IV) .9-A mixture of cyclohexanone(9.6 g) and 1,4-dibromobutane (21.6 g) was added to astirred suspension of potassium t-butoxide (21.9 g ) inl1 D. J. Chadwick, J. Chambers, G. D. Meakins, and R. L.Snowden, J.C.S. Perkin I I , 1972, 1969.benzene (150 ml). The mixture was heated under refluxfor 4-5 h and the product was extracted into ether; usualwork-up followed by spinning-band distillation gave purespiro4.5decan-6-one (8.6 g, 57y0), b.p. 96" at 20 mmHg(lit.,a 104" a t 18 mmHg), v- 1709 cm-', 6 1-24-2.75.The distillation residue was subjected to column chro-matography on silica gel (200 ml) with n-hexane-ether(99: 1) as eluant.The eluates were further purified bypreparative t.1.c. (n-hexane-ether, 99 : 1 ; two passes) t ogive dispi~o4.1.4.3te~radecun-6-one (V) (0.5 g, 2.4y0), m.p.32-34" (Found: C, 81.3; H, 10.7. C1,H2,0 requires C,81.5; H, 10.7), vmaL (CCl,) 1693 cm-l, 6 1-20-2.20.S~zro4.5dec-7-en-Ci-one (VIII) .-(u) A solution of bro-mine (21-1 g) in dichloromethane (25 ml) was added drop-wise to a cooled (ice-bath), stirred, solution of spiro4.5-decan-6-one (20 g ) in tetrahydrofuran (180 ml). Stirringwas continued for 10 min after addition was complete ( 1 11).Aqueous NaHCO, solution was then added and the mixturewas stirred until effervescence ceased. Work-up thenafforded crude 7-bromospiro4.5decan-6-one, a smallportion of which was purified by column chromatography(10 deactivated silica gel) and then repeated crystalliz-ation from n-pentane to give flakes, m.p.48-41" (lit.,551-55'), vmar 1727.6 and 1704.5 crn-l, 6 1.18-2-59 (14H,m, 7 x CH,) and 4-62 (lH, X part of ABX, JAx + JBx16 Hz, C-7 proton).The crude bronio-ketone dissolvecl in dimethylformamide(25 ml) was added under nitrogen to a stirred suspension ofmagnesium oxide (6-9 g ) in dimethylformamide (250 ml)which had been pre-heated to 120-140", and the mixturewas stirred a t this temperature for 1 h. After cooling,water (80 ml) and aqueous HCI (loo,; 200 nil) were added,and the solution was extracted with ether. Spinning-banddistillation of the crude product obtained after work-upgave pure (g.1.c.) spiro4.5Jdec-7-en-6-one (1 1.4 g, 58),b.p. 119" a t 22 mmHg, vmt 1665 and 1620 cm-1, = 227(log E 3.79) and 324 nm (log z 1-56), 6 1.18-1.98 (lOH, m,5 x CH,), 2.02-2.54 (2H, m, C-9 protons), 5.85 (IH, 2t,J7,* LO, J7,,, 2 Hz, C-7 proton), and 6-75 (lH, 2t, Je,7 10,J8,B 4, J8.,, 4 Hz, C-8 proton).The 2,4-dinitrophenyl-Jzydrazone had m.p. 133-134.5" (from methanol) (Found:C, 58.1; H, 5.4; N, 16.75. C1,H,,N404 requires C, 58.2;H, 5.5; N, 16.95).( b ) Pyridinium hydrobromide perbromide (10 g) wasadded during 20 min to a solution of spiro4.5decan-6-one(4.76 g) in acetic acid (50 ml). Work-up as usual followedby chromatography on silica gel (120 i d ; 10 deactivated)with n-hexanc-ether (49: 1) as eluant afforded pure 7-bromospiro4.6decan-6-one (5.8 g, 78).Dehydrobromination of the crude product with lithiumbromide (11.4 g) and lithium carbonate (9 g) in dimethyl-formamide (90 ml) followed by preparative t.1.c.(benzene)yielded spiro4.5dec-7-en-6-one (2.34 g , 50) and 7-bromo-spiro4.5dec-7-en-6-one (0.5 g, 7), vmax. 1685 and 1605 cm-l,6 1.13-2.55 (12H, m, 6 x CH,) and 7-15 (IH, t, Je,B 4 and4 Hz, C-8 proton).9-Brornos~i~o4.5~~-7-en-6-one (X) .-AT-Bromosuccin-imide (1.45 g; not recrystallized) was added to a solution ofspiro4.5dec-7-en-6-one (1.02 g) in dry carbon tetra-chloride (50 ml) and the mixture was heated under refluxfor 7 h. Work-up gave a yellow oil which was purified byI* E.J. Corey, T. H. Topie, and W. A. Wozniak, J . Amev.Chem. SOC., 1966, 77, 6416.E. W. Garbisch, J. Amev. Chem. SOC., 1964, 86. 1780.E. W. Garbish, J . Ovg. Chem., 1966, 30, 21091974 967preparative t.1.c. (benzene) to give pure 9-brof?mpzro4.5-dec-7-en-6-one (0.88 g, 57) as an oil (Found: C, 52-5; H,5.6; Br, 34.4. CloH,,BrO requires C, 52.4; H, 5-7; Br,34.8), vmpx. 1680 cm-l, Amax. 221 nm (log E 4-02), 6 1.10-2.35 (8H, m, 4 x CHA, 2.40 and 2.50 (2H, 2 ' s', C-10protons), 4.90 (lH, 4q, Je,lo 7.6 and 7-0, Je,a 2.8, JSs7 1.9 Hz,C-9 proton), 5.82 (lH, 2d, J7,8 10.4, J 7 , g 1.9 Hz, C-7 proton),and 6.85 (lH, 4t, J8,7 10, J 8 , 9 2.8, Js,lo 0.6 and 0.6 Hz, C-8proton).9-A cetoxys~iro4.5dec-7-en-6-one (XI) .-Silver acetate(0.29 g) was added to a solution of 9-bromospiro4.5dec-7-en-6-one (0.20 g) in acetone (10 ml) and the mixture wasstirred at room temperature for 64 h.Filtration andevaporation of the filtrate at ambient temperature in vac2aogave a yellow oil. Preparative t.1.c. (benzene-acetone, 9 : 1)afforded pure 9-acetoxyspiro4.5dec-7-en-6-one (0.09 g , 50)as an oil (Found: C, 69.35; H, 7-5. C,,H,,O, requires C,69.25; H, 7-7), vmax. 1745, 1678, and 1629 cm-l,221 nm (log E 3-90), 6 1.05-2.02 (8H, m, 4 x CH,), 2.10(3H, s, acetate), 2-18-2-89 (2H, ni, C-10 protons), 5-72( 1 K 4 Jg.10 9, J e . 1 0 6, J 9 . 8 2.5, J g . 7 2.2 Hz, c-9 proton),6-02 (lH, Zd, J 7 , 8 10.4, J7,9 2.2 Hz, C-7 proton), and 6.77(1H, 2q, J8., 10-4,9-Hydroxyspiro4.5dec-7-en-6-o.~ze (XII) .-Sodium car-bonate (3 mg) was added to a solution of 9-acetoxyspiro-4.5dec-7-en-6-one (40 mg) in 50 aqueous methanol(10 ml) and the solution was heated under reflux for 40min.After removal of the solvent in vacuo the residue was2.5, J8,10 1.3 Hz, C-8 proton).salted (NaC1) and extracted with ether. Preparative t.1.c.(benzene-acetone, 9 : 1) yielded pure 9-hydroxyspiro4.5)-dec-7-en-6-one (10 mg, 35) as an oil, Mf' 166, v- 3440,1670, and 1622 cm-l, 220 nm (log E 3-72), 6 1.24-2.54(11H, m, 5 x CH, and OH), 4-62 (lH, 4t, Jg,lo 10, Je,lo 6,Je,8 2, J e , , 2-2 Hz, C-9 proton), 5-92 (lH, 2d, J 7 , 8 10.3,J7,9 2.2 Hz, C-7 proton), and 6-85 (lH, 2t, J8,7 10.3, Jaee 2,Jssl0 2 Hz, C-8 proton).S~iro4.5dec-7-ene-6,9-dione (11) .-Treatment of a solu-tion of 9-hydroxyspiro4.5dec-7-en-6-one (50 mg) in benz-ene (50 ml) with manganese dioxide (40 mg) at room tem-perature for 10 min gave, after purification by preparativet.1.c. (benzene-acetone, 9 : l), spiro4.5dec-7-ene-6,9-dione(30 mg, 56), m.p. 38-41" (Found: C, 73.0; H, 7.55.C,,HI,O, requires C, 73.2; H, 7-4), vm= 1682 and 1608cm-l, hTC 226 nm (log E 3-99), 6 1.0-2-4 (SH, m, 4 x CH,),2-80 (2H, s, C-10 protons), and 6.71 (2H, s, C-7 and C-8protons).Spiro4.5 decane- 6,g-dione. -Reaction of spiro 4.51 d ec- 7-ene-6,g-dione (30 mg) with zinc (0.1 g ) in acetic acid (4 ml)at room temperature afforded, after work-up, spiro4.5-decane-6,g-dione (20 mg, 86), m.p. 89-91' (from n-pentane-ether) (lit.,l 88.5-89-5°), undepressed on ad-mixture with the sample previously obtained ; 1 vmu.1710 cm-l, 6 1.18-2.30 (8H, m, C-1, C-2, C-3, and C-4methylene protons) and 2.65-2-76 (GH, m, C-7, C-8, andC-10 methylene protons).3/2306 Received, 9th November. 1973
机译:964 J.C.S. Perkin 二烯酮-苯酚重排。Synthesis of Spiro[4.5]dec-l-ene-6,g-dione作者:Randy1 G. A. Flynn 和 Paul D. Woodgate,新西兰奥克兰大学化学系SpiroC4.51 dec-7-ene-6.9-dione (11) 已被合成并鉴定为由三氟化硼-醚络合物催化的 6-羟基双环 [4.4.0] 癸-1.4-二烯-3-酮重排形成的混合物的一种组分。先前关于由三氟化硼醚络合物催化的 6-羟基双环[4.4.0]癸烷-l,4-二烯-3-酮 (I) 重排的工作导致鉴定出 0 0( I 1 (II) rm,中性产物为螺[4.5]癸-7-烯-6,9-二酮 (11),这是首次报道从二烯酮-苯酚型重排中分离出螺环中间体.2结构分配基于 i.r., lHn.m.r.和(11)及其二氢衍生物螺[4.5]癸烷-6,9-二酮(111)的质谱图。然而,由于(11)不是在纯状态下分离出来的,是一种未知的化合物,因此我们对其进行了明确的合成以确认我们的鉴定。合成包括环己酮的螺环烷化以产生螺[4.5]癸烷-6-酮(IV),通过顺序溴化和脱氢溴化引入7,8-双键,烯丙基C-9位置的功能化,以及随后的操作以产生所需的氧化水平。母体螺化合物(IV)由环己酮烯醇酯与1,4-G.I?共同合成3副反应。Burkinshaw, BR 戴维斯, EG哈钦森,PD Woodgate 和 R.Hodges,J .Chem. SOC. ( C ) , 1971, 3002.有关评论,参见 A. J. Waring, Adv. Alicyclic Chem., 1966,1 ( 3 ) ;B. Miller in Mechanisms of Molecular Migration,' ed.B. S. Thyagaragan, Interscience, New York, 1968, p. 247.二溴丁烷,并在 49% 收率的旁旋带蒸馏中分离出来。制备t.1.c.的蒸馏残渣得到双环化产物,dispiro[4.1.4.3]十四烷-6-酮(V)在24y0中收率。(IV)的溴化最初尝试与氢溴酸吡啶过溴化物。该试剂已成功用于生产单 a-溴酮4,因为它可以很容易地称量以释放 acm,精确(等摩尔)量的双 oiiiiiie,从而防止二溴衍生物的形成。然而,在该事件中,7-溴螺[4.5]癸烷-6-酮(VI)和7,7-二溴螺[4.5]癸烷-6-酮(VII)都形成了。用溴化锂-碳酸锂在二甲酰基-M中处理粗溴化产物。Mousseron、K. Jacquier 和 H. Cristol,公牛。SOC. chilit.FJtancc?, 1957, 346.C. Djerassi and C. R. Scholz, J ..49nev。化学 SOC., 1948, 70,417.Ia) Cm)在i.r.光谱中表现出特征性的ap-不饱和羰基吸附,在i.r.光谱中表现出特征性的ap-不饱和羰基吸附(log E 3.79)。溴-烯酮(IX)的i.r.谱图在1685 cm-l处显示出特征性的a-卤素-@-不饱和羰基峰,在lH n.m.r.谱图中,8质子信号在8 7.15时表现为三重态(J 4 Hz),随后通过用溴茚氯甲烷处理四氢呋喃中的螺酮(IV)溶液,避免了溴-烯酮(IX)的共同产生;在这些(非碱性)条件下,以定量收率形成所需的溴酮(VI)。其 i.r. 光谱显示羰基吸收在 1727-5 和 1704.5 cm-l,对应于赤道和轴向溴构象。粗7-溴螺-[4.5]癸烷-6-酮的脱氢溴化最好在氮气120-140°下用氧化镁在二甲基羟甲酰胺中处理.6 对总产物进行纺丝带蒸馏,得到纯螺[4.5]癸-7-烯-6-酮(VIII)的纯螺[4.5]癸-7-烯-6-酮(VIII)收率为58%。使用1,5-二氮杂双环[4.3.0]non-5-enein回流苯或在100-110“的二甲基甲酰胺中也提供了(VIII),但收率较低(分别为27%和39%)。尝试用铬酸钠乙酸酐-乙酸铈 7 或醋酸-水 8 中的硝酸铈 (IV) 将烯酮 (VIII) 直接氧化成烯二酮 (11),得到复杂的混合物 (t.1.c.),该混合物未进一步研究,并且 (VIII) 在二甲基亚砜中用二氧化硒处理 40 小时后,回收了 90% 以上的起始材料。因此,有必要采用更长的路线到达所需的化合物。未重结晶的N-溴琥珀酰亚胺与M的再反应。Rfiyano 和 CR Dorn、J. Ovg。化学, 1972, 37, 268.' J. A. Marshall 和 G. M. Cohen, J. Org. Chem., 1971,36, 877.* W. S. Trahanovsky 和 L. B. Young, J. Chem. SOC., 1965,5777.烯酮 (VIII) 在干燥的四氯化碳中,制备后 t.1.c 的产率为 57%在 i.r. 中 1680 cm-l 处和 U.V. 中 221 nm 处 (log E 3.77) 处的光谱吸收在预期的区域。在lH n.m.r.谱中,通过照射C-9质子信号证明了C-8乙烯基质子和C-10亚甲基质子之间的虚拟耦合,这导致C-8质子模式坍缩成干净的双峰(J8,,10.4 Hz)。如果将 C-10 亚甲基质子和 C-9 甲烷质子视为一个孤立的 ABX 系统,则观察到的 Jssl0 值(7.6 和 7-0 Hz)几乎相等,同时出现两个尖锐信号,在 6、2.40 和 2 处对两个质子进行积分。50表示观察到的模式表示由于(VA-VB)趋向于0而产生的看似简单的频谱。因此,无法通过简单的一阶分析提取真正的 J 值。然而,C-7质子信号通过耦合到C-9质子而分裂,这一事实可以得出结论,这个烯丙基扭转角必须接近90”。因此,分子必须采用显性构象,使得溴原子是赤道的,正如空间考虑(空间填充模型)所预期的那样。尝试将(X)中的溴原子与碳酸锂置换在二氧六环水或二甲基硫六氧化水中,得到七组分混合物。然而,通过在室温下用丙酮乙酸银处理,溴烯酮转化为9-乙酰氧基螺[4.5]癸-7-烯-6-酮(XI)。i.r.和U.V.光谱显示出预期的特征,在lH n.m.r.光谱中,以8 5-72为中心的宽(W,20 Hz)信号证明了C-9质子的轴向取向。将烯丙基乙酸酯(XI)在甲醇-水中回流加热,用催化量的碳酸钠制备t.l.c.水解,然后得到纯9-羟基螺[4.5]癸-7-烯-6-酮(XII)。最后,将烯丙醇(XII)与二氧化锰氧化,得到螺[4.5]癸-7-烯-6,g-二酮(11),收率为58%。尝试用碳酸银-Celite lo氧化(XII)在加热回流7 h后返回原料。合成化合物(11)与先前从9-醌(I)重排中获得的样品相同(I.r.和lH n.m.r.谱图;t.1.c.)。此外,用锌-乙酸还原合成(11)得到螺[4.5]癸烷-6,9-二酮(111),其光谱特性与从该产物中获得的样品相同,并且没有降低m.p.。因此,这种合成证实了我们之前的任务,并为$-醌(I)重排中存在螺蛋白中间体提供了明确的证据。上面报道的所有螺化合物的 70 eV 质谱图都包含一个强烈的峰,通常是 S A. N. Singh, A. B. Upadhye, M. S. Wadia, V. V. Mhaskar,10 M. Fetizon, M. Golfier, and J. Louis, Chem. Comm., 1969,and S. Dev, Tetrahedron, 1969, 25, 3855.1102966 J.C.S. Perkin 1base 峰,其形成可以通过环戊烷环中 y-氢原子的 McLafferty 重排来合理化, 其次是烯丙基裂解。Bvomo-酮的构象分析 (VI) .-1727.5 和 1704.5 cm-l 处的羰基吸收分别来自溴-赤道和溴-轴向构象。通过研究这些峰的相对面积随温度的变化(表)表 a ~ bT/K 258 273 288 303 318 333 34sAhe 77 70 65 64 60 57 34-did 23 22 22 23.5 24 23 23.54 这些数据由 G 博士用 CCl 作为溶剂测量。D.Meakins,牛津大学,使用模拟计算机方法进行曲线解析。b A = : 面积;表示为 A h + A, = 100% 在 268 I 教授进行。坎贝尔,奥塔哥大学,新西兰。在 Perkin-Elmer 237 光谱仪上测量薄膜的 1.r. 光谱.在瓦里安 T60 光谱仪上测量 CDC1 或 CCl 中溶液的 1H N.m.r. 光谱:非一阶信号报告了 J(表观)值。在可行的情况下,通过双重共振确认分配。将环己酮(9.6g)和1,4-二溴丁烷(21.6g)的Spivo[4.5]癸烷-6-酮(IV).9-A混合物加入到叔丁醇钾(21.9g)inl1的搅拌悬浮液中 D. J. Chadwick, J. Chambers, G. D. Meakins, and R. L.Snowden, J.C.S. Perkin I I , 1972, 1969.苯(150毫升)。将混合物在回流下加热4-5 h,将产物萃取成乙醚;通常进行纺丝带蒸馏后得到纯螺[4.5]癸烷-6-酮(8.6 g,57y0),b.p. 96“ at 20 mmHg(lit.,a 104” a t 18 mmHg),v- 1709 cm-',6 1-24-2.75.将蒸馏残渣在硅胶(200 ml)上进行柱色谱成像,正己烷醚(99:1)作为洗脱液。洗脱液通过制备t.1.c进一步纯化。(正己烷醚,99 : 1;两次通过) t ogive dispi~o[4.1.4.3]te~radecun-6-one (V) (0.5 g, 2.4y0), m.p.32-34“ (Found: C, 81.3;H,10.7。C1,H2,0 需要 C,81.5;H, 10.7%), vmaL (CCl,) 1693 cm-l, 6 1-20-2.20.S~zro[4.5]dec-7-en-Ci-one (VIII) .-(u)将二氯甲烷(25ml)中的溴矿(21-1g)溶液滴加到冷却(冰浴)中,搅拌,螺[4.5]-癸烷-6-酮(20g)在四氢呋喃(180ml)中的溶液。添加完成后继续搅拌10分钟(1,11)。然后加入NaHCO水溶液,搅拌混合物直至停止起泡。然后得到粗的7-溴螺[4.5]癸烷-6-酮,其中一小部分通过柱层析(10%失活硅胶)纯化,然后从正戊烷中重复结晶得到薄片,熔模48-41“(lit.,551-55'),vmar 1727.6和1704.5 crn-l,6 1.18-2-59(14H,m,7 x CH,)和4-62(lH,ABX的X部分,JAx + JBx16 Hz,C-7质子)。将溶于二甲基甲酰胺(25ml)的粗溴酮在氮气下加入到预热至120-140“的二甲基甲酰胺(250ml)中的氧化镁(6-9g)搅拌悬浮液中,并将混合物搅拌至该温度1小时。冷却后,加入水(80ml)和HCI水溶液(loo,&; 200 nil),用乙醚萃取溶液。对加工后得到的粗品进行纺丝带蒸馏,得到纯(g.1.c.)螺[4.5Jdec-7-烯-6-酮(1 1.4 g,58%),b.p. 119“ a t 22 mmHg,vmt 1665和1620 cm-1,&= 227(log E 3.79)和324 nm(log z 1-56),6 1.18-1.98(lOH,m,5 x CH,),2.02-2.54(2H,m,C-9质子),5.85(IH,2t,J7,* LO,J7,,,2 Hz, C-7质子)和6-75(lH,2t,Je,7 10,J8,B 4,J8.,,4 Hz,C-8质子)。2,4-二硝基苯基-Jzydrazone的熔点为133-134.5“(来自甲醇)(Found:C,58.1;H,5.4;北,16.75。C1,H,,N404 需要 C, 58.2;H,5.5;N,16.95%)。( b ) 在20分钟内将氢溴酸吡啶(10g)加入到螺[4.5]癸烷-6-酮(4.76g)的乙酸溶液(50ml)中。像往常一样进行检查,然后用正己醚(49:1)作为洗脱液,在硅胶(120 i d;10%失活)上进行色谱,得到纯7-溴螺[4.6]癸烷-6-酮(5.8 g,78%)。在二甲基甲酰胺(90ml)中用溴化锂(11.4g)和碳酸锂(9g)对粗产物进行脱氢溴化,然后进行制备t.1.c。(苯)产生螺[4.5]癸-7-烯-6-酮(2.34 g,50%)和7-溴螺[4.5]癸-7-烯-6-酮(0.5 g,7%),vmax。将1685和1605 cm-l,6 1.13-2.55(12H,m,6 x CH,)和7-15(IH,t,Je,B 4和4 Hz,C-8质子).9-Brornos~i~o[4.5]~~-7-烯-6-酮(X).-AT-溴琥丁酰亚胺(1.45g;未重结晶)加入到螺[4.5]癸-7-烯-6-酮(1.02g)在干燥的四氯化碳(50毫升)溶液中,并将混合物回流加热7小时。检查得到一种黄色油,由I* E.J. Corey, T. H. Topie, and W. A. Wozniak, J .Amev.Chem. SOC., 1966, 77, 6416.E. W. Garbisch, J. Amev.化学 SOC, 1964, 86.1780.E.W.加比什,J。奥夫格。Chem., 1966, 30, 21091974 967制备 t.1.c.(苯)得到纯9-溴-mpzro[4.5]-癸-7-烯-6-酮(0.88g,57%)作为油(发现:C,52-5;H,5.6;溴,34.4。CloH,,BrO需要C,52.4;H,5-7;Br,34.8%),vmpx。1680 cm-l,最大。221 nm (log E 4-02), 6 1.10-2.35 (8H, m, 4 x CHA, 2.40 and 2.50 (2H, 2 ' s', C-10protons), 4.90 (lH, 4q, Je,lo 7.6 and 7-0, Je,a 2.8, JSs7 1.9 Hz,C-9 质子), 5.82 (lH, 2d, J7,8 10.4, J 7 , g 1.9 Hz, C-7 质子) 和 6.85 (lH, 4t, J8,7 10, J 8 , 9 2.8, Js,lo 0.6 和 0.6 Hz, C-8质子).9-A 鲸蜡氧基~iro[4.5]癸-7-烯-6-酮 (XI) .-醋酸银(0.29 g)加入到9-溴螺[4.5]癸-7-烯-6-酮 (0.20 g) 的丙酮溶液 (10 ml) 中,将混合物在室温下搅拌 64 h.过滤,滤液在室温下蒸发在真空中,2ao,得到黄色油。制备t.1.c.(苯-丙酮,9:1)提供纯9-乙酰氧基螺[4.5]癸-7-烯-6-酮(0.09克,50%)作为油(发现:C,69.35;H,7-5。C,,H,,O,需要 C,69.25;H,7-7%),vmax。1745, 1678, 和 1629 cm-l,221 nm (log E 3-90), 6 1.05-2.02 (8H, m, 4 x CH,), 2.10(3H, s, acetate), 2-18-2-89 (2H, ni, C-10 质子), 5-72( 1 K 4% Jg.10 9, J e . 1 0 6, J 9 . 8 2.5, J g . 7 2.2 Hz, c-9质子),6-02 (lH, Zd, J 7 , 8 10.4, J7,9 2.2 Hz,C-7质子)和6.77(1H,2q,J8.,10-4,9-羟基螺[4.5]癸-7-烯-6-o.~ze (XII).-羧酸钠(3 mg)加入到9-乙酰氧基螺-[4.5]癸-7-烯-6-酮(40 mg)在50%甲醇水溶液(10 ml)中的溶液中,回流加热溶液40min。真空除去溶剂后,残渣为2.5,J8,10 1.3 Hz,C-8质子)腌制(NaC1),用乙醚萃取。制备t.1.c.(苯-丙酮,9 : 1)得到纯9-羟基螺[4.5)-癸-7-烯-6-酮(10mg,35%)作为油,Mf'166,v-3440,1670和1622cm-l,&220nm(log E 3-72),6 1.24-2.54(11H,m,5xCH和OH),4-62(lH,4t,Jg,lo 10,Je,lo 6,Je,8 2,Je,,2-2Hz,C-9质子),5-92(lH,2d,J 7,8 10.3,J7,9 2.2Hz, C-7质子)和6-85(lH,2t,J8,7 10.3,Jaee 2,Jssl0 2 Hz,C-8质子)。S~iro[4.5]癸-7-烯-6,9-二酮 (11) .-用二氧化锰(40mg)在室温下处理9-羟基螺[4.5]癸-7-烯-6-酮(50mg)在苯烯(50ml)中的溶解10分钟,在制备剂纯化后给予。(苯-丙酮,9:l),螺[4.5]癸-7-烯-6,9-二酮(30毫克,56%),熔点38-41“(发现:C,73.0;H,7.55.C,,HI,O,需要C,73.2;H, 7-4%), vm= 1682 和 1608cm-l, hTC 226 nm (log E 3-99), 6 1.0-2-4 (SH, m, 4 x CH,), 2-80 (2H, s, C-10 质子) 和 6.71 (2H, s, C-7 和 C-8 质子)。螺[4.5]癸烷-6,g-二酮。-螺[4.51 d ec-7-烯-6,g-二酮(30mg)与锌(0.1g)在室温下的醋酸(4ml)反应,在检查后,螺[4.5]-癸烷-6,g-二酮(20mg,86%),熔点89-91'(来自正戊烷醚)(lit.,l 88.5-89-5°),在与先前获得的样品的ad混合物上未凹陷; 1 vmu.1710 cm-l, 6 1.18-2.30 (8H, m, C-1, C-2、C-3 和 C-4 亚甲基质子)和 2.65-2-76(GH、m、C-7、C-8 和 C-10 亚甲基质子)。[3/2306 收稿日期: 1973-11-09

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号