首页> 外文期刊>Environmental Science & Technology: ES&T >Mechanisms of Dioxin Formation from the High-Temperature Pyrolysis of 2-Bromophenol
【24h】

Mechanisms of Dioxin Formation from the High-Temperature Pyrolysis of 2-Bromophenol

机译:Mechanisms of Dioxin Formation from the High-Temperature Pyrolysis of 2-Bromophenol

获取原文
获取原文并翻译 | 示例
       

摘要

Brominated hydrocarbons are the most commonly used flame retardants. Materials containing brominated hydrocarbons are frequently disposed in municipal and hazardous waste incinerators as well as being subjected to thermal reaction in accidental fires. This results in the potential for formation of brominated dioxins and other hazardous combustion byproducts. In contrast to chlorinated hydrocarbons, the reactions of brominated hydrocarbons have been studied only minimally. As a model brominated hydrocarbon that may form brominated dioxins, we studied the homogeneous, gas-phase pyrolytic thermal degradation of 2-bromophenol in a 1-cm i.d., fused-silica flow reactor at a concentration of 90 ppm, with a reaction time of 2.0 s, and over a temperature range of 300 to 1000℃. Observed products included dibenzo-p-dioxin (DD), 1-monobromodibenzo-p-dioxin (1-MBDD), 4-monobromo-dibenzofuran (4-MBDF), dibenzofuran (DF), naphthalene, bromonaphthalene, 2,4- and 2,6-dibromophenol, phenol, bromobenzene, and benzene. These results are compared and contrasted with previous results reported for 2-chlorophenol. At temperatures lower than 700℃, formation of 2-bromophenoxyl radical, which decomposes through CO elimination to form a bromocyclopentadienyl radical,forms naphthalene and 2-bromonaphthalene through radical recombination/rearrangement reactions. However, unlike the results for 2-chlorophenol, where naphthalene is the major product, DD becomes the major product for the pyrolysis of 2-bromophenol. The formation of DD and 1-MBDD are attributed radical-radical reactions involving 2-bromophenoxyl radical with the carbon- (bromine) centered radical and the carbon- (hydrogen) centered radical mesomers of 2-bromophenoxyl radical, respectively. The potential product, 4,6-dibromodibenzofuran (4,6-DBDF) for which the analogous product, 4,6-dichlorodiben-zofuran (4,6 DCDF), was observed in the oxidation of 2-chlorophenol, was not detected. This is attributed to the pyrolytic conditions of our experiments (e.g., shorter reaction times and higher temperatures) that favor reaction intermediates that form DD and 1-MBDD.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号