首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >TheS,S-acetal to carbonyl transformation using the soft NO+or Cl+species
【24h】

TheS,S-acetal to carbonyl transformation using the soft NO+or Cl+species

机译:使用软NO+或Cl+物种的S,S-缩醛向羰基转化

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1983 The S,S-Acetal to Carbonyl Transformation using the Soft NO+ or Cl+ Species M. T. M.El-Wassimy, K. A. Jargensen * and S.-0. Lawesson Department of Organic Chemistry, Chemical Institute, University of Aarhus, DK-8000 Aarhus C, Denmark A series of S,S-acetals (spiro-l,3-dithiolanes, 1,3-dithiolanest and 3,s-dibenzyt acetals) have been converted into the corresponding carbonyl compounds by sodium nitrite in aqueous solution (NO +, H20NO+, CINO) or with t-butyl hypochlorite (Cl") in anhydrous CCI4. Mechanisms for these trans- formations are suggested, based on the Hard and Soft Acids and Bases (HSAB) principle. The transformation of S,S-acetals into the corresponding carbonyl compounds is an important reaction.' For it to be successful it is important that a soft (borderline) acid (soft acids: low energy of the frontier unoccupied orbitals 2, attacks the soft base (the sulphur of the S,S-acetal; soft bases: high energy of the occupied frontier orbitals ".A variety of procedures for the title transformation are known, as for example use of transition-metal ions (Ti4+, Cu2+, Cd2+, Ag+, and Hg2+), oxidation of sulphur to a higher oxidation state, or S-a1kylation.l As a continuation of our work on reactions of soft (borderline) electrophiles with thiocarbonyl compounds we have studied the transform- ation of S,S-acetals into the corresponding carbonyl com- pounds (Scheme 1)by two different methods: sodium nitrite in aqueous acid solution (NO+) (Method A) and t-butyl hypo- chlorite (Cl+)in anhydrous Cell (Method B).Scheme 1. Results and Discussion A series of spiro-1,3-dithiolanes (l), (3), and (9,1,3-dithio-lanes (6),(8), and (lo), and S,S-dibenzyl acetals (2), (4), (7), (9), and (11) have been prepared by standard methods and treated with sodium nitrite in ~M-HCI solution (Method A) or t-butyl hypochlorite in anhydrous CCl, (Method B) at room temperature. When 3 mol equiv. of NaNOz (excess) are are allowed to react with S,S-acetals in ~M-HC~or 2 mol equiv. of Bu'OCl (excess) withS,S-acetalsin CCl, at room temperature the corresponding carbonyl compounds are formed after a relatively short time (see Table) and isolated in most cases in reasonable yield. Inspection of these results (see Table) reveals that aromatic S,S-acetals are transformed into the corresponding carbonyl compounds in reasonable yields by both Method A and Method B.For the alicyclic S,S-acetals the yields of the transformation are somewhat lower. Further, it should be noted that S,S-acetals of heptanal produce low yields of heptanal, besides a number of by-products when treated according to both methods. The advantages of using sodium nitrite in ~M-HC~or t-butyl hypochlorite in anhydrous CCI,, for the deprotection of the S,S-acetals are the mild reaction conditions and the simplicity of work-up together with the ready availability and cheapness of the compounds. Comparing the transformation of 0,O-acetals and S,S-acetals into their corresponding carbonyl compounds, it should be noted, that the choice of reagents is crucial.Hydrolysis of O,O-acetals and orthoesters is carried out by Table. Reaction of S,S-acetals with NaNOz in ~M-HC~(Method A) or Bu'OCI in anhydrous CCI, (Method B) Method A Method B Reaction Reaction Compd. time(h) 1 7 time (h) 1 88 1 94 1 100 4 43 20 24 20 42 20 55 0.25 88 1SO 65 1 67 2 94 5 100 0.25 90 1 100 1 80 1 100 1 70* 6 48 1 t 24 83 51 * Together with some unidentified products. t Complicated mixture of by-products (seems to contain carbonyl compound). mineral acids (H+),whereas S,S-acetals are transformed into the corresponding carbonyl compounds by transition-metal ions (Ti4+, Cuz+, Ag+, Cd2+, Hg2+), oxidation of sulphur, or S-alkylation.These differences can be accounted for by MO theory and the theory of Hard and Soft Acids and Bases (HSAB). Ward acids (electrophiles) are generally positively charged and have a relatively high LUMO energy (e.g.cations of the more positiveelementsofthePeriodicalTable:H+,Li+, Na+, K+)whereas soft acids (electrophiles) have low energy and do not necessarily have a positive charge. Hard nucleophiles (bases) are generally negatively charged and have a relatively low HOMO energy anions centred on the electronegative elements (e.g. OH-) and soft nucleophiles have a relatively high HOMO energy and do not necessarily have a negative charge (e.g. t hiocyanates). O,O-Acetals are hard, and are hydrolysed by the hard H+,5 due to the favourable hard-hard interaction, which gives a significant contribution to the Coulomb term in the Klopman equation equation (l) Coulonib term Frontier orbital term AE = qnucl'qetec 2(cnucl.Celec*P) +E I-EHOMO-~LUMO S,S-AcetaIs are soft, and are transformed into the corre- sponding carbonyl synthons by soft acids, and the orbital term in equation (1) is most important. Orbital-controlled reactions are soft-soft interactions and are exothermic; some of the reactions studied in this investigation are, in fact, exothermic. The electrophiles used here for the S,S-acetal-+ carbonyl cp aR2 J.CHEM. SOC. PERKIN TRANS. I 1983 isobutylene, the thiol, and the corresponding carbonyl com- pound.S-Benzyl thionitrite' (12) has been isolated in low yield and was characterized on the basis of i.r. and mass R1 spectral evidence see equation (2)J. Compound (12) is also R' R2 (1) R1 ,R2 = -S-CH,-CH~-S-(3) R',R*=-S-CH,-CH~-S-2 PhCH2-S-NO ---3~-PhCH2-S-S-CH2Ph + 2 NO (2) (2) R'= R2=-S-CH2Ph (4)R', R2=-S-CH2 Ph (12) (1 3) known to form dibenzyl disulphide (13) and nitrogen oxide,' which accounted for the isolation of (13) from all the reactions /R' with S,S-dibenzyl acetals. It is also envisaged, that the soft sulphenyl chloride (RSCI), formed by Method B can also fJCYR' attack the soft sulphur of (I) or (11) to give (13). It is well known from nitrosation reactions that anions such as C1- and SCN- increase the reaction rate and yields.' (5) (6) R' ,R2 =--S-CHZ-CHZ-S Preliminary investigations seem to indicate that when Method f 7) R' ,R2 =-S-CHzPh A is used for the transformation of (1) and (3) into the corresponding carbonyl compounds by the presence of SCN-in the reaction mixture, the yields of the carbonyl compounds increase by 14 and 63, respectively (the same reaction time). Further work is in progress to elucidate the effect.C5H11-C-Me s' 's U Experimental 'H N.m.r. spectra were recorded at 60 MHz on a Varian (8) R',R2=-S-CH,-CHz-S-(10) EM 360 spectrometer, SiMe, being used as an internal (9)R',R2=-S-CH2Ph standard. 1.r. spectra were recorded on a Beckman IR 18 spectrometer. Mass spectra were recorded on a Micromass 7070F spectrometer operating at 70 eV using a direct inlet.Microanalyses were carried out by L~vens Kemiske Fabrik, DK-2750 Ballerup (Microanalytical Lab.). The starting compounds were prepared according to known method^.^ (11 1 General Procedure.-Sodium nitrite in aqueous acid solution. Method A. The S,S-acetal (5 mmol) was mixed with ~M-HC~ (15-20 ml) (CH2Ci2 was also used if the S,S-acetal was 4-transformation are NO+ (H,ONO and ClNO of which the insoluble in the acidic medium) and NaN02 (15 mmol) in last one is assumed to be present when HCI is used as acid) or water (5-10 ml) was added dropwise with vigorous stirring Cl+. Both NO+ (borderline) and C1+ are soft.2 The first step at room temperature; the reaction times are given in Table 1. in the reaction is the attack of X+ (X = NO or C1) at the The reaction mixture was extracted with CHzClz and the soft sulphur of the S,S-acetal (I) giving (11): combined organic layers were washed with water and dried (MgSO,).The organic phase was evaporated and then subjected to column chromatography on silica gel with CH2C12 as eluant. The products were identical ('H n.m.r., i.r. and mass spectra and m.p.) with authentic samples of the carbonyl compounds. t-Butyl hypochlorite in anhydrous CCl,. Method B. The S,S-acetal (5 mmol) was mixed with anhydrous CC14 (15-20 ml) and Bu'OCI (10 mmol) in anhydrous CCl, (5 ml) was added dropwise with vigorous stirring at room temperature; the reaction mixture was worked up as above. Acknowledgements Thanks are expressed to DANIDA for a post-doctoral fellowship to one of us (M.T. M. E.-W.). Met hod A )=O Method B References 1 (a) B.-T. Grobel and D. Seebach, Synthesis, 1977, 6, 357 and Scheme 2. references therein: (6) N. J. Cussans, S. V. Ley, and D. H, R. Barton, J. Chern. Soc., Perkin Trans. I, 1980, 1654 and references therein; (c) G. A. Olah, S. C. Narang, G. F. Salem, and B. G. B. Gupta, Synthesis, 1979, 4, 274; (d) H. Ikehira, S. Tanimoto, T.By Method A RSNO is substituted by water, and subsequent Oida, and M. Okano, ibid., 1982, 12, 1087.decomposition produces the carbonyl compound and the 2 (a) R. G. Pearson, 'Hard and Soft Acids and Bases,' Dowden, thiol. Similarly, t-butoxide and (11) give the sulphenyl chloride Hutchinson, and Ross, Inc., 1973, and references therein; and an 0,s-acetal, of which the last one decomposes to give (b) T.-L. Ho, 'Hard and Soft Acids and Bases Principle in J.CHEM. SOC. PERKIN TRANS. I 1983 Organic Chemistry,’ Academic Press, London and New York, 1977. 3 (a) K. A. Jsrgensen, A. B. A.-G. Ghattas, and S.-0. Lawesson, Tetrahedron, 1982, 38, 1163; (b) K. A. Jsrgensen, M. T. M. El-Wassimy, and S.-0. Lawesson, ibid., 1983, 39, 469; (c) K. A. Jsrgensen and S.-0. Lawesson, Chemica Scripta, 1982, 20, 227; (d) M. T. M. El-Wassimy, K. A. Jprrgensen, and S.-0. Lawesson, Tetrahedron, 1983, 39, 1729. 4 (a) A. Schoenberg and 0. Schutz, Liebigs Ann. Chem., 1927, 454, 47; (b) H. J. Bacher and A. F. Tainoma, Reel. Trav. Chim. Pays-Bas, 1938,57, 1183; (c)H. Hauptmann and M. M. Campos,J. Am. Chem. Soc., 1950, 72, 1405; (d) T. Posner, Chem. Ber., 1902,35, 2343; (e) H. Fasbender, ibid., 1888, 21, 1473; (f)E. E. Reid and A. Jelinek, J. Org. Chem., 1950, 15, 448; (g) L. F. Fieser, J. Am. Chem. SOC.,1954,76, 1945; (h)B. C. Newman and E. L. Eliel, J. Org. Chem., 1970, 35, 3641. 5 E. H. Cordes and H. G. Bull, Chem. Reu., 1974, 74, 581. 6 G. KIopman, J. Am. Chem. Soc., 1968,90,223. 7 S. Oae, D. Fukushima, and Y. H. Kim, J. Chem. Suc., Chem. Commun., 1977,407. 8 (a) J. H. Ridd, Q.Rev., 1961, 15, 418; (b)E. Boyland and S. A. Walker, Nature, 1974, 248, 601. Received 28th February 1982; Paper 3/313
机译:J. CHEM. SOC. PERKIN 译.I 1983 使用软 NO+ 或 Cl+ 物种的 S,S-缩醛到羰基转化 M. T. M.El-Wassimy, K. A. Jargensen * 和 S.-0.劳森 奥胡斯大学化学研究所有机化学系, DK-8000 奥胡斯 C, 丹麦 一系列S,S-缩醛(螺-l,3-二硫代缩醛、1,3-二硫代缩醛和3,S-二苄缩醛)在水溶液(NO +、H20NO+、CINO)中或与次氯酸叔丁酯(Cl“)在无水CCI4中转化为相应的羰基化合物。根据硬酸和软酸碱 (HSAB) 原理,提出了这些转形成的机制。S,S-缩醛转化为相应的羰基化合物是一个重要的反应。为了取得成功,重要的是软(临界)酸(软酸:前沿未占据轨道 2 的低能量)攻击软碱(S,S-缩醛的硫;软碱:被占领的前沿轨道的高能”。已知标题转化的多种程序,例如使用过渡金属离子(Ti4+、Cu2+、Cd2+、Ag+ 和 Hg2+)、将硫氧化为更高的氧化态或 S-a1 酰基化。l 作为我们研究软(临界)亲电试剂与硫代羰基化合物反应的延续,我们研究了通过两种不同的方法将S,S-缩醛转化为相应的羰基化合物(方案1):亚硝酸钠在水溶液(NO+)(方法A)和次氯酸叔丁酯(Cl+)在无水电池中(方法B)。方案 1.结果与讨论 采用标准方法制备了一系列螺-1,3-二硫醇(l)、(3)和(9,1,3-二硫代-lanes(6)、(8)和(lo)以及S,S-二苄基缩醛(2)、(4)、(7)、(9)和(11),并在室温下用亚硝酸钠在~M-HCI溶液(方法A)或次氯酸叔丁酯在无水CCl溶液(方法B)中处理。当允许3mol当量的NaNOz(过量)与~M-HC~中的S,S-缩醛或2mol当量的Bu'OCl(过量)与S,S-缩醛CCl反应时,在室温下,在相对较短的时间内形成相应的羰基化合物(见表),并且在大多数情况下以合理的收率分离。通过观察结果(见表),芳香族S,S-缩醛通过方法A和方法B均以合理的收率转化为相应的羰基化合物。此外,应该注意的是,庚醛的S,S-缩醛产生低产率的庚醛,此外,当根据这两种方法处理时,除了许多副产物。在~M-HC~中使用亚硝酸钠或在无水CCI中使用次氯酸叔丁酯对S,S-缩醛进行脱保护的优点是反应条件温和,后处理简单,化合物易于获得且价格低廉。比较0,O-缩醛和S,S-缩醛转化为相应的羰基化合物,应该注意的是,试剂的选择至关重要。O,O-缩醛和原酯的水解由Table进行。S,S-缩醛与NaNOz在~M-HC~(方法A)或Bu'OCI在无水CCI中的反应,(方法B)方法A方法B反应反应化合物 时间(h) % 1 7 次(h) % 1 88 1 94 1 100 4 43 20 24 20 42 20 55 0.25 88 1SO 65 1 67 2 94 5 100 0.25 90 1 100 1 80 1 100 1 70* 6 48 1 t 24 83 51 * 连同一些身份不明产品。t 副产物的复杂混合物(似乎含有羰基化合物)。无机酸(H+),而S,S-缩醛则通过过渡金属离子(Ti4+、Cuz+、Ag+、Cd2+、Hg2+)、硫氧化或S-烷基化反应转化为相应的羰基化合物。病房酸(亲电试剂)通常带正电,并且具有相对较高的LUMO能量(例如,PeriodicalTable:H+,Li+,Na+,K+的正元素的阳离子),而软酸(亲电试剂)具有较低的能量,不一定带正电荷。硬核亲核试剂(碱基)通常带负电荷,具有相对较低的HOMO能量[以电负性元素为中心的阴离子(例如OH-)],而软亲核试剂具有相对较高的HOMO能量,不一定带负电荷(例如硫氰酸酯)。O,O-缩醛是硬的,由于有利的硬-硬相互作用而被硬 H+,5 水解,这对 Klopman 方程中的库仑项做出了重大贡献 [方程 (l)] 库克隆项 前沿轨道项 AE = qnucl'qetec 2(cnucl.Celec*P) +E I-EHOMO-~LUMO S,S-AcetaI是软的,被软酸转化为相应的羰基合成子,式(1)中的轨道项最为重要。轨道控制反应是软-软相互作用,是放热的;事实上,本研究中研究的一些反应是放热的。这里用于 S,S-缩醛-+ 羰基 c&p aR2 J.CHEM. SOC. PERKIN TRANS.I 1983年将异丁烯、硫醇和相应的羰基化合物结合。S-苄基亚硫酸盐'(12)在低产率下被分离出来,并根据i.r.和质量R1光谱证据进行了表征[见公式(2)J。化合物 (12) 也是 R' R2 (1) R1 ,R2 = -S-CH,-CH~-S-(3) R',R*=-S-CH,-CH~-S-2 PhCH2-S-NO ---3~-PhCH2-S-S-CH2Ph + 2 NO (2) (2) R'= R2=-S-CH2Ph (4)R', R2=-S-CH2 Ph (12) (1 3) 已知形成二苄基二硫化物 (13) 和氮氧化物,' 这解释了 (13) 从所有反应中分离出 /R' 与 S,S-二苄基缩醛。还设想,通过方法B形成的软硫氯化物(RSCI)也可以fJCYR'攻击(I)或(11)的软硫,得到(13)。众所周知,从亚硝化反应中可以看出,C1-和SCN-等阴离子可以提高反应速率和产率。(5) (6) R' ,R2 =--S-CHZ-CHZ-S 初步研究表明,当使用方法f 7)R',R2 =-S-CHzPh A在反应混合物中加入SCN-将(1)和(3)转化为相应的羰基化合物时,羰基化合物的收率分别提高了14%和63%(相同的反应时间)。目前正在开展进一步的工作,以阐明其影响。在瓦里安 (8) R',R2=-S-CH,-CHz-S-(10) EM 360 光谱仪 SiMe 上以 60 MHz 记录 C5H11-C-Me s' 的 U Experimental 'H N.m.r. 谱图,用作内部 (9)R',R2=-S-CH2Ph 标准品。1.r.光谱记录在Beckman IR 18光谱仪上。质谱图是在工作电压为70 eV的Micromass 7070F光谱仪上记录的,使用直接入口。微量分析由 L~vens Kemiske Fabrik, DK-2750 Ballerup(微量分析实验室)进行。起始化合物按已知方法制备^.^ (11 1 General Procedure.-亚硝酸钠在酸水溶液中制备。方法 A.将S,S-缩醛(5 mmol)与~M-HC~(15-20 ml)(如果S,S-缩醛为4-转化,则使用CH2Ci2,如果其4-转化分别为NO+(H,ONO和ClNO,其中不溶于酸性介质)和NaN02(15 mmol),则在HCI用作酸时假设存在NaN02(15 mmol)或水(5-10ml),并在剧烈搅拌下滴加Cl+。NO+(临界)和C1+都是软的.2室温下的第一步;反应时间见表1。在反应中是X+(X=NO或C1)在反应混合物中用CHzClz和S,S-缩醛(I)的软硫萃取,得到(11):结合的有机层用水洗涤并干燥(MgSO,)。蒸发有机相,然后以CH2C12为洗脱液,在硅胶上进行柱层析。这些产品与羰基化合物的真实样品相同('H n.m.r.、i.r.和质谱图和m.p.)。次氯酸叔丁酯的无水CCl溶液,.方法 B.将S,S-缩醛(5 mmol)与无水CC14(15-20 ml)和Bu'OCI(10 mmol)在无水CCl中混合,在室温下剧烈搅拌下滴加(5 ml);反应混合物如上所述。致谢 感谢 DANIDA 为我们中的一个人 (M.T., M., E.-W.) 提供博士后奖学金。Met hod A )=O 方法 B 参考文献 1 (a) B.-T.Grobel 和 D.Seebach, Synthesis, 1977, 6, 357 and Scheme 2.其中的参考资料:(6) N. J. Cussans, S. V. Ley, and D. H, R. Barton, J. Chern.Soc., Perkin Trans.I, 1980, 1654 及其参考文献;(c) G. A. Olah, S. C. Narang, G. F. Salem, and B. G. B. Gupta, Synthesis, 1979, 4, 274;(d) H. Ikehira, S. Tanimoto, T.By 方法 A RSNO 被水取代,随后的 Oida, and M. Okano, 同上, 1982, 12, 1087.分解产生羰基化合物和 2 (a) R. G. Pearson, 'Hard and Soft Acids and Bases', Dowden, thiol.类似地,叔丁醇和(11)给出了磺酰氯Hutchinson,and Ross, Inc.,1973,以及其中的参考文献;和0,s-缩醛,其中最后一个分解得到(b)T.-L。Ho, 'Hard and Soft Acids and Bases Principle in J.CHEM. SOC. PERKIN TRANS.I 1983 有机化学,学术出版社,伦敦和纽约,1977 年。3 (a) K. A. Jsrgensen, A. B. A.-G.Ghattas 和 S.-0。Lawesson, 四面体, 1982, 38, 1163;(b) K. A. Jsrgensen, M. T. M. El-Wassimy, 和 S.-0.Lawesson, 同上, 1983, 39, 469;(c) K.A.Jsrgensen和S.-0.Lawesson, Chemica Scripta, 1982, 20, 227;(d) M.T.M.El-Wassimy、K.A.Jprrgensen和S.-0。劳森,四面体,1983,39,1729。4 (a) A. Schoenberg 和 0.Schutz, Liebigs Ann. Chem., 1927, 454, 47;(b) H.J.Bacher和A.F.Tainoma,卷轴。特拉夫·奇姆。Pays-Bas,1938,57,1183;(c)H. Hauptmann 和 M. M. Campos,J. Am. Chem. Soc., 1950, 72, 1405;(d) T. Posner, Chem. Ber., 1902,35, 2343;(e) H. Fasbender,同上。, 1888, 21, 1473;(f)E. E. Reid 和 A. Jelinek, J. Org. Chem., 1950, 15, 448;(g) L. F. Fieser, J. Am. Chem. SOC.,1954,76, 1945;(h)B. C. Newman 和 E. L. Eliel, J. Org. Chem., 1970, 35, 3641.5 E. H. Cordes 和 H. G. Bull, Chem. Reu., 1974, 74, 581.6 G. KIopman, J. Am. Chem. Soc., 1968,90,223.7 S. Oae, D. Fukushima, and Y. H. Kim, J. Chem. Suc., Chem. Commun., 1977,407.8 (a) J. H. Ridd, Q.Rev., 1961, 15, 418;(b)E. Boyland 和 S. A. Walker,《自然》,1974 年,第 248 页,第 601 页。收稿日期: 1982-02-28;文件3/313

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号