首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids
【24h】

Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids

机译:Forward modeling of gravity data using finite-volume and finite-element methods on unstructured grids

获取原文
获取原文并翻译 | 示例
           

摘要

Minimum-structure inversion is one of the most effective tools for the inversion of gravity data. However, the standard Gauss-Newton algorithms that are commonly used for the minimization procedure and that employ forward solvers based on analytic formulas require large memory storage for the formation and inversion of the involved matrices. An alternative to the analytical solvers are numerical ones that result in sparse matrices. This sparsity suits gradient-based minimization methods that avoid the explicit formation of the inversion matrices and that solve the system of equations using memory-efficient iterative techniques. We have developed several numerical schemes for the forward modeling of gravity data using the finite-element and finite-volume methods on unstructured grids. In the finite-volume method, a Delaunay tetrahedral grid and its dual Vorono? grid are used to find the primary solution (i.e., gravitational potential) at the centers and vertices of the tetrahedra, respectively (cell-centered and vertex-centered schemes). In the finite-element method, Delaunay tetrahedral grids are used to develop linear and quadratic finite-element schemes. Different techniques are used to recover the vertical component of gravitational acceleration from the gravitational potential. In the finite-volume scheme, a differencing method is used; in the finite-element method, basis functions are used. The capabilities of the finite-volume and finite-element schemes were tested on simple and realistic synthetic examples. The results showed that the quadratic finite-element scheme is the most accurate but also the most computationally demanding scheme. The best trade-offs between accuracy and computational resource requirement were achieved by the linear finite-element and vertex-centered finite-volume schemes.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号