首页> 外文期刊>Journal of geophysical research >Field Line Resonance in the Hermean Magnetosphere: Structure and Implications for Plasma Distribution
【24h】

Field Line Resonance in the Hermean Magnetosphere: Structure and Implications for Plasma Distribution

机译:Field Line Resonance in the Hermean Magnetosphere: Structure and Implications for Plasma Distribution

获取原文
获取原文并翻译 | 示例
           

摘要

abstract_textpThe first statistical survey of field line resonance (FLR) events is presented using magnetometer data from the entire MErcury Surface, Space ENvironment, GEochemistry and Ranging mission. Ultralow-frequency waves are an important tool for the magnetoseismology of the Hermean magnetosphere; this study provides a completely new window onto the resonance structures and plasma density distribution in the Hermean magnetosphere. Here we assess resonance events from two categories-toroidal resonances characteristic of the classical picture of FLRs in the terrestrial magnetosphere driven by the Kelvin-Helmholtz instability and a more comprehensive approach including all observed transverse resonances with more relaxed polarization criteria. Two hundred twenty-three toroidal FLRs with characteristics consistent with Kelvin-Helmholtz-driven FLRs are found in the dayside Hermean magnetosphere. The fundamental frequencies of these waves are used to provide estimates of plasma mass density in the range of similar to 1-650 amu/cm(3). A further 343 transverse resonances are found which provide very similar density estimates to the Earth-like FLR population. Fundamental and harmonic frequencies from all 566 events are used to fit a power law to plasma mass density along the field lines. The equatorial plasma mass density is predicted to vary approximately with R-7.5. The offset of the Hermean dipole into the northern hemisphere causes significant asymmetries in the standing wave structure. Due to the extreme warping (away from a dipolar configuration) of Mercury's magnetosphere by the solar wind, the fundamental toroidal mode is predicted to oscillate with a notably lower frequency than the fundamental poloidal mode, contrary to relative toroidal and poloidal frequencies modeled for Earth's magnetosphere./p/abstract_text

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号