【24h】

Quaternary salts of 2H-imidazoles

机译:2H-咪唑类季盐

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1983 Quaternary Salts of 2H-lmidazoles Alan R, Katritzky," Susana Bravo Borja, and Jorge Marquet Department of Chemistry, University of Florida, Gainesville,FI. 3261 1 U.S.A. Michael P.Sammes Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong Treatment of the 4,5-diphenyl-2H-imidazoles (1a-e) with alkyl iodides gives novel 1Hf,2H-imidazolium salts (2) and (3). The metho-salt (2) N-methyl protons are readily exchanged for deuterium, and anions formed by the action of base give, with m-chlorobenzaldehyde, 2,3,5,7a-tetrahydroimidazo5,1-b) -oxazoles (4),hydrolysabfe in acid to 2- (3-chlorophenyl) -2-hydroxyethylamine (6). Borohydride reduc- tion of the metho-salt (2a) gave a dihydro-1 H-imidazole (7) which with acid yielded 2-methylamino- I ,2-diphenylethanone (8),and with methyl iodide a metho-salt (10).Direct (peracid) oxidation of 2H-imidatoles to A/,#'-dioxides is reported for the first time. 2H-Imidazoles have been relatively infrequently mentioned in the 1iterature.l Weiss first synthesised 2,2,4,5-tetrasubsti- tuted 2H-imidazoles from benzil, a ketone, and ammonium acetate and discovered their lability towards heat and acids. Further examples from benzil have been reported and this synthesis has given 4,5-bis(ethoxycarbonyl) derivative^.^ Other less convenient synthetic approaches have been also des- cribed.'-' 2H-Imidazole 1 -oxides result from (a) reactions of a-dioximes with certain aldehydes or ketones and subsequent alkali 8*9 or acid lo treatment, (b)photochemical dimerisation of a chloronitrosoalkane," (c) acid-catalysed condensation of diphenylmethanimine with a-hydroxyimino ketones," and (d) the action of bromine on 3-imidazolinet nitroxyl radi~a1s.l~ Apparently only a single 2H-imidazole 1-oxide has been prepared by N-oxidation of the corresponding 2H-imida~ole.~~ Ph cNxR' Ph N R (1) a;R = Me, R'=Me b; R = Me, R' = Et c; R = Me, R'= CH2CH,C02Et d; R = Me, R'=Ph e; R= Et, R'=Et 1 CH, "OiH-@ -a; R= Me, R=Me I b; R = Et , R'= Et However, several 4H-imidazoles have been converted into N,N'-dioxides by lead di0~ide.l~ Monoquaternisation of 4- amino-2H-imidazoles with methyl iodide at a ring nitrogen atom has been described.15 We now report the synthesis of a series of novel 2,2-di- substituted 4,5-diphenyl-2H-imidazoles,their quaternisation, and some additional reactions having potential synthetic applications.Results and Discussion Benzil, when treated with ketones and ammonium acetate afforded, by Weiss" procedure, 2,2-disubstituted 4,s di- phenyl-2H-imidazoles (la-) (75435) (Table 1). Quaternisations of the 2H-imidazoles with methyl iodide gave the corresponding 2,2-disubstituted l-methyl-4,5-di-phenyl-2H-imidazolium iodides (2a-e) (average 80) (Table 2). However, quaternisation with ethyl iodide was more difficult and the corresponding 2,2-disubstituted 1 -ethyl-4,5- diphenyl-2H-imidazolium iodides (3a and e) were obtained in only ca. 10 yield. 'H N.m.r., i.r.(Table 3), and elemental analyses (Tables 1 and 2) were consistent with the proposed structures. Few reported n.m.r. spectra of these compounds are avai1able.l We find absorptions at 6, 1.7-1.9 (2-CH3, Table 3) for the 2H-imidazoles (la-e), at the same position as reported for (1 a),j 2,2-dimethyl-4-pheny1-2H-imida~ole,~~4-substituted 2,2-dirnethyl-5-phenyl-2H-irnida~oles,~~and 4,5-diaryl-2,2-di- methyl-2H-imidazoles l8 (6, 1.6-1.9). Absorptions due to CH2 attached to C-2 appear at 6, 2.0-2.5 (Table 3), whilst that reported for the corresponding CH2 in (le) is at 6, 2.2. No n.m.r. data on the quaternised 2H-imidazolium salts t 2,5-Dihydro-lH-imidazole. (2a-e), (3a), and (3e) were previously available. Signals for methyl groups attached to the positively charged nitrogen appear at SH 4.0-4.2, whilst those for CH2 at the same position are in the range ijH 4.5-4.6.Substituents attached to C-2 are shifted 0.5p.p.m. downfield from their position in the corresponding 2H-imidazoles (1). 1.r. data of several aryl-2H-imidazoles have been re-ported; 16-19 a band near 1 610 cm-' (la-), Table 31 was assigned to the carbon-nitrogen double bonds. A band between 1490-1 500 cm-l, characteristic of these com-pounds," was also found in the spectra of compounds (1 a+). No literature i.r. data are available for the 2H-imidazolium salts (2a--e), (3a), and (3e) (Table 3). A characteristic band between 1 600 and 1 620 cm-' corresponds to v~=~found for the parent 2H-imidazoles.2066 J. CHEM. SOC. PERKIN TRANS. I 1983 Table 1. Preparation of 2,2-disubstituted 4,5-diphenyl-2H-imidazoles(1) Analysis () Found Compound Crystal form a M.p. ("C) Yield () I C (Required) A H I N Formula (I a) (1 b) (1c) (Id) (W Needles Prisms -Plates Needles 78-80 sublimes 92 Oil 80-82 104-106 75 85 75 80 85 82.5 (82.4 75.2 (75.585.0 (85.2 6.9 6.9 6.6 6.6 5.9 5.8 10.6 10.7) 8.2 8.4) 8.9 9.0) Cl8Hl8N2 C2IH22N2 C23H18N2 a Crystallisation solvent was light petroleum (b.p. 37- -52 "C).Lit.,' 79-80 "C. Lit.: 105-106 "C. Table 2. Preparation of 2,2-disubstituted l-alkyl-4,5-diphenyl-2H-imidazoliumiodides (2) and (3) Analysis (A)Found (Required)Crystal M.p. Yield Compound form ("0 PA) C H " (24 Needles 191-192 65 55.1 4.9 7.4 (55.4 4.9 7.1) (2b) Needles 169-171 70 56.4 5.3 6.9 (56.7 5.4 6.9) (24 Prisms 136-1 38 90 55.4 5.3 5.9 (55.5 5.2 5.8) (24 Prisms 173-1 75 55 61.1 4.7 6.1 (61.1 4.6 6.2) (2e) Plates 173-175 95 57.4 5.5 6.6 (57.4 5.5 6.7) (34 Prisms 180-181 10 56.5 5.3 6.9 (56.7 5.4 6.9) (3e) Needles 188-190 10 58.3 5.8 6.4 (58.4 5.7 6.5) a Crystallisation solvent was absolute EtOH.-~__-_ Table 3. Spectroscopic data for 2,2-disubstituted 4,5-diphenyl-2H-imidazoles (1) and 2,2-disubstituted l-alkyl-4,5-diphenyl-2H-imidazolium iodides (2) and (3) Chemical shift (6,) a r -~~ Aromatic R" R R; Vnl,Lb (cm-9 7.2-8.1 -1.7 1.7 1 600m, 1 550s, 1490s, 144Os, 1 355w, and 1260s 7.2-8.1 -1.68 0.8: 2.2 1 600m, 1 550s, 1490s, 1440s, 1 355w, and 1 260s 7.2-8.1 __.1.7 1.2: 2.0-2.7,' 4.1 1740s, 1600s, 1 550m, 1 490m, 1450~~ and 1 350s 7.4-7.9 -1.90 h 3 060m, 1 600s, 1 550s, 1 490s, and 1 250s 7.3-8.2 -0.75: 2.25 0.75," 2.25 1 600s, 1 550111,and 1 480m 7.3-8.2 4.0 2.0 2.0 1 600s, 1 560s, 1 450s, and 1 390s 7.3-8.2 4.1 2.2 0.8: 2.5 2 820s, 1620s, 1 600s, 1 490s, and 1 400s 7.3-8.2 4.0 2.3 1.2; 2.3-3.0,' 4.1 2920s, 1600m, 1 500m, and 1290s 7.2-8.1 4.0 1.9 h 2 920s, 1 600s, 1 300s, and 1 050w 7.3-8.2 4.2 0.85: 2.7 0.85; 2.7 2 910s, 1 600111, 1 550s,and 1 440s 7.3-8.0 1.3: 4.55 2.2 2.2 2 920s, 1 600s, 1 Om, and 1 450m 7.3-7.8 1.45: 4.65 1.0: 2.8 1.0; 2.8 2 920s, 1 600m, 1450m, and 1 290m a 60 MHz; CDC13 as solvent; SiMer as internal reference; singlets unless otherwise indicated.Mull in CHBr3. 10 H, multiplet. H, triplet. 2 H, quartet. f 4 H, multiplet. 9 15 H, multiplet. Included in aromatic region. 2067I. CHEM. SOC. PERKIN TRANS. I 1983 -PhrNxR Base PhCNxR Ph-N+ R' Ph-cN+ R' I I 11CH3 C" 2 (2) Ar 1Ar Scheme. The 1-methyl protons in the quaternised salts (2) are active: they were exchanged almost completely for deuterium at 25 "C after 48 h in deuterium oxide and E2H6acetone (concentration cu. 0.2~) in the presence of triethylamine or pyridine. These protons have an activity similar to that of the a-protons in pyridinium cations (50 exchange in 21 h at 20 "C; concentration 0.3~; piperidine as base),20*21 whilst they exchange faster than the corresponding N-methyl protons in I-methylpyridiniums (complete exchange in 8 d at room temperature; concentration 0.3~; piperidine as base).20*211,3-Dirnethylimidazolium iodides exchange only at the ring positions.22 The salts (2) are acidic enough to undergo aldol reactions with aldehydes using triethylamine as a catalyst.Thus, I ,2,2-trimethyl-4,5-diphenyl-2H-imidazolium(2a) and 2,2-diethy.I- 1-methyl-4,5-diphenyl-2H-imidazolium(2e) iodide reacted with m-chlorobenzaldehyde to give the bicyclic compounds (4a) (70) and (4b) (700/,), respectively. We consider the irrevers- ible final cyclization to be responsible for the success of this reaction (Scheme). The bicyclic compounds (4a) and (4b) were identified by their spectroscopic properties and elemental analysis.'H N.m.r. spectra showed in both cases a character- istic ABX system for the 2-H (6 4.45) and 3-H2 (6 3.65 and 2.95) protons. The I3C n.m.r. spectrum of compound (4b) confirmed the proposed structure, the characteristic absorptions being 6, 110.4 (C-7a), 95.3 (C-5),79.8 (C-2), and 54.6 p.p.m. (C-3). The imino carbon signal appeared at 6c 165.6 p.p.m. The signals were assigned by chemical shift considerations and off-resonance decoupled spectra. Treatment of compound (4a) with perchloric or fluoroboric acid did not cause ring-opening to the monocyclic structure (5a). However, hydrolysis with hydrochloric acid afforded the hydroxy amine hydrochloride (6) (20). The 'H n.m.r. spectrum of this compound showed a characteristic AA'X system (for protons at C-1 and C-2), and it was fully character-ized by 13Cn.m.r.and elemental analysis (see Experimental sect ion). This reaction between an aromatic aldehyde and 1,3,3-trimethyl-4,5-diphenyl-2H-imidazoliumiodide (2a) with sub- sequent hydrolysis of the bicyclic product (4a) offers an alternative method to the reaction with nitromethane, followed by reduction, for the preparation of compounds of type (6) in cases where a reduction step is undesirable. Treatment of 1,2,2-trimethyl-4,5-diphenyl-2H-imidazofium iodide (2a) with sodium borohydride afforded I72,2-trimethyl- 0 NHMe Ph /N PhUI PhLNPhPhC-CHPh Me 0-Me 0-(10) (11) a; R=Me b; RzEt 4,5-diphenyl-2,5-dihydro-lH-imidazole (7). No further reduc- tion occurred even with excess of borohydride.Some similar cases are found in the literature for related 4H-imida~oles,~~ and for 2H-imidazole 1,3-dio~ides.'~ With lithium aluminium hydride, 2H-imidazole 1 -oxides form 1 ,2-dihydro compounds only at low temperature.l2 Hydrolysis (heat; ~M-HC~; 1 h) of the 2,5-dihydro-lH- imidazole (7) afforded the a-amino ketone (8). Thus, succes- sive formation of the 2H-imidazole, quaternisation, reduction, and finally hydrolysis is a potentially useful way to convert a-diketones into a-(N-alkylamino) ketones. Asinger described a similar hydrolysis for the corresponding 5-met hyl-4-ethyl compound. Hydrolyses of 2,5-dihydro-1H-imidazoles un-substituted on nitrogen have been reported for the 5-ethyl-4- methyl and 4,5-diphenyl 24 compounds.Hydrolysis under milder conditions (25 "C)but for a longer time (one week) gave a product of high melting point (248-25OoC), with no aliphatic protons in the 'H n.m.r. spectrum, and which was characterized by elemental analysis and its mass spectrum as 2,3,5,6-tetraphenylpyrazine (9) (lit.,25 m.p. 249-250 "C). Following our study of the chemical properties of the imidazoline (7), it was quaternised with methyl iodide giving compound (10) in 60 yield. Only one oxidation of a 2H-imidazole to its N-oxide has been reported." We find that oxidation of compounds (la) and (le) with hydrogen peroxide in acetic acid gives the corresponding N,N'-dioxides (1 1a) and (1 I b). Elemental analysis, Lr., n.m.r., and mass spectra were consistent with the assigned structures.The mass spectra did not show the molecular ion, but the (M -I)+ peak was present. No intense (M -16)' or (M -17)+ peaks, frequently observed with heterocyclic N-oxides,26-28 were apparent, in accord with the findings in the 3,4-dihydro-2H-pyrrole 29 and 2,2-di-phenyl-2H-imidazolel2 N-monoxides series ; the latter com- pounds were, however, all reported to show a molecular ion. Experimental M .p.s were obtained in a Bristolscope hot-stage apparatus and are uncorrected. 1.r. spectra were run as CHBr, mulls on a Perkin-Elmer 283B spectrophotometer, using NaCi plates. 'H N.m.r. spectra were recorded on Varian A-60A and Varian EM 360L (60 MHz) instruments, and I3C n.m.r.2068 spectra on a JEOL FX 100 instrument; SiMe, was used as internal reference. 2,2- Disubstituted 4,5-D@henyl-2H-imidazoles(1 ).-General procedure (Tables 1 and3). Benzil(10.5 g, 0.05 rnol), ammonium acetate (40 g), and the appropriate ketone (0.05 mol) in glacial AcOH (100 ml) were boiled under reflux for 2 h. The solution was cooled, poured into ice-water (1 50 ml), and extracted with diethyl ether (3 x 50 ml). The combined extracts were washed with water until the washings were neutral, and were then dried (MgSO,) and evaporated (30°C; 30 mmHg). The product was recrystallised from light petroleum (b.p. 37-52 2,2- Disubstituted 1-Methyl- and 1-Ethyl-4,5-diphenyl-2H-imidazolium Iodides (2) and (3).-General procedure (Tables 2 and 3).Methyl (or ethyl) iodide (0.0080 mol) was added to the 2,2-disubstituted 4,5-diphenyl-2H-imidazole(0.0080 mol) in MeN02 (15 ml) and the solution was stirred under reflux until t.1.c. (silica gel; EtOAc) showed no starting material (5-6 h). The solution was cooled, the iodide salts were precipi- tated with diethyl ether (50 ml), dried under reduced pressure 40 "C; 0.5 (mmHg; 6 h) and recrystallised (absolute EtOH). Deuterium-Proton Exchange of the N-Methyl Protons of Compound (2a).-A solution of the salt (2a) (0.150 g) in ,H6acetone (2 ml) was stirred with a 10 solution of either Et3N or pyridine (as base) in D20 (0.1 ml). After 48 h ex- change was shown to be complete by the disappearance of the N+-Me protons (6 4.0) in the 'H n.m.r.spectrum. Cyclizution of the 2,2-Dialkyl-l-methyl-4,5-diphenyl-2H-imidazolium iodides (2a and e) with m-Chlorobenza1dehyde.- With (2e). Triethylamine (2.3 g, 0.0227 mol) and m-chloro- benzaldehyde (1.60 g, 0.0128 rnol) were added to a solution of the salt (2e) (3.00 g, 0.0072 moI) in CHZC12 (30 ml) and the reaction mixture was heated under reflux for 9 h, after which no starting material was detected (silica gel; EtOAc). The deposited triethylammonium iodide was separated, the remaining liquid was washed with water (3 x 20 nil), and the organic layer was dried (MgSO,) and evaporated (40°C; 30 mmHg) to give 2-(3-chlorophenyZ)-5,5-diethyl-7,7a-di-phenyl-2,3,5,7a-tetrahydroimidazo5,1- bloxazole (4 b) (70) as prisms from acetone, m.p.124-126 "C (Found: C, 75.0; H, 6.3 ;N, 6.5. C27H27C1Nz0 requires C, 75.25 ;H, 6.3 ;N, 6.5) ; 6" (CCI,) 0.9 (3 H, t), 1.3 (3 H, t), 2.0 (4 H, m), 2.9 (1 H, dd), 3.7 (1 H, dd), 4.6 (1 H, dd), and 7.0-7.9 (14 H); 6, (CDCI,) 8.6 (CH,), 9.9 (CH,), 27.1 (CH,), 32.1 (CH,), 54.6 (C-3), 79.8 (C-2), 95.3 (C-5), 110.4 (C-7a), 123.0-142.5 (aromatic), and 165.6 p.p.m. (C-7); vnBx.2 975m, 2 960m, 2 930m, 1 615m, 1 600m, 1 570m, 1 490m, and 1 355m cm-'. With (2a). Following the procedure for (2e), the salt (2a) (2.0 g, 0.0051 mol) was treated with nz-chlorobenzaldehyde (0.79 g, 0.0063 mol) and triethylamine (2.3 g, 0.0227 mol) to give 2-(3-chlorophenyl)-5,5-diniethyl-7,7a-diphenyl-2,3,5,7a-tetrahydroimidazo5,1 -boxazole (4a) (70) as prisms from acetone, m.p.146--148 "C (Found: C, 74.4; H, 5.8; N, 6.9. C25H23C1N20requires C, 74.5; H, 5.8; N, 7.0); 6, (CCI,) 1.6 (3 H, s), 1.7 (3 H, s), 2.9 (1 H, dd), 3.6 (1 H, dd), 4.7 (I H, dd), and 7.2-8.0 (14 H, m); vniaY.2 975m, 2 960m, 2 930m, 1 615m, 1 600m, 1 570m, 1 490m, and 1 355m cm-I. Acid Hydrolysis of 2-(3-Ch loropheny1)- 5,5-dimethyl-7,7a-diphenyl-2,3,5,7a-tetrahydroimidazo5,l -boxazole (4a).-To a solution of compound (4a) (1 g, 0.0025 mol) in CH2C1, (10 ml) was added concentrated HCI (4 ml) and the mixture was kept for 24 h. The precipitated solid was filtered off and character- J. CHEM. SOC. PERKIN TRANS. I 1983 ized as the hydroxy amine hydrochloride (6) (2073, which was crystallized as prisms from chloroform, m.p.141 "C(analysed as the dihydrate: Found: C, 39.2; H, 5.7; N, 5.3. C8HI1CI2- NO*lH20 requires C, 39.4; H, 6.1; N, 5.7); 6, (DzO) 3.1 (2 H, m), 4.9 (1 H, dd), and 7.3 (4 H, m); 6, (dioxane) 46.05 (CH), 69.78 (CH,), and 125.20, 126.76, 129.44, and 131.34 p.p.m. (aromatic); vnlax.3 400-2 500br and 1 160-1 OlObr cm-' . Reduction of 1,2,2-Trimethyl-4,5-dipheny1-2H-ir~lidazolium Iodide (2a).--NaBH, (0.37 g, 0.010 mol) was added (0.5 h) to a solution of the imidazolium iodide (2a) (2.0 g, 0.0051 mol) in methanol (10 ml). After 2 h the solvent was evap- orated off (40°C; 30 mmHg), the residue was washed with water (2 x 20 mI), filtered off, dried in uacuo (25 "C; 0.5 mmHg; 4 h), and characterized as 1,2,2-trimethyl-4,5-dipheny1-2,5-dihydro-l H-imidazole (7) (85) as prisms from acetonitrile, m.p.85-87 "C(Found: C, 81.5; H, 7.6; N, 10.5. CI8H20N2requires C, 81.8; H, 7.6, N, 10.6); 6H(CDC13) 1.6 (3 H, s), 1.8 (3 H, s), 2.6 (3 H, s), 4.9 (1 H, s), and 7.2-7.5 (10 H, m); vms. 3 030s, 2 980s, 2 240m, 1 620s, 1 500s, 1 450s, and 1 250s cm-'. Acid Hydrolysis of 1,2,2-Trimethyl-4,5-diphenyl-2,5-dihydro-1H-imidazole (7).-(a) A solution of compound (7) (1 g, 0.0038 mol) in ~M-HC~ (10 ml) was heated (steam-bath) for 1 h. After the solution had been cooled, CH2Clz (20 ml) was added and the organic layer was separated, dried (MgSO,), and filtered. The solvent was evaporated off (40°C; 30 mmHg) and the solid residue, obtained as prisms, m,p. 226 "C (from absolute ethanol), was characterized as the hydrochloride of the a-amino ketone (8) (90) (Found: C, 68.8; H, 6.1 ;N, 5.2.Calc. for C15H,INO: C, 68.8; H, 6.1 ;N, 5.2); 6, (CDC1,) 2.4 (3 H, s), 5.3 (1 H, s), and 7.2-8.2 (10 H, m); vmx. 1 670s, 1 600s, 1 540s, and 1 400br cm-l. (b) A solution of compound (7) (1 g, 0.0038 mol) in EtOH (10 ml), H20 (I .5ml), and concentrated HCl(2 ml) was kept at 25 "C for 8 d. A solid was formed which, after filtration and recrystallization from chloroform (prisms, m.p. 248-250 "C) (lit.,25 249-250 "C), was characterized as 2,3,5,6-tetraphenyl- pyrazine (9) (8) (Found: C, 87.2; H, 5.6; N, 7.2. Calc. for C28H~ON2:c, 87.5; H, 5.2; N, 7.3); SH(CDC13) aromatics only; vnux.3 200s, 1 700s, 1 400s, and 1 300s cm-'. Quaternisation of 1,2,2-Trimethyl-4,5-diphenyl-2,5-dihydro-1H-imidazole (7).--The dihydro-1H-imidazole (7) (1 g, 0.0038 mol) was stirred with Me1 (10 ml).A precipitate was immediately formed. After the mixture has been stirred for 10 h no starting material was detected by t.1.c. (silica gel; EtOAc). Evaporation of the solvent (30°C; 30 mmHg) and recrystallization of the residue (absolute EtOH) gave 1,2,2,3- tetramethyl-4,5-diphenyl-3,4-dihydro-2H-iniidazoliri~niodide (10) (60) as prisms, m.p. 188-190 "C (Found: C, 56.2; H, 5.7; N, 6.9. CI9Hz3LN2 requires C, 56.2; H, 5.7; N, 6.9); SH (CDClj) 1.8 (3 H, s), 2.2 (3 H, s), 2.9 (3 H, s), 3.7 (3 H, s), and 7.1-7.9 (10 H, m); vnlss. 2920s, 1630s, 1570m, 1470s, 1 450s, 1 380m, and 1 140br cm-'. 2,2-Dimethyl-4,5-diphenyl-2H-imiduzole1,3- Dioxide (1 1a).-A solution of the 2H-imidazole (la) (2.0 g, 0.0081 mol) in AcOH-30 H202 (20 ml; 5 : 1) was stirred at 25 "C for 2 h; water (100 ml) was then added and the N,N'-dioxide (1 la) separated out (88) and was recrystallized as prisms from acetone, m.p. 74-74.5 "C (Found: C, 73.0; H, 5.8; N, 9.9. CL7HZ6N2o2requires C, 72.8; H, 5.8; N, 10.0); 6, (CDC13) 1.6 (6 H, s) and 7.3-7.7 (10 H, m); vnlnX.1445s, 1 340s, 1 290s, 750s, and 655s cm-'. J. CHEM. SOC. PERKIN TRANS. I 1983 Acknowledgements We thank the Universidad de Guanajuata and Conacut (Mexico) for leave of absence and a grant to S. B. B. References 1 For a review see M. P. Sammes and A. R. Katritzky, Adv. Heterocycl.Chem., in the press. 2 M. Weiss, J. Am. Chem. SOC.,1952, 74, 5193. 3 J. H. M. Hill, T. R. Fogg, and H. Guttmann, J. Org. Chem., 1975,40, 2562. 4 F. Farina, An. R. Soc. ESP. Fis. Quim., Ser. B, 1953, 49, 599 (Chem. Abstr., 1954, 48, 4524e). 5 R. W, Begland, A. Cairncross, D. S. Donald, D. R. Hartter, W. A. Sheppard, and 0. W. Webster, J. Am. Chem. SOC.,1971, 93, 4953; R. W. Begland and D. R. Hartter, J. Org. Chem., 1972,37, 4136. 6 F. Asinger, M. Thiel, and R. Sowada, Monatsh. Chem., 1959, 90, 402. 7 F. Asinger and W. Leuchtenberger, Liebigs Ann. Chem., 1974, 1183. 8 L. B. Volodarskii, A. N. Lysak, and V. A. Koptyug, Khim. Geterotsikl. Soedin., 1968, 334 (Chem. Abstr., 1968, 69, 96577s). 9 Y. G. Putsykin and L.B. Volodarskii, Dokl. Akad. Naick SSSR, 1964,4, 86; Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1969, 86 (Chem. Abstr., 1970, 72, 54514a). 10 L. B. Volodarskii and V. A. Samsonov, Izv. Akad. Naiik SSSR, Ser. Khim., 1978, 971 (Chem. Abstr., 1978, 89, 24220k); V. A. Samsonov and L. B. Volodarskii, Khim. Geterotsikl. Soedin., 1980, 808 (Chem. Abstr., 1980,93, 186242d). 11 J. E. Baldwin and N. H. Rogers, Chem. Commun., 1965, 524. 2069 12 B. A. J. Clark, T. J. Evans, and R. G. Simmonds,J. Chem. SOC., Perkin Trans. I, 1975, 1803. 13 G. 1. Schchukin, I. A. Grigor’ev, and L. 3. Volodarskii, Izu. Akad. Nauk SSSR, Ser. Khim., 1981, 1581 (Chem. Abstr., 1981, 95, 187150a). 14 L. B. Volodarskii, L. A. Fust, and V. S. Kobrin, Khim. Geterot-sikl.Soedin, 1972, 1241 (Chem. Abstr., 1973, 78, 4189b). 15 F. Asinger, W. Schaefer, and A. V. Grenacher, Monatsh. Chem., 1965, 96, 741. 16 A. G. Hortmann, J. Y. Koo, and C. C. Yu,J. Org. Chem., 1978, 43, 2289. 17 W. Stegmann, P. Gilgen, H. Heimgartner, and H. Schmidt, Helv. Chim. Acta, 1976, 59, 1018. 18 U. Gerber, H. Heimgartner, H. Schmidt, and W.Heinzelmann, Helv. Chim. Acta, 1977, 60, 687. 19 D. M. White and J. Sonnenberg, J. Org. Chem., 1964, 29, 1926. 20 R. K. Howe and K. W. Ratts, Tetrahedron Lett., 1967,4743. 21 K. W. Ratts, R. K. Howe, and W. G. Phillips, J. Am. Chem. SOC.,1969, 91, 6115. 22 J. L. Wong and J. H. Keck, jun., J. Org. Chem., 1974,39,2399. 23 K. Burger and K. Einhellig, Chem. Ber., 1973, 106, 3421. 24 P. Beak and J. L. Miesel, J. Am. Chem. Soc., 1967,89, 2375. 25 A. M. Simonov, A. D. Garnovskii, Yu. N. Sheinker, B. I. Khristich, and S. S. Trofimova, Zh. Obshch, Khim., 1963, 33, 571 (Chem. Abstr., 1963,59, 5151d). 26 T. A. Bryce and J. R. Maxwell, Chem. Commun., 1965, 206. 27 R. G. Amiet and R. B. Johns, Aust. J. Chem., 1967,20,723. 28 A. Tatematsu, H. Yoshizumi, E. Hayashi, and H. Nakata, Tetrahedron Lett., 1967, 2985. 29 R. Grigg and B. G. Odell, J. Chem. Sac. B, 1966,218. Received 3 I st Deceniber I982 ;Paper 2/2 I 93
机译:J. CHEM. SOC. PERKIN 译.I 1983 2H-基米唑类季盐 Alan R, Katritzky,“ Susana Bravo Borja, and Jorge Marquet 佛罗里达大学化学系,盖恩斯维尔,FI. 3261 1 美国 Michael P.Sammes 香港大学化学系,香港薄扶林道 用烷基碘化物处理 4,5-二苯基-2H-咪唑 (1a-e) 得到新型 1Hf,2H-咪唑鎓盐 (2) 和 (3)。甲基盐 (2) N-甲基质子容易与氘交换,碱作用形成的阴离子与间氯苯甲醛、2,3,5,7a-四氢咪唑并[5,1-b]-噁唑 (4),水解七合二酚在酸中为 2-(3-氯苯基)-2-羟乙胺 (6)。甲基盐(2a)的硼氢化物还原得到二氢-1-H-咪唑(7),与酸产生2-甲氨基-I,2-二苯基乙酮(8),与甲基碘产生甲基盐(10)。首次报道了2H-咪唑直接(过酸)氧化为A/,#'-二氧化物。2H-咪唑在1iterature中相对较少被提及.l Weiss首先从苯齐尔,酮和乙酸铵合成了2,2,4,5-四取代的2H-咪唑,并发现了它们对热和酸的不稳定性。已经报道了苯齐的更多例子,该合成得到了4,5-双(乙氧羰基)衍生物^.^ 还描述了其他不太方便的合成方法。'-' 2H-咪唑 1-氧化物由 (a) α-二肟与某些醛或酮的反应以及随后的碱 8*9 或酸 Lo 处理,(b) 氯亚硝基烷烃的光化学二聚化,“(c) 二苯基甲亚胺与 a-羟基亚氨基酮的酸催化缩合”和 (d) 溴对 3-咪唑啉 nitroxyl radi~a1s.l~ 显然只有一种2H-咪唑1-氧化物是通过相应的2H-咪唑~ole的N-氧化制备的。 Ph cNxR' Ph N R (1) a;R= 我,R'=我 b;r = 我,r' = 等 c;R = Me,R'= CH2CH,C02Et d;R = 我,R'=Ph e;r= et, r'=et 1 ch, “oiH-@ -a;R=我,R=我,I b;R = Et , R'= Et 然而,几种 4H-咪唑已被铅 di0~ide.l~ 4-氨基-2H-咪唑与甲基碘在环氮原子处的单季铵化反应已被描述.15 我们现在报道了一系列新型 2,2-二取代的 4,5-二苯基-2H-咪唑的合成、它们的季铵化以及一些具有潜在合成应用的其他反应.结果与讨论 Benzil,当用酮和乙酸铵处理时,通过Weiss“程序,2,2-二取代的4,S二苯基-2H-咪唑(la-)(75435%)(表1)。2H-咪唑与甲基碘的季铵化反应得到相应的2,2-二取代的L-甲基-4,5-二苯基-2H-咪唑碘化物(2a-e)(平均80%)(表2)。然而,与碘乙烷进行季铵化反应比较困难,相应的2,2-二取代的1-乙基-4,5-二苯基-2H-咪唑碘化物(3a和e)的收率仅为10%左右。'H N.m.r.、i.r.(表3)和元素分析(表1和表2)与所提出的结构一致。我们发现2H-咪唑(la-e)在6,1.7-1.9(2-CH3,表3)处的吸收,与(1 a),j 2,2-二甲基-4-苯基1-2H-咪唑~ole,~~4-取代的2,2-二乙基-5-苯基-2H-irnida~oles,~~和4,5-二芳基-2,2-二甲基-2H-咪唑l8(6,1.6-1.9)相同。由于CH2与C-2相连的吸收出现在6,2.0-2.5(表3),而(le)中相应的CH2的吸收出现在6,2.2。没有关于季铵化 2H-咪唑盐 t 2,5-二氢-lH-咪唑的 n.m.r. 数据。(2a-e)、(3a)和(3e)以前可用。附着在带正电荷的氮上的甲基信号出现在SH 4.0-4.2处,而CH2在同一位置的信号在ijH 4.5-4.6范围内。从它们在相应的 2H-咪唑 (1) 中的位置向下。1.r.几种芳基-2H-咪唑类药物的数据已重新移植;16-19 1 610 cm-' [(la-)附近的一条带,表31被分配给碳氮双键。在化合物(1 a+)的光谱中也发现了1490-1 500 cm-l之间的条带,这是这些化合物的特征。没有文献 i.2H-咪唑盐(2a--e)、(3a)和(3e)的数据可用(表3)。1 600 和 1 620 cm-' 之间的特征条带对应于亲本 2H-咪唑.2066 J. CHEM. SOC. PERKIN TRANS.I 1983 表 1.制备2、 2-二取代 4,5-二苯基-2H-咪唑(1) 分析 (%) 发现化合物晶体形式 M.p. (“C) 产率 (%) I C (必填) A H I N 公式 (I a) (1 b) (1c) (同上) (W 针 棱镜 -板 针 78-80 升华 92 油 80-82 104-106 75 85 75 80 85 82.5 (82.4 75.2 (75.585.0 (85.2 6.9 6.9 6.6 6.6 5.9 5.8 10.6 10.7) 8.2 8.4) 8.9 9.0) Cl8Hl8N2 C2IH22N2 C23H18N2 a 结晶溶剂为轻质石油 (b.p. 37- -52 ”C).Lit.,' 79-80 “C. Lit.: 105-106 ”C. 表 2.2,2-二取代的L-烷基-4,5-二苯基-2H-咪唑碘化物的制备 (2) 和 (3) 分析 (A)找到(必需)晶体 M.p. 屈服 化合物形式 (“0 PA) C H ” (24 针 191-192 65 55.1 4.9 7.4 (55.4 4.9 7.1) (2b) 针 169-171 70 56.4 5.3 6.9 (56.7 5.4 6.9) (24 棱镜 136-1 38 90 55.4 5.3 5.9 (55.5 5.2 5.8) (24 棱镜 173-1 75 55 61.1 4.7 6.1 (61.1 4.6 6.2) (2e) 板 173-175 95 57.4 5.5 6.6 (57.4 5.5 6.7) (34 棱镜 180-181 10 56.5 5.3 6.9 (56.7 5.4 6.9) (3e) 针 188-190 10 58.3 5.8 6.4 (58.4 5.7 6.5) a 结晶溶剂是绝对的 EtOH.-~__-_ 表 3.2,2-二取代的4,5-二苯基-2H-咪唑(1)和2,2-二取代的l-烷基-4,5-二苯基-2H-咪唑碘化物的光谱数据(2)和(3)化学位移(6,)a r -~~芳香族R“ R R;Vnl,Lb (cm-9 7.2-8.1 -1.7 1.7 1 600m、1 550s、1490s、144Os、1 355w 和 1260s 7.2-8.1 -1.68 0.8: 2.2 1 600m、1 550s、1490s、1440s、1 355w 和 1 260s 7.2-8.1 __.1.7 1.2: 2.0-2.7,' 4.1 1740s、1600s、1 550m、1 490m、1450~~ 和 1 350s 7.4-7.9 -1.90 h 3 060m、1 600s、1 550s、1 490s、 1 250s 7.3-8.2 -0.75: 2.25 0.75,“ 2.25 1 600s, 1 550111, and 1 480m 7.3-8.2 4.0 2.0 2.0 1 600s, 1 560s, 1 450s, and 1 390s 7.3-8.2 4.1 2.2 0.8: 2.5 2 820s, 1620s, 1 600s, 1 490s, and 1 400s 7.3-8.2 4.0 2.3 1.2;2.3-3.0,' 4.1 2920s、1600m、1 500m 和 1290s 7.2-8.1 4.0 1.9 h 2 920s、1 600s、1 300s 和 1 050w 7.3-8.2 4.2 0.85: 2.7 0.85;2.7 2 910s、1 600111、1 550s 和 1 440s 7.3-8.0 1.3: 4.55 2.2 2.2 2 920s、1 600s、1 %Om 和 1 450m 7.3-7.8 1.45: 4.65 1.0: 2.8 1.0;2.8 2 920s、1 600m、1450m 和 1 290m a 60 MHz;CDC13作为溶剂;SiMer 作为内部参考;除非另有说明,否则为单数。在CHBr3.10 H中捣碎,多重。H, 三联体。2 H,四重奏。f 4 H,多重。9 15 H,多倍。包含在芳香区。2067I. CHEM. SOC. PERKIN TRANS.I 1983 -PhrNxR Base %PhCNxR Ph-N+ R' Ph-cN+ R' I I 11CH3 C“ 2 (2) Ar 1Ar 方案。季铵盐(2)中的1-甲基质子具有活性:在三乙胺或吡啶存在下,在氧化氘和E2H6]丙酮(浓度为0.2~)中,它们在25“C下几乎完全交换为氘。这些质子具有与吡啶阳离子中 a 质子相似的活性(在 20“C 下 21 小时内交换 50%;浓度0.3~;哌啶为碱),20*21,而它们在I-甲基吡啶中比相应的N-甲基质子交换更快(室温下8 d完全交换;浓度0.3~;哌啶为碱).20*211,3-二乙基咪唑碘化物仅在环位置交换.22盐(2)的酸性足以与使用三乙胺作为催化剂的醛进行醛醇反应.因此,I,2,2-三甲基-4,5-二苯基-2H-咪唑鎓(2a)和2,2-二基。I-1-甲基-4,5-二苯基-2H-咪唑鎓(2e)碘化物与间氯苯甲醛反应,分别得到双环化合物(4a)(70%)和(4b)(700/,)。我们认为不可逆的最终环化是该反应成功的原因(方案)。双环化合物(4a)和(4b)通过光谱性质和元素分析进行鉴定。化合物(4b)的I3C n.m.r.谱图证实了所提出的结构,其特征吸收为6,110.4(C-7a),95.3(C-5),79。8 (C-2) 和 54.6 p.p.m. (C-3)。亚胺碳信号出现在下午6时165.6分。这些信号是通过化学位移考虑和非共振解耦谱来分配的。用高氯或氟硼酸处理化合物(4a)不会导致单环结构(5a)的开环。然而,用盐酸水解得到盐酸羟胺(6)(20%)。该化合物的'H n.m.r.谱图显示出特征性的AA'X系统(对于C-1和C-2的质子),并通过13Cn.m.r.和元素分析对其进行了充分表征(参见实验部分离子)。芳香醛与1,3,3-三甲基-4,5-二苯基-2H-咪唑碘化物(2a)之间的反应,随后水解双环产物(4a)为与硝基甲烷反应,然后还原,在不需要还原步骤的情况下制备(6)型化合物提供了一种替代方法。用硼氢化钠处理 1,2,2-三甲基-4,5-二苯基-2H-咪唑鎓碘化物 (2a) 得到 I72,2-三甲基-0 NHMe Ph /N PhUI PhLN]PhPhC-CHPh Me 0-me 0-(10) (11) a;R=我 b;RzEt 4,5-二苯基-2,5-二氢-lH-咪唑 (7)。即使硼氢化物过量,也不会发生进一步的减少。文献中也发现了相关的4H-咪唑~烯类,~~和2H-咪唑1,3-二~类化合物的类似案例。~ 与氢化铝锂一起,2H-咪唑-1-氧化物仅在低温下形成1,2-二氢化合物。l2水解(加热;~M-HC~;1小时)得到2,5-二氢-lH-咪唑(7)得到a-氨基酮(8)。因此,成功形成2H-咪唑、季铵化、还原和最终水解是将 α-二酮转化为 a-(N-烷基氨基)酮的潜在有用方法。Asinger描述了相应的5-Methyl-4-ethyl化合物的类似水解。据报道,5-乙基-4-甲基和4,5-二苯基24化合物的2,5-二氢-1H-咪唑未被氮取代的水解。在较温和的条件下(25“C)进行水解,但时间较长(一周)得到高熔点(248-25OoC)的产物,在'H n.m.r.光谱中没有脂肪族质子,通过元素分析,其质谱图为2,3,5,6-四苯基吡嗪(9)(lit.,25 m.p. 249-250”C)。在我们对咪唑啉 (7) 的化学性质进行研究后,它与甲基碘进行季铵化,得到化合物 (10),收率为 60%。仅报道了一次2H-咪唑氧化成其N-氧化物。我们发现化合物 (la) 和 (le) 在乙酸中与过氧化氢氧化得到相应的 N,N'-二氧化物 (1 1a) 和 (1 I b)。元素分析、Lr.、n.m.r.和质谱图与指定的结构一致。质谱图没有显示分子离子,但存在(M -I)+峰。与3,4-二氢-2H-吡咯29和2,2-二苯基-2H-咪唑2 N-一氧化物系列的研究结果一致,没有明显的(M -16)'或(M -17)+峰,经常在杂环N-氧化物中观察到26-28;然而,据报道,后者都显示出分子离子。实验 MP 是在 Bristolscope 热载物台设备中获得的,并且未经校正。1.r.光谱作为CHBr运行,在Perkin-Elmer 283B分光光度计上使用NaCi板进行思考。'H N.m.r. 谱图在瓦里安 A-60A 和瓦里安 EM 360L (60 MHz) 仪器上记录,I3C n.m.r.2068 谱图在 JEOL FX 100 仪器上记录;SiMe,被用作内部参考。2,2-二取代的4,5-D@henyl-2H-咪唑(1).-一般程序(表1和表3)。将苯齐(10.5g,0.05rnol),乙酸铵(40g)和适当的酮(0.05mol)在冰AccOH(100ml)中煮沸2小时。将溶液冷却,倒入冰水(1 50ml)中,并用乙醚(3 x 50 ml)萃取。将合并的提取物用水洗涤至洗涤呈中性,然后干燥(MgSO)并蒸发(30°C;30mmHg)。产物由轻质石油(b.p.37-52,2-二取代的1-甲基和1-乙基-4,5-二苯基-2H-咪唑碘化物(2)和(3)重结晶。将甲基(或乙基)碘化物(0.0080 mol)加入到2,2-二取代的4,5-二苯基-2H-咪唑(0.0080 mol)在MeN02(15ml)中,并在回流下搅拌溶液至t.1.c。(硅胶;EtOAc)未显示起始材料(5-6小时)。冷却溶液,用乙醚(50毫升)沉淀碘化盐,减压40“C干燥;0.5 (mmHg; 6 h) 并重结晶(无水 EtOH)。化合物(2a)的N-甲基质子的氘质子交换-盐(2a)(0.150g)在[,H6]丙酮(2ml)中的溶液与10%的Et3N溶液或吡啶(作为碱)在D20(0.1ml)中搅拌。48 小时后,通过'H n.m.r.光谱中N+-Me质子(6 4.0)的消失,ex-change被证明是完全的。2,2-二烷基-l-甲基-4,5-二苯基-2H-咪唑碘化物(2a和e)与间氯苯甲1dehyde-的环化。将三乙胺(2.3g,0.0227mol)和间氯苯甲醛(1.60g,0.0128rnol)加入到CHZC12(30ml)中的盐(2e)(3.00g,0.0072moI)溶液中,并将反应混合物在回流下加热9小时,之后未检测到起始材料(硅胶;环氧乙烷)。分离沉积的三乙基碘化铵,剩余液体用水(3×20 nil)洗涤,有机层干燥(MgSO,)蒸发(40°C;30 mmHg),得到2-(3-氯苯基Z)-5,5-二乙基-7,7a-二苯基-2,3,5,7a-四氢咪唑[5,1-布沙唑(4 b)(70%)作为丙酮棱镜,M.P.124-126“C(发现:C,75.0;高, 6.3 ;N,6.5。C27H27C1Nz0 需要 C, 75.25 ;高, 6.3 ;N, 6.5%) ;6“ (CCI,) 0.9 (3 H, t), 1.3 (3 H, t), 2.0 (4 H, m), 2.9 (1 H, dd), 3.7 (1 H, dd), 4.6 (1 H, dd) 和 7.0-7.9 (14 H);6、(CDCI)、8.6(CH)、9.9(CH)、27.1(CH)、32.1(CH)、54.6(C-3)、79.8(C-2)、95.3(C-5)、110.4(C-7a)、123.0-142.5(芳香族)和165.6 p.p.m.(C-7);vnBx.2 975m、2 960m、2 930m、1 615m、1 600m、1 570m、1 490m 和 1 355m cm-'。与 (2a)。按照(2e)的程序,用nz-氯苯甲醛(0.79g,0.0063mol)和三乙胺(2.3g,0.0227mol)处理盐(2a)(2.0g,0.0051mol)得到2-(3-氯苯基)-5,5-二甲基-7,7a-二苯基-2,3,5,7a-四氢咪唑并[5,1-b]噁唑(4a)(70%)作为丙酮的棱镜,M.P.146--148“C(发现:C,74.4;H,5.8;N,6.9。C25H23C1N20需要C,74.5;H,5.8;N,7.0%);6, (CCI,) 1.6 (3 H, s), 1.7 (3 H, s), 2.9 (1 H, dd), 3.6 (1 H, dd), 4.7 (I H, dd) 和 7.2-8.0 (14 H, m);vniaY.2 975m、2 960m、2 930m、1 615m、1 600m、1 570m、1 490m和1 355m cm-I。将2-(3-氯苯基1)-5,5-二甲基-7,7a-二苯基-2,3,5,7a-四氢咪唑并[5,l-b]噁唑(4a)-酸水解到化合物(4a)(1g,0.0025mol)在CH2C1中的溶液中,(10ml)加入浓HCI(4ml)并保持该混合物24小时。滤除析出的固体,并表征- J. CHEM. SOC. PERKIN TRANS.I 1983 化为盐酸羟胺 (6) (2073,它由氯仿结晶为棱柱,m.p.141 “C(分析为二水合物:发现:C,39.2;H,5.7;N,5.3。C8HI1CI2- NO*lH20 需要 C, 39.4;H,6.1;N, 5.7%);6、(DzO)3.1(2 H,m)、4.9(1 H,dd)和7.3(4 H,m);6、(二氧六环)46.05(CH)、69.78(CH,)和125.20、126.76、129.44和131.34 p.p.m.(芳香族);vnlax.3 400-2 500br 和 1 160-1 OlObr cm-' .将1,2,2-三甲基-4,5-二苯基1-2H-ir~lidazolium iodide(2a).--NaBH(0.37g,0.010mol)(0.37g,0.010mol)加入到碘化咪唑(2a)(2.0g,0.0051mol)的甲醇(10ml)溶液中(0.5小时)。2 h后,将溶剂蒸去(40°C;30 mmHg),用水(2×20 mI)洗涤残留物,过滤掉,在uacuo(25“C;0.5毫米汞柱;4 h),并表征为1,2,2-三甲基-4,5-二苯基1-2,5-二氢-l H-咪唑 (7) (85%) 作为乙腈的棱镜,m.p.85-87“C(发现:C,81.5;H,7.6;N,10.5。CI8H20N2要求C,81.8;H, 7.6, N, 10.6%);6H(CDC13)1.6(3小时,秒),1.8(3小时,秒),2.6(3小时,秒),4.9(1小时,秒)和7.2-7.5(10小时,m);虚拟机。3 030s、2 980s、2 240m、1 620s、1 500s、1 450s和1 250s cm-'。1,2,2-三甲基-4,5-二苯基-2,5-二氢-1H-咪唑(7)的酸水解.-(a) 将化合物(7)(1g,0.0038mol)在~M-HC~(10ml)中的溶液加热(蒸汽浴)1小时。溶液冷却后,加入CH2Clz(20ml),分离有机层,干燥(MgSO),过滤。将溶剂蒸去(40°C;30 mmHg),得到的固体残留物为棱柱状,m,p.226“C(来自无水乙醇),表征为a-氨基酮的盐酸盐(8)(90%)(Found: C, 68.8;高, 6.1 ;N, 5.2.计算值 for C15H,&INO: C, 68.8;H, 6.1 ;N,5.2%);6、(CDC1)、2.4(3 小时)、5.3(1 小时、秒)和 7.2-8.2(10 小时,米);1 670 秒、1 600 秒、1 540 秒和 1 400BR CM-L。(b)将化合物(7)(1g,0.0038mol)在EtOH(10ml),H20(I.5ml)和浓HCl(2ml)中的溶液保持在25“C下8 d。从氯仿(棱镜,熔点248-250“C)(lit.,25 249-250”C)过滤和重结晶后形成固体,其特征为2,3,5,6-四苯基吡嗪(9)(8%)(发现:C,87.2;H,5.6;N,7.2。计算值 C28H~ON2:c, 87.5;H,5.2;N,7.3%);仅SH(CDC13)芳烃;vnux.3 200s、1 700s、1 400s 和 1 300s cm-'。1,2,2-三甲基-4,5-二苯基-2,5-二氢-1H-咪唑(7)的季铵化反应--将二氢-1H-咪唑(7)(1g,0.0038mol)与Me1(10ml)搅拌。立即形成沉淀物。混合物搅拌10小时后,t.1.c未检测到起始材料。(硅胶;环氧乙烷)。溶剂蒸发(30°C;30 mmHg)和残留物(无水EtOH)的重结晶得到1,2,2,3-四甲基-4,5-二苯基-3,4-二氢-2H-iniidazoliri~niodide(10)(60%)作为棱镜,熔点188-190“C(发现:C,56.2;H,5.7;N,6.9。CI9Hz3LN2 需要 C, 56.2;H,5.7;N,6.9%);SH (CDClj) 1.8 (3 H, s)、2.2 (3 H, s)、2.9 (3 H, s)、3.7 (3 H, s) 和 7.1-7.9 (10 H, m);VNLSS。2920 年代、1630 年代、1570 米、1470 年代、1 450 年代、1 380 米和 1 140 英尺厘米。2,2-二甲基-4,5-二苯基-2H-咪唑1,3-二氧化物(1,1a).-2H-咪唑(la)溶液(2.0g,0.0081 mol)在AcOH-30%H202(20ml;5:1)中在25“C下搅拌2 h;然后加入水(100ml),分离出N,N'-二氧化物(1la)(88%),并用丙酮重结晶为棱柱,熔点74-74.5“C(发现:C,73.0;H,5.8;N,9.9。CL7HZ6N2o2要求C,72.8;H,5.8;N, 10.0%);6、(CDC13)1.6(6小时,秒)和7.3-7.7(10小时,米);vnlnX.1445s、1 340s、1 290s、750s 和 655s cm-'。J. CHEM. SOC. PERKIN 译.I 1983 致谢 我们感谢瓜纳华塔大学和科纳卡特大学(墨西哥)的请假和赠款给 S. B. B. 参考文献 1 有关评论,见 M. P. Sammes 和 A. R. Katritzky, Adv. Heterocycl.Chem., in the press.2 M. Weiss, J. Am. Chem. SOC.,1952, 74, 5193.3 J. H. M. Hill, T. R. Fogg, and H. Guttmann, J. Org. Chem., 1975,40, 2562.4 F. Farina, An. R. Soc. ESP. Fis.Quim., Ser. B, 1953, 49, 599 (Chem. Abstr., 1954, 48, 4524e)。5 R. W, Begland, A. Cairncross, D. S. Donald, D. R. Hartter, W. A. Sheppard, 和 0.W. Webster, J. Am. Chem. SOC.,1971, 93, 4953;R. W. Begland 和 D. R. Hartter, J. Org. Chem., 1972,37, 4136.6 F. Asinger、M. Thiel 和 R. Sowada,Monatsh。化学, 1959, 90, 402.7 F. Asinger 和 W. Leuchtenberger,Liebigs Ann. Chem.,1974 年,第 1183 页。8 L. B. Volodarskii, A. N. Lysak, 和 V. A. Koptyug, Khim.Geterotsikl。Soedin., 1968, 334 (Chem. Abstr., 1968, 69, 96577s).9 Y. G. Putsykin 和 L.B. Volodarskii, Dokl.阿卡德。奈克SSSR,1964,4,86;伊兹夫。西伯利亚。阿卡德。Nauk SSSR,Khim 爵士。Nauk, 1969, 86 (Chem. Abstr., 1970, 72, 54514a).10 L.B.Volodarskii 和 V. A. Samsonov,Izv。阿卡德。Naiik SSSR, Ser. Khim., 1978, 971 (Chem. Abstr., 1978, 89, 24220k);V. A. Samsonov 和 L. B. Volodarskii,Khim。Geterotsikl。Soedin., 1980, 808 (Chem. Abstr., 1980,93, 186242d).11 J. E. Baldwin 和 N. H. Rogers, Chem. Commun., 1965, 524.2069 12 B. A. J. Clark, T. J. Evans, and R. G. Simmonds,J. Chem. SOC., Perkin Trans.我,1975 年,1803 年。13 克 1.Schchukin、I. A. Grigor'ev 和 L. 3。沃洛达尔斯基,伊豆。阿卡德。Nauk SSSR, Ser. Khim., 1981, 1581 (Chem. Abstr., 1981, 95, 187150a)。14 L. B. Volodarskii, L. A. Fust, 和 V. S. Kobrin, Khim.Geterot-sikl.Soedin, 1972, 1241 (Chem. Abstr., 1973, 78, 4189b).15 F. Asinger, W. Schaefer, 和 A. V. Grenacher, Monatsh.化学, 1965, 96, 741.16 A. G. Hortmann, J. Y. Koo, and C. C. Yu,J. Org. Chem., 1978, 43, 2289.17 W. Stegmann、P. Gilgen、H. Heimgartner 和 H. Schmidt, Helv。噗噗。学报, 1976, 59, 1018.18 U. Gerber、H. Heimgartner、H. Schmidt 和 W.Heinzelmann, Helv。噗噗。植物学报, 1977, 60, 687.19 D. M. White 和 J. Sonnenberg, J. Org. Chem., 1964, 29, 1926.20 R. K. Howe 和 K. W. Ratts,Tetrahedron Lett.,1967,4743。21 K. W. Ratts, R. K. Howe, and W. G. Phillips, J. Am. Chem. SOC.,1969, 91, 6115.22 J. L. Wong 和 J. H. Keck, jun., J. Org. Chem., 1974,39,2399.23 K. Burger 和 K. Einhellig,Chem. Ber.,1973,106,3421。24 P. Beak 和 J. L. Miesel, J. Am. Chem. Soc., 1967,89, 2375.25 A. M. Simonov, A. D. Garnovskii, Yu.N. Sheinker、B. I. Khristich 和 SS Trofimova、Zh. Obshch、Khim。, 1963, 33, 571 (Chem. Abstr., 1963,59, 5151d).26 T. A. Bryce 和 J. R. Maxwell,Chem. Commun.,1965 年,第 206 页。27 R. G. Amiet 和 R. B. Johns, Aust. J. Chem., 1967,20,723.28 A. Tatematsu, H. Yoshizumi, E. Hayashi, and H. Nakata, Tetrahedron Lett., 1967, 2985.29 R. Grigg 和 B. G. Odell, J. Chem. Sac.乙, 1966,218.收到 3 I st Deceniber I982 ;P aper 2/2 I 93

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号