首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Nucleophilic displacements ofN-aryl and heteroaryl groups. Part 3. Pyrylium-mediated synthesis of unsymmetrical diarylamines from anilines
【24h】

Nucleophilic displacements ofN-aryl and heteroaryl groups. Part 3. Pyrylium-mediated synthesis of unsymmetrical diarylamines from anilines

机译:N-芳基和杂芳基的亲核置换。第 3 部分。芘介导的苯胺不对称二芳胺合成苯胺

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1983 261 1 Nucleophilic Displacements of N-Aryl and Heteroaryl Groups. Part 3.' Pyryl ium -med iated Synthesis of Unsymmet rical Diarylamines from AniI ines Alan R. Katritzky and Andrew J. Cozens Department of Chemistry, University of Florida, Gainesville, Fla. 3261 1,U.S.A., and School of Chemical Sciences, University of East Englia, Norwich, NR4 7JJ 2-Ethoxycarbonyl-4,6-diphenylpyrylium salts (1) reacted with various ring-substituted anilines to give the corresponding pyridinium salts (2) (average yield 90) ; these were hydrolysed to the pyridinium betaines (3) (75) and treated with thionyl chloride followed by an aniline to give the amides (4) (70).Refluxing in toluene with sodium hydride for 12 h transfers intramolecularly the 1 -aryl group of the pyridinium salt (4) to the nitrogen of the amide.Aqueous work-up cleaves (6) and the diarylamine is purified by sublimation (60) (overall yield ca. 30). Diarylamines have been prepared from anilines by copper- catalysed condensation with an aryl halide, the Ullmann reaction,2a typically in pentyl alcohol at 130 "Cin the presence of a base to remove the liberated hydrogen halide. The yields of diarylamines are strongly dependent on the nature of the ring substituents. Activating groups in the aryl halide give rise to good yields (80-90) whilst their absence leads to greatly reduced yields as does low nucleophilicity of the aniline as caused by electron-withdrawing meta-or para-or any ortho-substituents.2b For diarylamines that contain no nitro or carboxy groups, the Goldberg reaction 3*4 can be used; the aniline is first con- verted into an N-acylaniline and then treated with aryl halides in nitrobenzene at 180 "Cand finally hydrolysed.Diarylamines also result by treating an aniline with a phenol5 at 250 "C with antimony trichloride as a catalyst. Nitrobenzene and phenylmagnesium bromide were reported to give diphenylamine (45).6 Certain symmetrical diaryl- amines are formed by pyrolysis of equimolar amounts of the aniline and its hydrochl~ride.~ Another method of preparing diarylamines is the Smiles rearrangement of amide~,~ but this requires a strongly elec- tron-withdrawing group ortho or para to the displaced group. All diarylamines prepared by this method contain at least one nitro substituent.The amide is refluxed in ethanolic sodium ethoxide for 15-20 min, and yields are generally 60-80 depending on the degree of acti~ation.~ The five-step synthesis of diarylamines from anilines via the Chapman rearrangement of imino ethers (Scheme 1) *JOJ~ gives overall yields of ca. 30. The anilines and acid chloride form the amides (75) which are converted by phosphorus pentachloride into imino halides (70).13 Treatment with a substituted phenol forms the imino ethers (700/0),14 which undergo thermolysis (200-300 "C) to the amides and on hydrolysis give diarylamines (85-90). Electron-withdraw-ing groups in the displaced aryl nucleus enhance the rearrange- ment, whereas reduced yields are obtained if electron-donating substituents are present? PCl5 RCOCl -k ArNH2 --+ RCONHAr -RCCI: NAr IAr'OH tOH-Heat ArAr'NH -RCONArAr' -RC(0Ar'):NAr None of the aforementioned methods constitutes a general preparation of diarylamines containing thermally sensitive but no activating substituents.Our search for a mild method for the conversion of anilines into other functionalities via pyridinium salts has demon- strated l5 that, whereas intermolecular nucleophilic displace- ments of 1-aryl substituents occurs only at high temperature, if at all, if a suitable nucleophilic centre is built into the molecule intramolecular nucleophilic displacement can occur under relatively mild conditions. Such displaced aryl groups need not contain activating ~~b~tifuents.*~'~ We now describe a Ar (2) Ph -Ph vi Phnc+oN+ II Ar N H Ar' /.i i Ph + ArAr'NH PhQc+o I Nt3+ Ar ONAr' (7 1 (6) (For designations of Ar and Ar' in (2), (3), (4), (3,(6), and (8) see Tables 1, 3, 5, and 7) Scheme 1.Preparation of diarylamines by the Chapman rearrange- Scheme. Reugents: i, ArNH2; ii, NaOH-H20; iii, SOClz; iv, ment Ar"H2; v, HBF,; vi, PhMe-NaH; vii, Heat; viii, HzO 2612 J. CHEM. SOC. PERKIN TRANS. I 1983 Table 1. Preparation of l-aryl-2-ethoxycarbonyl-4,6-diphenylpyridiniumsalts Found () (Required )Time Yield r-PCompd. 1-Substituent Anion Solvent (h) () M.p." ("C) C H N (2a) Ph BF4 CHzCIz 2 95 184-186' (2a) Ph CF3SO3 CHzClz 3 90 160-162 61.2 4.1 2.6 (61.2 4.2 2.7)67.3 5.0 2.9 (67.0 4.8 2.9)59.8 4.3 2.5 (59.7 4.4 2.6)(2C) 4-ClGH4 BF4 CHzClz 3 77 185-187 62.2 4.0 2.7 (62.2 4.2 2.8)(2d) 4-MeOC6H4 BF4 CHzClz 3 92 176-177 64.9 4.9 2.8 (65.2 4.8 2.8)(2e) 4-NOzC6H4 BF4 EtOH 8 84 189-190 60.6 4.1 5.4 (60.9 4.1 5.5) Recrystallised from 95 EtOH. Lit.,'* m.p.185-186 "C. Table 2. *HN.m.r." of 1-aryl-2-ethoxycarbonyl-4,6-diphenylpyridiniumsalts Aromatic protons of 1-substituent 0-0-3-CH 5-CH (m) CHzCH3 CHzCHj h(1 H, d, (1 H, d, 4,6-Diphenyl (2 H, q, (3 H, t, Other Compd. 1-Substituent J 2) J 2) (10 H, m) 6 H 6 H J 7) J7) (3 H, s) (2a) Ph 8.30 8.10 7.25-7.65 7.80 3 6.90 2 4.15 1.05 -(2b) 4-MeC6H4 8.35 8.05 7.20-7.60 7.80 2 6.90 2 4.10 0.95 2.22 (2C) 4-ClC6H4 8.45 8.05 7.25-7.60 7.80 2 7.10 2 4.20 1.05 -(2d) 4-MeOC 8.40 8.15 7.15-7.60 7.80 2 6.75 2 4.20 1.10 3.78 (2e) 4-NOzC6H4 8.30 8.15 7.10-7.45 7.75 2 7.05 2 4.30 1.15 -G(CDC13),J in Hz.Table 3. Preparation of 1 -aryl-4,6-diphenylpyridinium-2-carboxylates Found () Required () AYield a r-7 Molecular r-v Compd. 1-Substituent () M.p. ("C) C H N formula C H N (3a) Ph 85 150-151 81.6 4.9 3.8 Cz4Hi,NO2 82.0 4.9 4.0 (3 b) 4-MeC6H4 86 162-1 63 82.2 5.2 3.8 CzSH19NOz 81.8 5.1 3.6 (3C) 4-ClCsH4 73 146-148 71.1 4.5 3.5 CZ~H~~C~NOZ.H~O71.4 4.5 3.5 (3d) 4-MeOC,H4 69 141-142 71.4 4.9 3.1 C2sH1sN03.2HzO 71.6 4.5 3.3 (3e) 4-NO2CsH4 68 155-156' Reactions carried out in water at 25 "C for 24 h. 'Lit.," m.p. 150 "C. Hygroscopic, characterised from spectral data.method of preparing diarylamines from anilines via 1-aryl-ethoxide failed. However pyridinium betaines (3a-d) re-pyridinium salts which have an amide functionality at the 2- fluxed in dichloromethane with thionyl chloride and pyridine position. gave the acid chloride, converted in situ by an added aniline into the 2-(N-arylcarbamoyl)pyridinium salts (4a-i) (ca. Preparation of 1-Aryl-2-ethoxycarbonyl-4,6-diphenylpyrid-70) (Table 5). inium Salts (2) and the Corresponding Betaines (3).-2-Ethoxy-carbonyl-4,6-diphenylpyrylium (1) tetrafluoroborate l6 and Intramolecular Rearrangement of 2-(N-ArylcarbamoyZ)-trifluoromethanesulphonate were prepared as previously pyridinium Salts (4).-Initially, 2-(N-arylcarbamoyl)pyridin-described from benzylideneacetophenone and ethyl pyruvate.ium salts (4) were treated with base at 25 "C in attempts to The pyrylium salts (1) smoothly reacted with a series of ring- form the amido anion (5) as an isolable zwitterion; experi- substituted anilines in dichloromethane to give l8 the cor-ments using bases such as hydride and ethoxide in tetra- responding pyridinium salts (2a-e) (ca. 90) (Table 1). hydrofuran or ethanol indicated, however, that complete Basic hydrolysis of (2a-e) with aqueous sodium hydroxide at conversion into the amido anion did not occur. Amide anions ambient temperature gave l8 the corresponding betaines are frequently difficult to isolate." However reaction in re- (3a-e) (ca. 75) (Table 3). fluxing toluene with sodium hydride forms the amide anion (5) in situ and causes spontaneous rearrangement into the pyri- Preparation of l-Aryl-2-(N-arylcarbanzoyl)-4,6-diphenyl-dine derivative (6).Removal of the solvent and addition of pyridinium Salts (4).-Initial attempts to prepare the pyridin- water results in cleavage of (6) into the sodium salt of 2,4-ium amides (4)by reaction of 2-ethoxycarbonylpyridinium diphenylpicolinic acid (7) and the diarylamine (8). The acid salts (2) with aniline and also in the presence of bases such as (7) was obtained on acidification. The diarylamine (8) was 2613J. CHEM. SOC. PERKIN TRANS. I 1983 Table 4. 'H N.m.r." of 1-aryl-4,6-diphenylpyridinium-2-carboxylates Aromatic protons of 1-substituent3-CH 5-CH (1 H, d, (1 H, d, 4,6-Diphenyl (m) > OtherI Compd.1-Substituent J 2) J 2) (10 H, m) 6 H 6 €3 (3 H, s) (34 Ph 8.15 7.94 7.30-7.42 7.64 3 7.05 2 -(3b) 4-M 8.18 7.90 7.30-7.53 7.66 2 7.05 2 2.26 (3c) 4-ClC6H4 8.08 7.87 7.25-7.45 7.60 2 7.15 2 -(34 4-MeOC6H4 8.12 7.88 7.25-7.50 7.60 2 7.10 2 3.75 (3e) 4-NOzCsH4 8.05 7.90 7.28-7.45 7.65 2 7.05 2 -6(CDC13),J in Hz. Table 5. Preparation of 1-aryl-2-(N-arylcarbamoyl)-4,6-diphenylpyridiniumtetrafluoroborates Found ()(Required )I + Time YieldCompd. N-Ar CONHAr' (min) () M.p." ("C) r C H N 3 Molecular formula 80 68 141 -1 43 67.6 4.9 5.3 C~~H~JBF~N~O*H~O (67.7 4.7 5.3) 135 72 245-247 70.4 4.8 5.3 (70.5 4.8 5.3)75 65 265-267 73.2 5.0 5.2 (73.3 5.0 5.2) 135 70 252-254 63.7 4.5 4.8 (64.0 4.5 4.8)135 63 257-259 68.6 4.7 5.0 (68.8 4.8 5.0) 135 72 248-250 68.5 4.7 -(68.8 4.8 5.0) 135 60 238-240 63.8 4.6 4.8 (64.0 4.5 4.8)75 68 270-272 66.7 4.6 4.9 (66.9 4.7 4.9)135 74 185-1 88 69.8 5.0 -(69.4 5.1 4.4) a Obtained as needles, recrystallised from methanol.obtained by sublimation at 150-180 "C/3.5 mmHg (ca. 60) state. Dipolar Meisenheimer spiro complexes have been (Table 7). observed 2o as intermediates in aryl migrations. Such com- plexes have been postulated for Smiles, Chapman, Stevens, 'H N.m.r. Spectra.-All the compounds were characterised and Newman-Kwarts rearrangements 21 and are likely to be spectroscopically. l-Aryl-2-ethoxycarbonyl-4,6-diphenyl-formed in the presently reported reaction. pyridinium salts (2a-e) and the corresponding betaines (3a-e) show characteristic 'H n.m.r. spectra in complete Synthetic Utility of Present Material.-This synthesis of accord with previously described l8 members of these com- diarylamines from anilines has synthetic potential as well as pound classes.The 3-CH and 5-CH signals appear as doublets mechanistic interest. The overall yields are comparable to (J2 Hz) in the region of 6 8.1 and 8.3 respectively; the ethyl those obtained from the Chapman rearrangement from ester groups of (2a-e) are seen near 6 4.1 and 1.0 and are anilines, however activation is not needed and the process absent from the betaines (3a-e) (Tables 2 and 4). does not require the use of high temperatures. The pyridinium substituted amides (4a-i) show 3-CH and 5-CH doublet resonances at 6 9.0 and 8.7 (J 2 Hz) shifted downfield possibly due to the anisotropic effects of the aryl- Experimental amido group.'H N.m.r. spectra were recorded with a Varian EM 360L The pyridinium 1-aryl group shows the two protons closest spectrometer using Me4 as a standard. 1.r. spectra were to the electronegative atom shifted downfield at 6 8.3, the obtained using NaCl plates on a Perkin-Elmer 283B spectro- remaining protons are observed at ca. 6 7.2. The aryl group photometer as solutions in CHBr3. Melting points were record- of the amide function is seen at 6 7.20-7.60, NH as a broad ed on a Kofler hot-stage apparatus and are uncorrected. singlet at ca. 6 2.5. The following were prepared by using literature methods: 2-ethoxycarbonyl-4,6-diphenylpyrylium tetrafluoroborate Mechanism.-Our results show that nucleophilic substitu- (m.p.153-155 "C; lit.,16 m.p. 154 "C) and trifluoromethane- tion of an unactivated aryl nucleus occurs if the system is sulphonate (m.p. 182 "C; lit.,17 m.p. 182-183 "C). designed so that the nucleophile is held in close proximity to the carbon which bears the leaving group. In this system aryl General Method for the Preparation of 1 -Aryl-2-ethoxy- displacement occurs via a five-membered transition state; carbonyl-4,6-d@henylpyridinium Tetrafluoroborates and Tri-previous results 1*15 in which aryl displacement occurs, using fluoromethanesulphonates (2).-The arylamine (3.3 mmol) a different system, involved a six-membered cyclic transition was added at 25 "C to a suspension of 2-ethoxycarbonyl-4,6- 2614 J. CHEM.SOC. PERKIN TRANS. I 1983 Table 6.'H N.m.r." of 1-aryl-2-(N-arylcarbamoyl)-4,6-diphenylpyridiniumtetrafluoroborates 3-CH 5-CH -r (1 H, d, (1 H, d, 4,6-Diphenyl-HN-Ar J 2) J 2) (10 H, m) 9.08 8.75 7.35-7.85 8.72 8.55 7.42-7.98 9.05 8.73 7.30-7.83 9.13 8.83 7.3 3-8 .OO 9.00 8.72 7.32-7.80 9.03 8.76 7.30-7.93 8.95 8.65 7.20-7.80 9.02 8.75 7.30-7.9 1 9.07 8.77 7.50-7.97 ArH 7 -(m) NH CH3 Compd. 6 H 6 H (1 H, s) (3 H, s) 8.30 2 7.20 3 7.20-7.50 2.44 -8.00 2 7.28 3 7.28-7.60 2.45 2.44 8.30 2 7.20 2 7.20-7.55 2.50 2.20,2.26 8.43 2 7.26 2 7.16-7.66 2.56 2.27 8.32 2 7.20 2 7.20-7.55 2.46 2.25 3.66 8.33 2 7.23 2 7.15-7.60 2.43 2.13 3.66 8.23 2 7.10 2 7.10-7.50 2.33 2.10 -8.34 2 7.1 5 2 7.15-7.60 2.42 -3.63, 3.65 8.36 2 7.20 2 7.20-7.46 2.43 2.13 Table 7.Preparation of diarylamines Subln. pressure Lit. M.p. Compd. Ar Ar' Temp. ("C) (mmHg) Time (h) Yield () M.p. ("C) ("C) (8a) Ph Ph 150 3 2 65 52-53 53 a (8b) 4-MeC6H4 4-MeC6H4 180 3 2 65 73-75 78-79 (8c) 4-MeC6H4 4-PhC6H4 180 5 4 62 97-98 -(8d) 4-MeGH4 4-MeOGa 150 5 3 55 51-53 55 4-MeC6H4 4-ClC 180 5 2 58 81-83 85 (8f) Ph 4-MeCsH4 150 5 2 63 84-86 89 'I. Goldberg, Ber., 1907, 40, 4541. D. G. Daniels, F. T. Naylor, and B. C. Saunders, J. Chem. Soc., Perkin Trans. I, 1951, 3433. m/z259.1361 (M+. Calc. for CI9Hl7N: m,259.1362).A. R. Sen and A. K. Sen Gupta, J. Indian Chem. Soc., 1957, 34, 413. F. Ullmann, Liebigs Ann. Chem., 1907, 355, 312. Table 8. 'H N.m.r. spectra of diarylamines Aromatic protons 4-CHJGH4 ~-CHJOC~H~ NH (m) 6) (3 H, s) (1 H, s) 6.80-7.30 (10 H) 5.65 6.85-7.30 (8 H) 2.25 (6 H) 5.50 7.00-7.65 (13 H) 2.20 (3 H) 5.65 6.55-7.20 (8 H) 2.20 (3 H) 3.75 5.50 6.95-7.90 (8 H) 2.20 (3 H) 5.50 6.55-7.30 (9 H) 2.25 (3 H) 5.50 diphenylpyrylium salt (3 mmol) in CH2C1, (25 ml). The red white solid was filtered off and washed with water (500 ml) solution was stirred for the appropriate time (Table 1) at and Et20 (50 ml) to give the pyridinium-2-carboxylate (Table 25 "C. Concentration at 50 "C/25 mmHg and trituration of 3).the residue with Et20 gave the pyridinium salts which were recrystallised from 95 ethanol (Table 1).General Method for the Preparation of 1-Aryl-2-(N-aryl-carbamoyl)-4,6-diphenylpyridinium Tetrafluoroborates (4).-General Method for the Preparation of l-Aryl-4,6-diphenyl-Thionyl chloride (18 mmol) and pyridine (4 mmol) were added (6 mmol)pyridinium-2-carboxylates(3).-The 1-aryl-2-ethoxycarbonyl-to the l-aryl-4,6-diphenylpyridinium-2-carboxylate 4,6-diphenylpyridinium salt (10 mmol) was stirred at 25 "C in CH2C12(15 ml). The mixture was refluxed for 15 min and 25 ml, 12.5 mmol) for 24 h. The the arylamine (18 mmol) added; refluxing was then contin- under aqueous NaOH (0.5~; J. CHEM. SOC. PERKIN TRANS. I 1983 ued for the appropriate time (Table 5). The solvent was re- moved at 50 "C/25 mmHg, and the residue washed succes- sively with water (50 ml) and Et,O (50 ml).The resulting brown gum was dissolved in methanol (15 ml) and tetrafluoro- boric acid (10 mmol) was added to form, after cooling, the 2-(N-arylcarbamoy1)pyridinium tetrafluoroborate, which was recrystallised from methanol (Table 5). General Method for the Preparation of Diarylaniines (5). -The l-aryl-2-(N-arylcarbamoyl)-4,6-diphenylpyridinium tetrafluoroborate (3 mmol) was dissolved in toluene (30 ml), sodium hydride (99, 6 mmol) was added and the mixture refluxed for 12 h. The solvent was removed at 60 OC/lO mmHg and the resulting solid washed with water (40 ml) and filtered. Sublimation gave the diarylamine as needles (Table 7). 2,4-Diphenylpicolinic acid was obtained by acidification of the residue (m.p.150 "C,lit.,22 m.p. 150 "C). Acknowledgements We thank the S.E.R.C. and 3M Minnesota Research Ltd. for financial assistance and Dr. R. C. Patel for her interest. References 1 Part 2, preceding paper. 2 (a) F. Ullman, Chem. Ber., 1903, 36, 2382; (b) R. M. Acheson (ed.), ' Heterocyclic Compounds ;Acridines,' Wiley Interscience, p. 160. 3 T. L. Davis and A. A. Ashdown, J. Am. Chem. SOC., 1924, 46, 1051. 2615 4 P. E. Weston and H. Adkins, J. Am. Chem. SOC.,1928, 50, 859. 5 E. Miiller, ' Methoden der Organischen Chemie,' Georg Thieme, Verlag, Stuttgart, 1957, XI/l, 117. 6 H. Gilman and R. McCracken, J. Am. Chem. SOC., 1929, 51, 821. 7 W. Truce, E.Krieder, and W. Brand, Org. React., 1971, 18, 99. 8 J. W. Schulenburg and S. Archer, Org. React., 1965, 14, 1-51. 9 I. A. Solovbeva and A. G. Guseva, Zh. Org. Khim., 1968, 4, 1973. 10 E. Jones and F. G. Mann, J. Chem. SOC.,1956, 786. 11 M. Lippner and M. Tomlinson, J. Chem. SOC., 1956, 4667. 12 A. E. Arbuzov and V. E. Shishkin, J. Gen. Chem. USSR,1964, 34, 3628. 13 R. Bonnett, ' The Chemistry of the Carbon Nitrogen Double Bond,' p. 601, John Wiley and Sons, Inc., New York, 1975. 14 Sonntag, Chem. Rev., 1953, 52, 237. 15 A. R. Katritzky, R. T. Langthorne, H. Muathin, and R. C. Patel, J. Chem. SOC.,Perkin Trans. I, 1983, 2601. 16 A. R. Katritzky, A. Chermprapai, R. C. Patel, and A. Tarraga- Tomas, J, Org. Chem., 1982, 47, 492. 17 A. R. Katritzky, N. R. Dabbas, R. C. Patel, and A. J. Cozens, Recl. Trav. Chim. Pays-Bas, 1983, 102, 51. 18 A. R. Katritzky, R. Awartani, and R.C. Patel, J. Org. Chem., 1982, 47, 498. 19 B. C. Challis and J. A. Challis, ' The Chemistry of Amides,' p. 731, John Wiley and Sons, Inc., New York, 1975. 20 V. I. Minkin, L. P. Olekhnovich, and Y. A. Zhdanov, Acc. Chem. Res., 1981, 14, 210. 21 M. S. Newman, Acc. Chem. Res., 1972, 5, 354. 22 K. Dimroth, K. Vogel, and W. Kraft, Chem. Ber., 1968, 101, 2215. Received 21st December 1982; Paper 2/2134
机译:J. CHEM. SOC. PERKIN 译.I 1983 261 1 N-芳基和杂芳基的亲核置换。第 3 部分。Pyryl ium -med Synthesis of Unsymmet rical Diarylamines from AniI ines Alan R. Katritzky and Andrew J. Cozens 佛罗里达大学化学系,佛罗里达州盖恩斯维尔 3261 1,美国,和东英吉利亚大学化学科学学院,诺里奇,NR4 7JJ 2-乙氧羰基-4,6-二苯基吡喃盐 (1) 与各种环取代苯胺反应,得到相应的吡啶盐 (2) (平均收率 90%) ;将它们水解为吡啶甜菜碱 (3) (75%),并用氯化亚砜处理,然后用苯胺处理,得到酰胺 (4) (70%)。在甲苯中用氢化钠回流12小时,将吡啶盐(4)的1-芳基在分子内转移到酰胺的氮中。水性后处理裂解 (6),二芳胺通过升华 (60%) 纯化(总收率约 30%)。二芳胺已由苯胺经铜催化与芳基卤化物缩合制备,Ullmann反应,2a通常在戊醇中130“Cin存在碱以除去释放的卤化氢。二芳胺的产率很大程度上取决于环取代基的性质。芳基卤化物中的活化基团产生良好的产率(80-90%),而它们的缺失导致产率大大降低,苯胺的低亲核性也是如此,这是由吸电子的间位或对位或任何邻位取代基引起的.2b 对于不含硝基或羧基的二芳胺,可以使用戈德堡反应 3*4;苯胺首先转化为N-酰基苯胺,然后用芳基卤化物在硝基苯中处理,在180“Cand下最后水解。二芳胺也是通过在250“C下用苯酚5处理苯胺而产生的,三氯化锑作为催化剂。据报道,硝基苯和苯基溴化镁可得到二苯胺(45%).6 某些对称的二芳基胺是通过等摩尔量的苯胺及其盐酸~ride的热解形成的.~制备二芳胺的另一种方法是酰胺的Smiles重排~,~但这需要一个强烈的电撤回基团邻位或对位到位移基团.用该方法制备的所有二芳胺都含有至少一种硝基取代基。将酰胺在乙醇醇钠乙醇中回流15-20分钟,收率一般为60-80%,取决于活性~化程度.~ 通过亚胺基醚的查普曼重排(方案1)*JOJ~从苯胺中合成二芳胺的五步法,总收率约为30%。苯胺和酰氯形成酰胺(75%),被五氯化磷转化为亚胺卤化物(70%)。13 用取代的苯酚处理形成亚胺基醚 (700/0),14 亚氨基醚经热解 (200-300 “C) 为酰胺,水解时得到二芳胺 (85-90%)。置换芳基核中的吸电子基团增强了重排,而如果存在供电子取代基,则产率降低?PCl5 RCOCl -k ArNH2 --+ RCONHAr -RCCI: NAr IAr'OH tOH-Heat ArAr'NH -RCONArAr' -RC(0Ar'):NAr 上述方法均不构成含有热敏性但没有活化取代基的二芳胺的一般制备。我们寻找一种通过吡啶盐将苯胺转化为其他官能团的温和方法已经证明 l5,虽然 1-芳基取代基的分子间亲核置换仅在高温下发生,如果有的话,如果分子中内置合适的亲核中心,分子内亲核置换可以在相对温和的条件下发生。这种置换的芳基不需要含有活化的~~b~tifuents.*~'~ 我们现在描述一个 Ar (2) Ph -Ph vi Phnc+oN+ II Ar N H Ar' /.i i Ph + ArAr'NH PhQc+o I Nt3+ Ar ONAr' (7 1 (6) (关于 (2)、(3)、(4)、(3、(6) 和 (8) 中 Ar 和 Ar' 的名称,见表 1, 3、5 和 7) 方案 1.通过查普曼重新排列方案制备二芳基胺。Reugents:i,ArNH2;ii: NaOH-H20;iii: SOClz;iv, Ar“H2;v, HBF,;vi: PhMe-NaH;vii: 热;viii, HzO 2612 J. CHEM. SOC. PERKIN TRANS.I 1983 表 1.L-芳基-2-乙氧羰基-4,6-二苯基吡啶鎓盐的制备 (%)(所需百分比)时间收率 r-PCompd.1-取代基阴离子溶剂 (h) (%) M.p.”(“C)C H N (2a) Ph BF4 CHzCIz 2 95 184-186' (2a) Ph CF3SO3 CHzClz 3 90 160-162 61.2 4.1 2.6 (61.2 4.2 2.7)67.3 5.0 2.9 (67.0 4.8 2.9)59.8 4.3 2.5 (59.7 4.4 2.6)(2C) 4-ClGH4 BF4 CHzClz 3 77 185-187 62.2 4.0 2.7 (62.2 4.2 2.8)(2d) 4-MeOC6H4 BF4 CHzClz 3 92 176-177 64.9 4.9 2.8 (65.2 4.8 2.8)(2e) 4-NOzC6H4 BF4 EtOH 8 84 189-190 60.6 4.1 5.4 (60.94.1 5.5) 由95%环氧乙烷重结晶。Lit.,'* m.p.185-186 “C. 表 2.*HN.(英语:HN.) 1-芳基-2-乙氧羰基-4,6-二苯基吡啶鎓盐的MR 1-取代基的芳香质子 0-0-3-CH 5-CH (m) CHzCH3 CHzCHj h(1 H, d, (1 H, d, 4,6-二苯基 (2 H, q, (3 H, t, 其他化合物 1-取代基 J 2) J 2) (10 H, m) 6 H 6 H J 7) J7) (3 H, s) (2a) Ph 8.30 8.10 7.25-7.65 7.80 3 6.90 2 4.15 1.05 -(2b) 4-MeC6H4 8.35 8.05 7.20-7.60 7.80 2 6.902 4.10 0.95 2.22 (2C) 4-ClC6H4 8.45 8.05 7.25-7.60 7.80 2 7.10 2 4.20 1.05 -(2d) 4-MeOC& 8.40 8.15 7.15-7.60 7.80 2 6.75 2 4.20 1.10 3.78 (2e) 4-NOzC6H4 8.30 8.15 7.10-7.45 7.75 2 7.05 2 4.30 1.15 -G(CDC13),J in Hz.表3.1-芳基-4,6-二苯基吡啶-2-羧酸酯的制备 发现 (%) 所需 (%) A-7 分子 r-v 化合物 1-取代基 (%) M.p. (“C) C H N 式 C H N (3a) Ph 85 150-151 81.6 4.9 3.8 Cz4Hi,NO2 82.0 4.9 4.0 (3 b) 4-MeC6H4 86 162-1 63 82.2 5.2 3.8 CzSH19NOz 81.8 5.1 3.6 (3C) 4-ClCsH4 73 146-148 71.1 4.5 3.5 CZ~H~~C~NOZ.H~O71.4 4.5 3.5 (3d) 4-MeOC,H4 69 141-142 71.4 4.9 3.1 C2sH1sN03.2HzO 71.6 4.5 3.3 (3e) 4-NO2CsH4 68 155-156' 在水中以 25 “C 进行反应 24 h. 'Lit.”, m.p. 150 “C. 吸湿性,从光谱数据表征.通过 1-芳基乙醇从苯胺制备二芳胺的方法失败。然而,吡啶甜菜碱(3a-d)再吡啶盐在2-助熔剂处具有酰胺官能团,在二氯甲烷中具有氯化亚砜和吡啶的位置。得到酰氯,通过加入苯胺原位转化为2-(N-芳基氨基甲酰基)吡啶盐(4a-i)(约1-芳基-2-乙氧羰基-4,6-二苯基吡啶-70%)的制备(表5)。鎓盐 (2) 和相应的 Betaines (3).-2-乙氧基羰基-4,6-二苯基吡喃 (1) 四氟硼酸盐 l6 和 2-(N-芳基氨基甲胺基Z)-三氟甲磺酸酯的分子内重排制备为先前的吡啶盐 (4).-最初,用碱在25“C下处理2-(N-芳基氨基甲酰基)吡啶-描述的苯胺基苯乙酮和丙酮酸乙酯.鎓盐(4)试图 吡喃盐(1)与一系列环状酰胺阴离子(5)顺利反应,作为可分离的两性离子;在二氯甲烷中实验取代苯胺,使用四响应吡啶盐(2a-e)(约90%)中的氢化物和乙醇等碱给予l8(表1)。然而,氢呋喃或乙醇表明,(2a-e)在转化为酰胺阴离子时没有发生与氢氧化钠水溶液的完全碱性水解。酰胺阴离子在环境温度下给予l8相应的甜菜碱,往往难以分离。然而,反应在re-(3a-e)(约75%)(表3)。助熔剂甲苯与氢化钠原位形成酰胺阴离子 (5),并导致自发重排成吡啶 - 制备 l-芳基-2-(N-芳基芨酰基)-4,6-二苯基二衍生物 (6).除去溶剂并加入吡啶盐 (4).-制备吡啶-水的初始尝试导致 (6) 通过 2-乙氧羰基吡啶鎓二苯基吡啶甲酸 (7) 和二芳胺 (8) 的反应裂解成 2,4-鎓酰胺 (4) 的钠盐。酸化得到含有苯胺的酸盐(2)和在(7)等碱存在下得到的酸盐。二芳胺(8)为2613J. CHEM. SOC. PERKIN TRANS.I 1983 表 4.1-芳基-4,6-二苯基吡啶-2-羧酸酯的'H N.m.r.“ 1-取代基的芳香质子3-CH 5-CH (1 H, d, (1 H, d, 4, 6-二苯基 (m) > 其他I 化合物 1-取代基 J 2) J 2) (10 小时, 米) 6 小时 6 €3 (3 小时, 秒) (34 Ph 8.15 7.94 7.30-7.42 7.64 3 7.05 2 -(3b) 4-M&&8.18 7.90 7.30-7.53 7.66 2 7.05 2 2.26 (3c) 4-ClC6H4 8.08 7.87 7.25-7.45 7.60 2 7.15 2 -(34 4-MeOC6H4 8.12 7.88 7.25-7.507.60 2 7.10 2 3.75 (3e) 4-NOzCsH4 8.05 7.90 7.28-7.45 7.65 2 7.05 2 -6(CDC13),J 单位 Hz. 表 5.1-芳基-2-(N-芳基氨基甲酰基)-4,6-二苯基吡啶鎓四氟硼酸盐的制备发现(%)(所需%)I + 时间产量Compd.N-Ar CONHAr' (min) (%) M.p.”(“C) r C H N 3 分子式 80 68 141 -1 43 67.6 4.9 5.3 C~~H~JBF~N~O*H~O (67.7 4.7 5.3) 135 72 245-247 70.4 4.8 5.3 (70.5 4.8 5.3)75 65 265-267 73.2 5.0 5.2 (73.3 5.0 5.2) 135 70 252-254 63.7 4.5 4.8 (64.0 4.5 4.8)135 63 257-259 68.6 4.7 5.0 (68.8 4.8 5.0) 135 72 248-250 68.5 4.7 -(68.8 4.8 5.0) 135 60 238-240 63.8 4.64.8 (64.0 4.5 4.8)75 68 270-272 66.7 4.6 4.9 (66.9 4.7 4.9)135 74 185-1 88 69.8 5.0 -(69.4 5.1 4.4) a 以针状,由甲醇重结晶而得,在150-180“C/3.5 mmHg(约60%)状态下升华而得。偶极迈森海默螺复合物已经存在(表7)。观察到2O作为芳基迁移的中间体。Smiles, Chapman, Stevens, 'H N.m.r. Spectra.-所有化合物都进行了表征,Newman-Kwarts重排21,并且很可能是光谱学上的。在目前报道的反应中形成的l-芳基-2-乙氧羰基-4,6-二苯基。吡啶盐 (2a-e) 和相应的甜菜碱 (3a-e) 在完全合成的本材料中显示出特征性的 'H n.m.r. 光谱.-这种与先前描述的这些二芳胺的 l8 成员的合成一致,苯胺具有合成潜力和磅类。3 通道和 5 通道信号表现为双峰机理兴趣。总产量分别在6、8.1和8.3范围内与(J2 Hz)相当;从(2a-e)的酯基团的Chapman重排中获得的乙基在6 4.1和1.0附近可见,并且是苯胺,但是不需要活化,并且甜菜碱(3a-e)不存在该过程(表2和表4)。不需要使用高温。吡啶取代的酰胺 (4a-i) 在 6 9.0 和 8.7 (J 2 Hz) 处显示出 3-CH 和 5-CH 双峰共振,可能是由于芳基的各向异性效应 实验酰胺基团。1.r.光谱分别在6 8.3处向下移动的电负性原子,在Perkin-Elmer 283B光谱上获得NaCl板得到的剩余质子在约6 7.2处观察到。芳基族光度计作为CHBr3中的溶液。 在6 7.20-7.60处记录了酰胺功能的熔点,NH在Kofler热阶段装置上是一个广泛的版本,并且未校正。单线器在 ca. 6 2.5.采用文献方法制备了以下方法:2-乙氧羰基-4,6-二苯基吡喃四氟硼酸盐机理--我们的结果表明,亲核取代基-(m.p.153-155“C;lit.,16 m.p. 154 “C) 和 未活化的芳基原子核的三氟甲烷 如果系统是磺酸盐 (m.p. 182 ”C;lit.,17 m.p. 182-183 “C).设计使亲核试剂与带有离去基团的碳保持密切联系。在该体系中,芳基1-芳基-2-乙氧基-置换的常用方法通过五元过渡态发生置换;羰基-4,6-d@henylpyridinium四氟硼酸盐和三前结果1*15,其中芳基发生置换,使用氟甲磺酸盐(2).-芳基胺(3.3 mmol)一个不同的体系,涉及六元环转变,在25“C下加入到2-乙氧基羰基-4,6-2614的悬浮液中。I 1983 表 6。1-芳基-2-(N-芳基氨基甲酰基)-4,6-二苯基吡啶鎓四氟硼酸盐 3-CH 5-CH -r (1 H, d, (1 H, d, 4,6-二苯基-HN-Ar J 2) J 2) (10 H, m) 9.08 8.75 7.35-7.85 8.72 8.55 7.42-7.98 9.05 8.73 7.30-7.83 9.13 8.83 7.3 3-8 .OO 9.00 8.72 7.32-7.80 9.03 8.76 7.30-7.93 8.95 8.65 7.20-7.80 9.02 8.75 7.30-7.9 1 9.07 8.77 7.50-7.7.7 97 ArH 7 -(m) NH CH3 Compd. 6 H 6 H (1 H, s) (3 H, s) 8.30 2 7.20 3 7.20-7.50 2.44 -8.00 2 7.28 3 7.28-7.60 2.45 2.44 8.30 2 7.20 2 7.20-7.55 2.50 2.20,2.26 8.43 2 7.26 2 7.16-7.66 2.56 2.27 8.32 2 7.20 2 7.20 2 7.20-7.55 2.46 2.25 3.66 8.33 2 7.23 2 7.15-7.60 2.43 2.133.66 8.23 2 7.10 2 7.10-7.50 2.33 2.10 -8.34 2 7.1 5 2 7.15-7.60 2.42 -3.63, 3.65 8.36 2 7.20 2 7.20-7.46 2.43 2.13 表7.二芳胺的制备方法压力 Lit. M.p. Compd. Ar Ar' Temp. (“C) (mmHg) 时间 (h) 屈服 (%) M.p.(“C)(“C)(8a) Ph Ph 150 3 2 65 52-53 53 a (8b) 4-MeC6H4 4-MeC6H4 180 3 2 65 73-75 78-79 (8c) 4-MeC6H4 4-PhC6H4 180 5 4 62 97-98 -(8d) 4-MeGH4 4-MeOGa 150 5 3 55 51-53 55 4-MeC6H4 4-ClC& 180 5 2 58 81-83 85 (8f) Ph 4-MeCsH4 150 5 2 63 84-86 89 'I. Goldberg, Ber.,1907 年,40 年,4541 年。D. G. Daniels, F. T. Naylor, 和 B. C. Saunders, J. Chem. Soc., Perkin Trans.我,1951 年,3433。m/z259.1361 (M+. Calc. for CI9Hl7N: m,259.1362).A. R. Sen and A. K. Sen Gupta, J. Indian Chem. Soc., 1957, 34, 413.F. Ullmann, Liebigs Ann. Chem., 1907, 355, 312.表 8.'H N.(英语:'H N.) 二芳基胺的磁共振谱 芳香质子 4-CHJGH4 ~-CHJOC~H~ NH (m) 6) (3 小时, s) (1 小时, s) 6.80-7.30 (10 小时) 5.65 6.85-7.30 (8 小时) 2.25 (6 小时) 5.50 7.00-7.65 (13 小时) 2.20 (3 小时) 5.65 6.55-7.20 (8 小时) 2.20 (3 小时) 3.75 5.50 6.95-7.90 (8 小时) 2.20 (3 小时) 5.50 6.55-7.30 (9 小时) 2.25 (3 小时) 5.50 二苯基吡喃盐 (3 mmol) CH2C1, (25毫升)。滤去红白色固体并用水(500ml)洗涤溶液,在Et20(50ml)和Et20(50ml)下搅拌适当的时间,得到吡啶-2-羧酸酯(表25“C.浓度为50”C/25mmHg并研磨3).用Et20的残留物得到吡啶盐,吡啶盐由95%乙醇重结晶(表1)。1-芳基-2-(N-芳基氨基甲酰基)-4,6-二苯基吡啶鎓四氟硼酸盐的制备方法 (4).-将1-芳基-4,6-二苯基吡啶-2-羧酸酯(18 mmol)和吡啶(4 mmol)的制备方法加入(6 mmol)吡啶-2-羧酸酯(3).-将1-芳基-2-乙氧羰基-l-芳基-4,6-二苯基吡啶鎓-2-羧酸酯4,6-二苯基吡啶-2-羧酸酯(10 mmol)在25“C下搅拌在CH2C12(15 ml)中。将混合物回流15分钟,将25ml,12.5mmol)回流24小时。加入芳基胺(18 mmol);然后继续在NaOH水溶液(0.5~; J. CHEM. SOC. PERKIN TRANS.I 1983 ued 在适当的时间(表 5)。将溶剂在50“C/25mmHg下重新移动,并用水(50ml)和Et,O(50ml)成功洗涤残留物。将所得棕色胶溶于甲醇(15ml)中,并加入四氟硼酸(10mmol),冷却后形成2-(N-芳基氨基硼酰1)吡啶鎓四氟硼酸盐,其由甲醇重结晶(表5)。二芳基苯胺的制备方法 (5)。-将l-芳基-2-(N-芳基氨基甲酰基)-4,6-二苯基吡啶鎓四氟硼酸盐(3mmol)溶于甲苯(30ml)中,加入氢化钠(99%,6mmol),混合物回流12小时。除去60 OC/lO mmHg的溶剂,所得固体用水(40 ml)洗涤并过滤。升华使二芳胺成为针头(表7)。2,4-二苯基吡啶甲酸通过残渣酸化得到(m.p.150“C,lit.,22 m.p.150”C)。致谢 我们感谢 S.E.R.C. 和 3M Minnesota Research Ltd.。经济援助和 RC Patel 博士的兴趣。参考文献 1 第 2 部分,前一篇论文。2 (a) F. Ullman, Chem. Ber., 1903, 36, 2382;(b) R. M. Acheson (ed.), ' 杂环化合物 ;Acridines,“Wiley Interscience,第 160 页。3 T. L. Davis 和 A. A. Ashdown, J. Am. Chem. SOC., 1924, 46, 1051.2615 4 P. E. Weston 和 H. Adkins, J. Am. Chem. SOC.,1928, 50, 859.5 E. Miiller, 'Methoden der Organischen Chemie', Georg Thieme, Verlag, Stuttgart, 1957, XI/l, 117.6 H. Gilman 和 R. McCracken, J. Am. Chem. SOC., 1929, 51, 821.7 W. Truce, E.Krieder, and W. Brand, Org. React., 1971, 18, 99.8 J. W. Schulenburg 和 S. Archer, Org. React., 1965, 14, 1-51.9 I.A.Solovbeva和A.G.Guseva,Zh.Org.Khim.,1968年,第4页,1973年。10 E. Jones 和 F. G. Mann, J. Chem. SOC.,1956, 786.11 M. Lippner 和 M. Tomlinson,J. Chem. SOC.,1956 年,4667。12 A. E. Arbuzov 和 V. E. Shishkin, J. Gen. Chem. 苏联,1964, 34, 3628.13 R. Bonnett,“碳氮双键的化学”,第601页,John Wiley and Sons,Inc.,纽约,1975年。14 Sonntag, Chem. Rev., 1953, 52, 237.15 A. R. Katritzky, R. T. Langthorne, H. Muathin, and R. C. Patel, J. Chem. SOC.,Perkin Trans.我,1983,2601。16 A. R. Katritzky, A. Chermprapai, R. C. Patel, and A. Tarraga- Tomas, J, Org. Chem., 1982, 47, 492.17 A.R.卡特里茨基、N.R.达巴斯、R.C.帕特尔和A.J.科森斯,Recl。特拉夫·奇姆。Pays-Bas,1983 年,102 年,51 年。18 A. R. Katritzky, R. Awartani, and R.C. Patel, J. Org. Chem., 1982, 47, 498.公元前19年,查利斯和J.A.Challis, 'The Chemistry of Amides', p. 731, John Wiley and Sons, Inc., New York, 1975.20 V. I. Minkin, L. P. Olekhnovich, and Y. A. Zhdanov, Acc. Chem. Res., 1981, 14, 210.21 M. S. Newman, Acc. Chem. Res., 1972, 5, 354.22 K. Dimroth, K. Vogel, and W. Kraft, Chem. Ber., 1968, 101, 2215.收稿日期: 1982年12月21日;文件 2/2134

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号