首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >The synthesis of 4-prop-2-enyl substituted cyclopentane-1,3-dione enol esters, and an investigation of their structures by N.m.r. spectroscopy
【24h】

The synthesis of 4-prop-2-enyl substituted cyclopentane-1,3-dione enol esters, and an investigation of their structures by N.m.r. spectroscopy

机译:4-丙-2-烯基取代环戊烷-1,3-二酮烯醇酯的合成及其结构研究

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1983 The Synthesis of 4-Prop-2-enyl Substituted Cyclopentane-I ,3-dione Enol Esters, and an Investigation of their Structures by N.m.r. Spectroscopy Andrew J. Barker and Gerald Pattenden * Chemistry Department, The University, Nottingham NG7 2RD Alkylations of dianions derived from cyclopentane-lI3-dione and 2-methylcyclopentane-1,3-dione are shown to provide an expeditious route to the corresponding 4-alkylated derivatives (9). Unsymmetrical 4,5-disubstituted cyclopentane-I ,3-diones( I 1) are more easily obtained by isomerisation of the cor- responding 4-hydroxycyclopent-2-enones( 10) in the presence of methanoiic sodium methoxide. Proton and carbon-1 3 n.m.r. data establish that the 4-prop-2-enyl substituted cyclopentane-l,3- diones(9a-d, R = HI Me) and (1 1a-c) are fully enolised in solution, and that the two enolic forms e.g.(18) and (19) are undergoing rapid tautomerism. N.m.r. data also show that whereas the 2-methyl substituted diones (9a, b, d ;R = Me) produce single enol acetates i.e. (ZO), (26), and (27) on treatment with acetic anhydride-sodium acetate, the analogues (9a, c, d; R = H) and (1 la-c) instead lead to mixtures of isomeric enol acetates e.g. (28)/(29) ; (35)/(36). In the case of the 4,5-disubstituted enol acetates (35), (36), and (41) +(44), the C-4, C-5 substituents are shown to have an anti-stereo- chemical relationship to one another. Esters derived from the enol forms (1) of 4-prop-2-enyl sub- stituted cyclopentane-l,3-diones have been shown to be useful precursors for the construction of the bicyclo3.2.1- octane carbon framework e.g.(3) and (6) present in a range of biologically active natural terpenes.' This transformation is smoothly achieved by intramolecular 2 + 21 photo- cycloaddition to (2) or (4) followed by fragmentation, either directly i.e.(2) -+(3) or after conversion into the corres- ponding ester mesylate (5) i.e. (5) -(6). Although a number of methods are available for the synthesis of cyclo- 06 (3) 1-0. pentane-l,3-dione, and simple 2-alkyl derivatives,2 few investigations have been made of the synthesis of 4-prop-2-enyl substituted cyclopentane-1,3-diones. Furthermore, no systematic study of tautomerism amongst this interesting class of compound and their enol derivatives has been carried out.In connection with our photochemical route to the bicyclo3.2.loctane carbon framework (Scheme l), we have examined synthetic routes to the appropriate 4-prop-2-enyl substituted cyclopentane-l,3-dione precursors (l), and in-vestigated their tautomerism by n.m.r. spectroscopy and other methods. This paper describes these studies. In the following papers we show how these precursors can be elaborated to several substituted bicyclo3.2.loctanes, and also to the HO (1) 1". natural sesquiterpene zizaene, an odoriferous compound found in vetiver. We began our investigations of synthetic routes to 4-prop- 2-enyl substituted cyclopentane-l,3-diones by first examining the alkylation of bis-anions derived from the commercially available cyclopentane-l,3-diones (7a) and (7b).3 y-Alkyl- ations of dianions derived from r)-keto esters, and o-alkyl- ations of poly-anions derived from poly-P-ketones are both well documented and useful procedures in synthesis4 We therefore expected the cyclic ' variants ' of these reactions to proceed in a similar straightforward manner.The dianions (8) were generated from the cyclopentane-l,3- diones (7) following treatment with n-butyl-lithium (2 equiv.) in tetrahydrofuran at -78 "C in the presence of hexamethyl- phosphoramide. Addition of the alkylating agent at -78 "C and warming to 25 "C, followed by quenching and work-up then led to the 4-alkylated derivatives (9). The 4-alkylated diones were easily purified by extraction into aqueous sodium carbonate followed by acidification and re-extraction with ether.In this manner a range of 4-prop-2-enyl substituted cyclopentane-l,3-diones and 4-prop-2enyl substituted 2- Scheme 1. J. CHEM. SOC. PERKIN TRANS. I 1983 0Qo -090 -oQ: 1 a.R=H a, R= 1 b,R=Me b.R= / c,R=c. R'= 7 d, R'= Et02C-R 0 methylcyclopentane-1,3-dioneswere synthesised (i.e. 9a-d, R =H, Me). After preliminary publication of this route to 4-substituted cyclopentane-l,3-diones,Koreeda et aL5showed EtO G0OEt that the isobutyl ether derived from cyclopentane-l,3-dione can be used in a similar manner for the preparation of sym- OE t metrical 4,5-disubstituted cyclopentane-l,3-diones.Neither of the above procedures is useful for the synthesis of unsymmetrical 4,5-disubstituted cyclopentane-l,3-diones e.g.(ll). A preparatively useful route to this type of mole- cule is by isomerisation of the corresponding 4-hydroxy- cyclopent-2-enone (10) in the presence of methanolic sodium methoxide. This novel isomerisation was first investigated in detail by Elliott: and later by ourselves.' The required 2-prop- OH 2-enyl substituted 4-hydroxycyclopent-2-enones(10) are most (14) conveniently obtained starting from the corresponding p-keto esters (12) or the triethoxycyclopentenone (13) by procedures which are well documented? Heating the hydroxy- cyclopentenones in the presence of hot methanolic sodium methoxide then produced the unsymmetrical diones (1 lad) in good yield. During the course of our studies we also synthesised 2-allyl-4-hydroxycyclopent-2-enone(16) by rearrangement of the furanol (14) in the presence of poly- phosphoric acid to (15) followed by isomerisation? Treat- ment of the 4-hydroxycyclopent-2-enone (1 6) with cold methanolic sodium methoxide then provided the same cyclo- I5.7 pentane-lY3-dione (9a; R = H) obtained by direct allylation (17)of the dianion (8a) derived from cyclopentane-l,3-dione.Investigations of tautomeric equilibria amongst acyclic 1,3-dicarbonyl compounds, using n.m.r. spectroscopy (both lH and 13C), have been extensive.1° By contrast, with a few exceptionsY1l little is known about tautomerism in cyclo- pent ane- 1 ,3 -diones . ==Both i.r. (vmxe 2 700-3 515, 1515-1 620 cm-') and 'H 0 n.m.r.spectroscopy611.56(OH), 1.66 (:CMe) of 2-methyl-4- (19)prop-2-enylcyclopentane-1,3-dione(9a; R = Me) establish that the dione is fully enolised in solution, and that the two enolic forms (18) and (19) are undergoing rapid tautomerism. The latter feature is also corroborated in the 13C n.m.r. spectrum where only one set of carbon resonances are observed; these data are summarised on formula (17). 0+cSignificantly, C-2 in the dione occurs as a singlet at 6 113.5 '6.6p.p.m. indicating its sp2 character. A distinction between the C-1 and C-3 cmbonyl carbon atoms in (9a; R = Me) was (20) (21) made on the basis of preferential deshielding of C-3 by the a-propenyl side chain. The remaining resonances were readily acetate showed one set of resonances in both the 'H n.m.r.and assigned from inspection and comparison of shift data, and the I3C n.m.r. spectra. Significantly the vinyl methyl protons also from decoupled spectra. resonated as an 'apparent 'triplet (homoallylic coupling ca. Treatment of the dione (9a; R = Me) with acetic anhydride 1.5 Hz)in the 'H n.m.r. spectrum indicating structure (20) in the presence of sodium acetate afforded a single enol for the enol acetate, rather than (21). The relative shifts (6 33.0 acetate, homogeneous in g.1.c. and t.1.c. analysis. The enol and 44.6 p.p.m.) of C-4 and C-5 in the 13C n.m.r. spectrum of J. CHEM. SOC. PERKIN TRANS. I 1983 Table N.m.r. data (p.p.m. from SiMe,) R 8 2 2 Carbon atom (26) (28) (29) (30a) (31a) (30b) (31b) (35) (36) (41) (42) (37) (38) 1 207.8 208.8 206.1 208.2 205.6 208.6 205.8 206.8 208.0 207.7 210.2 205.8 207.2 2 125.3 115.4 116.1 115.6 116.5 115.3 116.0 114.4 115.0 114.3 114.8 103.0 102.5 3 174.9 178.8 181.3 178.6 180.3 178.6 181.0 180.9 178.8 180.8 179.6 192.7 190.5 4 33.0 32.7 39.5 34.3 39.9 34.9 40.9 44.6 41.0 45.5 41.6 45.8 53.6 5 45.4 43.3 32.7 43.6 38.8 42.6 38.9 48.6 52.2 47.4 51.1 48.4 40.7 6 34.2 34.2 34.2 35.0 36.0 39.4 39.4 35.6 34.7 40.8 39.5 35.1 35.6 7 127.7 141.8 140.9 134.7 133.8 143.2 142.3 135.1 134.2 143.2 142.9 134.5 135.5 8 127.4 125.7 126.7 117.2 118.0 112.0 112.8 117.3 117.9 112.6 113.3 117.6 116.9 2-Me 6.6 7/8-Me 415 Me 17.8 22.2 22.2 15.6 17.4 16.0 17.4 6 166.2-166.5 (0 COCH,); 21.3 (OCOCH3)p.p.m.1 2 7.1-3L.3 AcOq-the enol acetate, compared to those found in the model compound (22) (6 27.1 and 34.3 p.p.m.) also support formul- ation (20) for the prop-2-enyl substituted acetate (i.e.C-5 more deshielded since it bears the propenyl side-chain). Additional confirmation of this formulation was obtained when the corresponding enol methyl ether (23) (also a single isomer) prepared from (9a; R = Me) was converted into the cyclopent-2-enone (24) rather than (25) on reduction with lithium aluminium hydride followed by an acid work-up. Both the 4-but-2-enyl and the 4-cyclopent-1 -enylmethyl substituted cyclopentane-l,3-diones (9b; R = Me) and (9d; R = Me), also led to single enol acetates on treatment with acetic anhydride-sodium acetate.The enol esters displayed closely similar n.m.r. data to those recorded for (20), thereby supporting a similar structural assignment, i.e. (26) and (27) respectively (see Table for 13C n.m.r. data). Like the 2,4-disubstituted cyclopentane-l,3-diones (9a, b and d; R = Me), i.r. and n.m.r. spectral data on the 4-cyclo- pent-l-enylmethylcyclopentane-1,3-dione (9d ; R = H) showed that the molecule exists in solution as a mixture of (gd;R=H) AcO AcO 0a (30) a.R=H;b.R =Me rapidly interconverting enolic forms. On acetylation however, the dione afforded an approximately 1 : 1 mixture (by integr- ation of 'H n.m.r.resonances) of the two enol acetates (28) and (29). The two enol acetates are easily distinguished in the 'H n.m.r. spectrum where the cyclopentenone ring olefinic proton in (28) is observed as an 'apparent ' triplet (allylic coupling J ca. 1.5 Hz) at 6 6.12, whereas the same proton in enol acetate (29) is observed as a doublet (Jca. 1) at 6 6.19. A partial separation of the isomeric enol acetates was achieved by a combination of pressure liquid and thin layer chromato- graphy, and this permitted us to assign all of the carbon atoms in the 13C n.m.r. spectra of the esters (see Table). In a similar manner, the 4-substituted cyclopentane-l,3-diones (9a; R = H) and (9c; R = H) led to approximately 1 :1 mixtures of the corresponding isomeric enol acetates (30) and (3 1) respectively, on treatment with acetic anhydride-sodium acetate.Although the 4,Sdisubstituted cyclopentane-l,3-diones (11a) (11 b) and (1lc) can exist as mixtures of syn-and anti-diastereoisomers, their 'H n.m.r. spectra each revealed only J. CHEM. SOC. PERKIN TRANS. 1 1983 one secondary methyl absorbance (J 7, 6 ca. 1.23) which showed no further splitting in the presence of lanthanide shift reagents. These data indicated that only one diastereo- isomer was present, and the anti-stereochemistry for each dione is supported by comparison of the positions of the secondary methyl carbon atoms in their I3C n.m.r. spectra (6 16.8) with those of the model anti- and syn-cyclopentane- 1,3-dione enol ethers (32) and (33) (see data on form~lae).~ Acetylation of the dione (lla), using acetic anhydride in the presence of sodium acetate, gave rise to a 1 : 1 mixture of isomeric enol acetates, which by inspection and comparison of n.m.r.data with those of the analogue; (20), (30), and (31), were assigned structures (35) and (36) respectively. In the 13Cn.m,r. spectrum (see Table for shift data), the C-4/5 methyl carbon atoms in the mixture occur at 6 17.4 and 15.6 p.p.m., which by comparison with (32) and (33), again suggests that the C-4, C-5 substituents in the isomeric enol acetates are anti- to each other. This was corroborated when the dione (1 la) was converted into the corresponding mixture of enol methyl ethers, and the latter transformed into a mixture of cyclopentenones by reduction with lithium aluminium hydride.Thus, treatment of the anti-dione (34) with potassium carbonate-dimethyl sulphate, led to a 1 :1 mixture of the two anti-enol methyl ethers (37) and (38) which showed C-4/5 methyl carbon atom resonances at 6 16.0 and 17.4 p.p.m. respectively. Reduction of this mixture, followed by acid treatment then led to the two cyclopentenones (39) and (40) whose structures followed from their n.m.r. spectral data. In a similar manner, the anti-cyclopentane-l,3-diones(1 1 b) and (1 lc), on acetylation produced comparable amounts of the two possible corresponding anti-enol acetates, i.e. (41)/(42) and (43)/(44) respectively. Significantly, irradiations of the approximate 1 : 1 mixtures of enol acetates derived from (9a, c, d, R = H) and (lla-c) produce intramolecular cycloadducts i.e.(2) or (4) derived from only the 5-prop-2-enyl isomers i.e. (28), (30a), (30b), (39, (41), and (43). Since the 4-prop-2-enyl isomers (29), (31a), (31b), (36), (42), (44)are consumed during the photo- cycloadditions, equilibration between the isomeric enol acetates, possibly by a process not unrelated to the photo- Fries reaction, must be quite rapid during the irradiations. These and other photochemical studies involving cyclo- pentane-l,3-dione enol acetates are described in the accom- panying papers.12 Experimental 'H N.m.r. spectra were determined on a Jeol JNM-MH 100 spectrometer, or at 250 MHz on a Bruker WM PFT instru-ment, as dilute solutions in CDC13 with internal Me4 reference.13C N.m.r. spectra were recorded at 20 "C with a JEOL-PS-100 spectrometer operating at 25.1 5 MHz inter- faced with a Nicolet 1085 20K computer. Solutions were dried over magnesium sulphate, unless otherwise indicated, and solvents were evaporated under reduced pressure. All solvents for chromatography were redistilled. G.1.c. analyses were made on 5 ft x 3 in columns packed with 10 SE-30 on Diatomite. Ether refers to diethyl ether throughout. (37) (38) 19.4 53 15 49.5 (411 (42) AcO 0 (43) (44) 4-Prop-2-enyl Substituted Cyclopentane-l,3-diones via Alkylation of Bis-anions Derived from Cyclopentane-l,3-dione and 2-Methylcyclopentane- 1,3-dione :General Procedure (with M.Mellor)?-A solution of n-butyl-lithium (8.4 mM; 2.1 equiv.) in hexane was added over 5 min to a stirred solution of the cyclopentane-l,3-dione (4 mM) in hexamethyl- phosphoramide (3.4 ml) and tetrahydrofuran (25 ml) at -78 "C. The mixture was stirred at -78 "C for 20 min and then treated dropwise over 5 min with the alkylating agent (1.1 equiv.). The mixture was stirred at -78 "C for 1 h, and then allowed to warm to 25 "C when it was diluted with dilute hydrochloric acid. The aqueous layer was separated, and then washed with ether (3 x 15 ml). The combined organic layers were extracted with 10 aqueous sodium carbonate solution (5 x 10 ml), and the combined aqueous layers were then acidified (6rvr-HCl) and extracted with ether (4 x 10 ml). Evaporation of the washed (water) and dried ether extracts then left the dione which was used without further purification.Satisfactory microanalyses could not be obtained on any of the diones, because of the ease with which the molecules under- went oxidation. 4-Prop-2-enylcyclopentane-1,3-dione(9a; R = H).-By the general procedure, alkylation of cyclopentane-l,3-dione with ally1 bromide gave the dione (50) as an almost colourless oil, h,,,, (EtOH) 241 nm; v,,,. (film) 2 670-3 250, 1 640,and 1 520-1 625 cm-'; 6 11.94 (OH), 5.45-5.96 (m, CH:CH2) 5.34 (COCH:), 4.9-5.23 (m, :CH,), and 1.97-2.93 (m, 5 H) (Found: M+,m/z 138.0682; C8H,,02 requires M,138.0681). J. CHEM. soc. PERKIN TRANS.I 1983 4-(2-Methy~rop-2-enyl)cyclopentane-1,3-dione(9c; R = H). -By the general procedure, alkylation of cyclopentane-l,3- dione with 2-methylally1 chloride gave the dione (72) as a pale yellow solid, m.p. 65-67 "C (decomp.), hmax(EtOH) 240 nm; vmax(KBr) 2 700-3 350, 1 645, and 1 530-1 630 cm-l; 6 11.94(OH), 5.28 (COCH:), 4.59-4.83 (m, :CH2), 1.75-2.99 (m, 5 H), and 1.74 (:CMe) (Found: M+, m/z 152.0836. C9H1202 requires M, 152.0837). 4-Cyclopent-l-enylmethylcyclopentane-l,3-dione(9d; R = H).-By the general procedure, alkylation of cyclopentane-l,3- dione with 1-(bromomethy1)cyclopentenel3 gave the dione (29) as a yellow solid, m.p. 95-105 "C, vmx (CHCI,) 2730-3 350, 1 640,and 1 550-1 620 cm-'; 6 10.36 (OH), 5.29-5.38 (m, 2 x XH), 2.45-3.0 (m, 4 H), 2.0-2.45 (m, 3 H), and 1.7-2.0 (m, 2 H); 6c 205.6, 201.2, 141.6, 126.0(d), 105.O(d), 42.3(d), 37.8(t), 35.2(t), 33.6(t), 32.5, and 23.5 p.p.m.(Found: M, m/z178.1000. CllH1402 requires M, 178.0994). 2-Methyl-4-prop-2-enylcyclopentane-1,3-dione(9a; R = Me).-By the general procedure, alkylation of 2-methyl- cyclopentane-lY3-dione with allyl bromide gave the dione (51) as an amorphous solid, m.p. 71-73 "C, hmx. (EtOH) 243 nm; vmx. (CHC13) 2 665-3 515, 1 640,and 1 515-1 620 cm-'; 6 11.56 (OH), 5.19-5.83 (m, *CH:CH2), 4.65-5.07 (m, CH2), 1.75-2.84 (m, 5 H), and 1.66 (:CMe); see formula (17) (Found: M+, m/z152.0830; GH1202requires M, 152.0837). 4-But-2-enyl-2-methylcyclopentane-1,3-dione(9b; R = Me). -By the general procedure, alkylation of 2-methylcyclo- pentane-lY3-dione with E-l-bromobut-2-ene, gave the dione (50) as an amorphous solid, m.p.85-88 "C, vmX. (CHC13) 2650-3 450, 1640, and 1 520-1 625 cm-'; 6 9.46(0H), 5.1-5.84 (m, 2 x :CH),1.9-2.88 (m, 5 H), and 1.73br (2 x :CMe) (Found: M, m/z 166.0992. C10H1402 requires M, 166.0993). 4-Cyclopent-1-enylmethyl-2-methylcyclopentane-l,3-dione (9d; R = Me).-By the general procedure, alkylation of 2- methylcyclopen t ane- 1 ,3 -dione with 1-(br omomet hy1)cyclo- pentene l3gave the dione (32) as a solid, m.p. 107-110 "C,Lx(EtOH) 245 nm; hmx (KBr) 2 600-3 450, 1 670, and 1 520-1 640 cm-'; 6 10.6(OH), 5.35 (m, :CH), 1.29-2.97 (m, 11 H), 1.66 (:CMe); 6c 202.9, 195.9, 141.9, 125.8(d), 113.0, 41.3, 36.6(t), 35.2(t), 32.5(t), 23.5(t), and 5.8(q) p.p.m.(Found: M, m/z192.1169. C12Hl602 requires M, 192.1150). anti-4-Methyl-5-prop-2-enylcyclopentane-1,3-dione(1 1 a).- The dione was prepared as described previously 'and showed 6 12.4 (OH), 5.43-6.17 (m, CH:CHt), 5.23 (COCH:), 4.93- 5.22 (m, :CH2), 1.98-3.0 (m, 4 H), and 1.23 (d, J7, CHMe); 6c 204.4, 202.7, 134.7(d), 117.6(t), 104.l(d), 51.2(d), 43.3(d) 35.3(t), and 16.8(q) p.p.m. anti-4-Methyl-5-(3-methylbut-2-eny1)cyclopentane-1,3-dione (1 lc).-A solution of 4-hydroxy-3-methyl-2-(3-methylbut-2-enyl)cyclopent-2-enone (0.25 mol) * in dry methanol (50 ml) was added to a solution of sodium (0.32 g-atom) in methanol (500 ml), and the deep red solution was heated under reflux for 21 h.The mixture was cooled, and the methanol was then removed under reduced pressure. The residue was diluted with water, and the solution was then washed with ether and acidified with 6~-hydrochloric acid. The aqueous solution was extracted with ether (6 x 50 ml), and the combined ether extracts were then washed (water), dried, and evaporated to leave the one (78) as a red oil, v,,, (film) 2 750-3 350, 1640, and 1 590 cm-'; 6 6.88 (OH), 5.22 (COCH:), 5.07 (m, Me2C:CH), 2.64-3.1 (m, 1 H),2.0-2.6 (m, 3 H),1.71 (:CMe), 1.63 (:CMe), and 1.18 (d, J 7, CHMe) (Found: M, m/z 180.1 1 52. CllH1602 requires M, 180.1 150). anti-4-Methyl-5-(2-methylprop-2-enyl)cyclopentane-1,3-dione (1 1 b).-The dione was prepared (84) from 4-hydroxy- 3-methyl-2-(2-methylprop-2-enyl)cyclopent-2~nonel4 by treat- ment with sodium methoxide in methanol, according to the procedure described for the analogue (lla).It showed b.p. 134-138/"C 0.3 mmHg, Lx.239 nm; hmx. (film)2 670-3 400,l 640,and 1 585 cm-'; 6 11.1 (OH), 5.27 (d, J 2, COCH:), 4.654.9 (m, :CH2), 1.95-3.12 (m, 4 H), 1.8 (:CMe), and 1.21 (d, J 7.5, CHMe) (m/z 166). 4-Hydroxy-2-prop-2-enylcyclopent-2-enone (1 6).-Treat- ment of 2-furfuraldehyde with the Grignard reagent derived from allyl bromide, by the usual procedure, gave 2-(l-hydroxy- but-3-eny1)furan (7373, b.p. 83-85 "C/15 mmHg, vmX (film) 3 390 crn-'; 6 7.46 (d, J 1.5, OCH:), 6.4 (m, OCJXCH), 6.3 (m, OCH:CH), 5.63-6.1 (m, CH:CH2), 5.05-5.35 (m, :CH2), 4.76(t,J6.5,CHOH),2.76(OH),and2.64(dd,J2and7,CH2) (Found: M, m/z138.0681.GHlOO2 requires M, 138.0681). Rearrangement of the furanol in polyphosphoric acid, according to the procedure of Piancatelli et af? produced 4-hydroxy-5-prop-2-enylcyclopent-2-en-l-one(15) (30), vmx. (film) 3 480, 1 690, and 1 640cm-'; 6 7.8 (dd, J 1.5 and 6, CH:CHCO), 6.38 (d, J 6, :CHCO), 5.74-6.2 (m, CH:CH2), 5.12-5.44 (m,:CH2), 4.89 (CHOH), 3.55(0H), and 2.12- 2.9 (m, 3 H), which was then isomerised to the hydroxy- cyclopentenone on alumina. The hydroxycyclopentenone showed, Am=. (EtOH) 239.5 nm; vmX. (film) 3 480, 1710, 1 690, and 1 645 cm-l; 6 7.55 (m, :CH.CHOH), 5.81-6.3 (m, CH:CH2), 5.04-5.49 (m, :CH2), 4.39 (CHOH), 3.08 (d, J 6, CH2CO), 2.3-2.8 (m, 2 H), and 3.52 (OH) (Found: M, m/z 138.0681.CHl0O2 requires M, 138.0681). The 4-hydroxycyclopentenone was rearranged in methan- olic sodium methoxide solution at 0 "C to 4-prop-2-enyl- cyclopentanel,3-dione (9a; R = H) (60) which showed identical spectral data with those obtained for the same dione prepared by allylation of cyclopentane-l,3-dione, described above. Cyclopentane-l,3-dione Enol Acetates: General Procedure.- A solution of the dione (50 mM) in acetic anhydride (40ml) containing anhydrous sodium acetate (20 mM) was stirred at 25 "C for 24 h; the excess of acetic anhydride and acetic acid were then removed under reduced pressure. The residue was diluted with water (150 ml) and extracted with ether (4 x 50 ml). The combined ether extracts were washed with aqueous sodium carbonate (5 x 25 ml) and water (2 x 25 ml), and then dried and evaporated to leave the enol acetate which was purified by distillation or by chromatography (yields 80-9 8).3-Acetoxy-2-methyl-5-prop2-enyZcyclopent-2-en-1 -one (20). -The ester showed kmx. (EtOH) 234 nm (E 12000); vmx 1 770,1700,l 665, and 1 640 cm-'; 6 5.47-5.94 (m, CH:CH2), 4.87-5.16 (m, :CH2), 2.01-3.13 (m, 5 H), 2.27 (OAc), and 1.62 (t, J 1.5, :CMe); see formula (20). 3-Acetoxy-2-methylcyclopent-2-en-1-one(22).-The ester showed b.p. 58-64 "C/0.3 mmHg (lit.,''* b.p. 66-67.5 "C/ 0.5mmHg), vmx.(film) 1 765, 1705, and 1 660cm-'; 6 2.76-2.96 (m, COCH2), 2.53 (dt, J 6 and 2, CH2C:), 2.32 (OAc), and 1.67 (t, J 2, :CMe) ;6c see formula (22). * Kindly donated by Dr.J. Martel (Roussel Uclaf). 3-Acetoxy-5-but-2-enyl-2-methylcyclopent-2-en-l-one(26).-The ester showed hmX (EtOH) 236 nm (E 12 500); vmx. (film)1 775,1 705,and 1 665 cm-'; 6c see Table (Found: M, m/z208.1 112. C12H1603 requires M, 208.1 100). 3-Acetoxy-5-cyclopent-1-enylmethyl-2-methylcyclopent-2-en-1-one (27).-The ester showed hmX (EtOH) 237 nm (E 13 600); vmag(film) 1 770,1 700,and 1 660 cm-l; 6 5.35 (m, C:CHCH2), 1.51-3.08 (m, 11 H), 2.3 (OAc), and 1.63 (t, J 1.5,:CMe) (Found: M, m/z234.1236.C14Hla03 requires M, 234.1256). 2-Methyl-4-prop-2-enylcyclopent-2-en-1-one (24).-Treat-ment of 2-methyl-4-prop-2-enylcyclopentane-1,3-dionewith dimethyl sulphate in hot acetone in the presence of anhydrous potassium carbonate, in the usual manner, gave 3-methoxy-2- methyl-5-prop-2-enylcyclopent-2-en-1-one (23) (93), b.p.60-65 OC/O.O5 mmHg, hmx (EtOH) 253 nm (E 11 000);vmX.(film) 1695 and 1640 cm-'; 6 6.0-7.47 (m, :CH),4.95-5.25 (m, :CHI), 4.0 (OMe), 2.01-3.05 (m, 5 H), and 1.64(:CMe). Reduction of the enol methyl ether, with lithium aluminium hydride in ether, followed by treatment of the crude product with dilute sulphuric acid (2 h at 25 "C) then gave the cyclo- pentenone (65) as an odoriferous oil, h,, (EtOH) 231 nm; vmX. 1 715 and 1 645 cm-'; 6 5.28-5.79 (m, CH:CH2), 4.91 (m, :CH.CH), 4.684.87(m, :CH2) 1.7-2.9 (m, 5 H),1.59 (d, J 2,:CMe) (Found: M, m/z136. GH120 requires M, 136). 3-Acetoxy-5-prop-2-enylcyclopent-2-en-l-one(30a) and 3-Acetoxy-4-prop-2-enylcyclopent-2-en-1-one(3 la).-The esters were obtained as a 1 :1 mixture which showed noZ2 1.4885, hmx.(EtOH) 235 nm; vmx. (film) 1785, 1705, 1640, and 1 605 cm-'; 6 6.19 (d, J 1, COCK) isomer (31a), 6.12(dd, J ca. 1, COCH:) isomer (3Oa), 5.49-5.97 (m, CH:CH2), 4.95-5.25 (m, :CH2), 1.95-3.18 (m, 5 H), and 2.33 (OAc),2.3 (OAc); see Table (Found: m/z 180.0776.C10H12O23 requires M 180.0786). 3-Acetoxy-5-(2-methylprop-2-enyl)cyclopent-2-en-1 -one (30b) and 3-Acetoxy-4-(2-methylprop-2-enyl)cyclopent-2-en-1 -one (3 1 b).-The esters were obtained as a 1 :1 mixture which showed Amax 239.5 nm (E 12 500); vmx. 1785, 1705, 1645, and 1 600 cm-l; 6 6.26 (d, J 1, COCH:) isomer (31b), 6.21 (dd, J 1, COCH:) isomer (30b), 4.74.95(m, :CH2), 1.91-3.3 (m, 5 H), 2.33 (OAc), 2.35 (OAc), and 1.78br (:CMe); 6c see Table (Found: M, m/z 194.0963. CllH1403 requires M, 194.0943).3-Acetoxy-5-cyclopent-1 1 -one(28)-enylmethylcyclopent-2-en-and 3-Acetoxy-4-cyclopent-1-enylmethylcyclopent-2-en-1 -one (29).-The esters were obtained as a 1 : 1 mixture which showed vmx. 1780,1 700,1635, and 1 600 cm-'; 6 6.21 (d, J 1.5 COCH:) isomer (29), 6.14 (dd, J ca. 1.5, COCH:) isomer (28), 5.4 (m, CHICK), and 1.6-3.3 (m, 11 H), 2.3 (OAc);6c see Table. A partial purification (SP 75) of each enol acetate was achieved by repetitive pressure column elution and thin layer chromatography on silica gel using ether-light petroleum (b.p. 60-80 "C) (1 : 1) as eluant.3-Acetoxy-4-methyl-5-prop-2-enylcyclopent-2-en-1 -one (35) and 3-Acetoxy-5-methyl-4-prop-2-enylcyclopent-2-en-1 -one (36).-The esters were obtained as a 1 : 1 mixture which showed b.p. 104-106 "C/1 mmHg, 1.4890, hmx.nDZ2e5 (EtOH) 234 (E 13 100) and 287 nm (E 270); vmx. (film) 1 785, 1 705,1 645,and 1 600 cm-'; 6 6.19 (m, COCH:), 5.5-5.96 (m, CHZH,), 4.94-5.22 (m, :CH2), 1.9-2.9 (m, 4 H), J. CHEM. soc. PERKIN TRANS. I 1983 2.31 (OAc), and 1.23, 1.18 (d, J 7.5, CHMe, two isomers); see Table; (Found: M, m/z194.0946.CllH1403 requires M 194.0963). 5-Methyl-4-prop-2-enyIcyclopent-2-en-l-one(39) and 4-Methyl-5-prop-2-enylcyclopent-2-en-l-one(4O).-Treatment of 4-methyl-5-prop-2-enylcyclopentane-1,3-dionewith dimethyl sulphate in hot acetone in the presence of anhydrous potas- sium carbonate, in the usual manner, gave a mixture of the two enol methyl ethers (37)and (38) (73), b.p.80-83 "C/ 0.1 mmHg, h.,,, (EtOH) 244 nm (E 11 500); vmX. (film) 1 690, 1640,and 1 595 cm-'; 6 5.54-5.98 (m, CH:CH2), 5.25 (d,J2,COCH:), 4.96-5.22 (m, :CH2), 3.86 (OMe), 1.94-2.69 (m, 4 H), and 1.22,1.18 (d, J 7.5,CHMe, two isomers); aC see Table (Found: M, m/z166.0993;C1402 requires M, 166.0994).Reduction of the enol ether mixture with lithium aluminium hydride in ether, followed by treatment of the crude product with dilute sulphuric acid (2h at 25 "C) then gave an approxi- mate 1 : 1 mixture of the two enones (39) and (40) (64), h,,,. (EtOH) 219 nm; 6 7.56 and 7.48(dd, J 2 and 8, COCH: CH, two isomers), 6.11 and 6.05 (d, J 8, COCKCH, two isomers), 5.54-6.0 (m, CH:CH2), 4.92-5.22 (m, :CH2), 1.83-2.85 (m, 4 H), and 1.21,1.18 (d, J 8, CHMe, two isomers), 6c see formulae (39)and (40).3-Acetoxy-4-methyl-5-(2-methylbut-2-enyl)cyclopent-2-en-l-one (43) and 3-Acetoxy-5-methyl-4-(2-methylbut-2-enyl)cyclo-pent-2-en-1-one(44).-The esters were obtained as a 1 :1 mixture which showed kmx. (EtOH) 243 nm (E 16 500); v,,, (CHC13)1 780,1705,and 1 590 cm-I ;6 6.25 (m, COCH:), 5.0-5.3 (m, Me2C:CH), 2.95-3.28 (m, 1 H), 1.88-2.85 (m, 3 H), 2.34 (OAc), 1.74(:CMe), 1.66 (:CMe), and 1.22, 1.20(d, J 7,CHMe, two isomers) (Found: M, m/z222.1231. C13H1803 requires M, 222.1256). 3-Acetoxy-4-methyl-5-(2-methylprop-2-enyl)cyclopent-2-en-1-one (41) and 3-Acetoxy-5-methyl-4-(2-methylprop-2-enyl)-cyclopent-2-en-1-one (42).-The esters were obtained as a 1 : 1 mixture which showed b.p. 125-130 "C/1.5mmHg, h,,, (EtOH) 233 nm (E 12 900); h,, (film) 1 775,1 700,and 1 645 cm-'; 6 6.2 (m, COCH:), 4.81 (m, :CH2), 1.93-2.87 (m, 4 H), 2.33 (OAc), 1.81 (:CMe), and 1.26, 1.18 (d, J 7, CHMe, two isomers); see Table (Found :M, m/z208.1120.C12HI6O3 requires M, 208.1 100). Acknowledgements We thank the S.E.R.C. for a studentship (to A. J. B.). References 1 (a) M. Mellor, D. A. Otieno, and G. Pattenden, J. Chem. SOC., Chem. Commun., 1978, 138; (b) A. J. Barker and G. Pattenden, Tetrahedron Lett., 1980,21, 3513; 1981, 22, 2599 2 (a) L. NovAk, G. BaAn, J. Marosfalvi, and C.Sdntay, Tetru-hedron Lett., 1978, 487; (b) R. Bucourt, A. Pierdet, G. Coster- ousse, and E. Toromanoff, Bull. SOC.Chim. Fr., 1965, 645; (c) H.Schick, G. Lehmann, and G. Hilgetag, Chem. Ber., 1967, 100, 2973; (d) V. J. Grenda, G. W. Lindberg, N. L. Wendler, and S. H. Pines, J. Org. Chem,, 1967,32, 1236; (e) H. Schick, G. Lehmann, and G. Hilgetag, Angew. Chem., Int. Ed. Engl., 1967, 6, 80; (f)C. H. DePuy and E. F. Zaweski, J. Am. Chem. SOC., 1959,81,4920; (g)J. M. Mclntosh and P. M. Beaumier, J. Org. Chem., 1972, 37, 2905; (h) L. Van Wijnsberghe and M. Vande- walle, Bull. SOC.Chim. Belg., 1970,79,699; (i)T.Miki, K. Hiraga, T. Asako, and H. Masuya, Chem. Pharm. Bull., 1967, 15, 670; (j) M. Vandewalle and F. Compernolle, Bull. SOC.Chim.Belg., J. CHEM. SOC. PERKIN TRANS. I 1983 1966,75, 349; (k) J-J. Panouse and C. SanniC, Bull. SOC.Chim. Fr., 1955,1036;(I) E. Nakamura and I. Kuwajima, J.Am. Chem. SOC.,1977, 99, 961. 3 M. Mellor and G. Pattenden, Synth. Commun., 1979, 9, 1. 4 L. Weiler, J. Am. Chem. SOC.,1970, 92, 6702; T. M. Harris and C. M. Harris, Org. React., 1969, 17, 155. 5 M. Koreeda, Y. Liang, and H. Akagi, J. Chem. SOC., Chem. Commun., 1979, 449. 6 M. Elliott, J. Chem. Soc., 1965, 3097. 7 G. Pattenden and R. Storer, J. Chem. Soc., Perkin Trans. 1,1974, 1606. 8 L. Crombie, P. Hemesley, and G. Pattenden, J. Chem. SOC.C, 1969, 1016; E. Madeleyn and M. Vandewalle, Bull. SOC.Chim. Belg., 1973, 82, 293. 9 (a) G. Piancatelli, A. Scettri, and S. Barbadoro, Tetrahedron.Lett., 1976, 3555; (b) G. Piancatelli and A. Scettri, ibid., 1977, 1131; Synthesis, 1977, 116; (c) G. Piancatelli, A. Scettri, G. David and M. D’Auria, Tetrahedron, 1978, 34, 2775. 10 (a)J. L. Burdett and M. T. Rogers, J. Am. Chem. SOC.,1964,86, 2105; (b) S. Bratan and F. Strohbusch, Chem. Ber., 1972, 105, 2284; (c) N. N. Shapet’ko, Org. Magn. Reson., 1973, 5, 215; (d) N. N. Shapet’ko, I. L. Radushnova, Y. S. Bogachev, S. S. Berestova, V. M. Potapov, G. V. Kiryuschkina and I. K. Tale-barovskaya, ibid., 1975,6,540;(e)M. Anteunis and N. Schamp, Bull. SOC.chim. Belg., 1967, 76, 330; (f)J. H. Billmann, S. A. Sojka and P. R. Taylor, J. Chem. SOC.,Perkin Trans. 2, 1972, 2034; (g) L. F. Johnson and W. C.Jankowski, ‘Carbon-13 N.m.r. Spectra,’ Wiley Interscience, 1972, pp. 115, 181, and 463; (h)N. N. Shapet’ko, S. S. Berestova, G. M. Lukovkin, and Y. S. Bogachev, Org. Magn. Reson., 1975, 7, 237; (i) J. C. J. Bama and M. J. T. Robinson, Tetrahedron Lett., 1979, 1455; (j) P. S. Steyn and P. L. Wessels, ibid., 1978, 4707. 11 (a) S. Forsen, F. Merenyi, and M. Nilsson, Acta Chem. Scand., 1964, 18, 1208; (b) C. M. Cimarusti and J. Wolinsky, J. Org. Chem., 1966, 31, 4118; (c) M. Anteunis and F. Compernolle, Bull. SOC.Chim. Belg., 1967,76,482, see also refs. 2h, 2j, 10e, and 1Oj. 12 A. J. Barker, M. J. Begley, M. Mellor, D. A. Otieno, and G. Pattenden, J. Chem. SOC.,Perkin Trans. 1,1983, following paper; A. J. Barker and G. Pattenden, ibid., 1983, 1901. 13 cf. M. J. Bullivant and G. Pattenden, J. Chem. SOC., Perkin Trans. I, 1976,249; P. R. Pal, C. G. Skinner, R. L. Dennis, and W. Shive, J. Am. Chem. SOC.,1956, 78, 5116. 14 L. Crombie, A. J. B. Edgar, S. H. Harper, M. W. Lowe, and D. Thompson, J. Chem. SOC.,1950, 3552. Received 10th November 1982;Paper 2/1900
机译:J. CHEM. SOC. PERKIN 译.I 1983 4-丙-2-烯基取代环戊烷-I ,3-二酮烯醇酯的合成,以及 N.m.r. 光谱学对其结构的研究 Andrew J. Barker 和 Gerald Pattenden * 诺丁汉大学化学系 NG7 2RD 从环戊烷-lI3-二酮和 2-甲基环戊烷-1,3-二酮衍生的二离子的烷基化反应可快速获得相应的 4-烷基化衍生物 (9)。不对称的4,5-二取代环戊烷-I,3-二酮(I 1)更容易通过相应的4-羟基环戊烯-2-烯酮(10)在甲醇钠存在下进行异构化而获得。质子和碳-1 3 n.m.r.数据表明,4-丙-2-烯基取代的环戊烷-l,3-二酮(9a-d,R = HI Me)和(1 1a-c)在溶液中完全烯醇化,并且两种烯醇形式[例如(18)和(19)]正在经历快速互变异构。N.m.r.数据还表明,而2-甲基取代的二酮(9a,b,d;R = Me)在用乙酸酐-乙酸钠处理后产生单一烯醇乙酸盐[即(ZO)、(26)和(27)],类似物(9a,c,d;R = H) 和 (1 la-c) 反而导致异构体烯醇乙酸酯的混合物 [例如 (28)/(29) ;(35)/(36)].在 4,5-二取代烯醇乙酸酯 (35)、(36) 和 (41) +(44) 的情况下,C-4、C-5 取代基被证明彼此具有反立体化学关系。从4-丙-2-烯基取代的环戊烷-l,3-二酮的烯醇形式(1)衍生的酯已被证明是构建双环[3.2.1]-辛烷碳框架的有用前体[例如(3)和(6)],存在于一系列生物活性天然萜烯中。这种转化是通过分子内[2+21光环加成[至(2)或(4)],然后直接[即(2)-+(3)]或转化为相应的甲磺酸盐酯(5)[即(5)-(6)]后平稳地实现的。虽然有许多方法可用于合成环-06(3)1-0。戊烷-L,3-二酮和简单的2-烷基衍生物,2 关于4-丙-2-烯基取代的环戊烷-1,3-二酮的合成的研究很少。此外,尚未对这一类有趣的化合物及其烯醇衍生物的互变异构进行系统研究。结合我们到双环[3.2.l]辛烷碳框架的光化学路线(方案l),我们研究了到适当的4-丙-2-烯基取代的环戊烷-l,3-二酮前体(l)的合成路线,并通过n.m.r.光谱和其他方法研究了它们的互变异构。本文介绍了这些研究。在下面的论文中,我们展示了如何将这些前体细化为几种取代的双环[3.2.l]辛烷,以及HO(1)1”。天然倍半萜烯,一种在香根草中发现的有气味的化合物。我们开始研究4-丙-2-烯基取代的环戊烷-l,3-二酮的合成路线,首先检查了来自市售的环戊烷-l,3-二酮(7a)和(7b)的双阴离子的烷基化.3 来自r)-酮酯的二离子的y-烷基化,以及来自聚-P-酮的聚阴离子的邻烷基化,在合成中都是有据可查和有用的程序4因此,我们预计这些反应的环状“变体”以类似的方式进行直截了当的方式。二离子(8)是在-78“C下在六甲基-磷酰胺存在下用正丁基锂(2当量)在四氢呋喃中处理后产生的环戊烷-l,3-二酮(7)。在-78“C下加入烷基化剂并升温至25”C,然后进行淬火和处理,然后得到4-烷基化衍生物(9)。4-烷基化二元很容易通过萃取成碳酸钠水溶液,然后酸化并用乙醚重新萃取。以这种方式将一系列4-丙-2-烯基取代的环戊烷-l,3-二酮和4-丙-2烯基取代的2-方案1。J. CHEM. SOC. PERKIN 译.I 1983 0Qo -090 -oQ: 1 a.R=H a, R= 1 b,R=Me b.R= / c,R=c.合成了R'=7 d,R'=Et02C-R0甲基环戊烷-1,3-二酮(即9a-d,R=H,Me)。是枝裕和等在初步发表4-取代环戊烷-l,3-二酮的途径后,发现由环戊烷-l,3-二酮衍生的异丁基醚可以以类似的方式用于制备共聚-4,5-二取代环戊烷-l,3-二酮。上述方法均不适用于合成不对称的4,5-二取代环戊烷-l,3-二酮[例如(ll)]。获得此类分子的一种有用途径是在甲醇钠存在下对相应的 4-羟基环戊烯-2-烯酮 (10) 进行异构化。Elliott首先详细研究了这种新型异构化,后来由我们自己进行了研究。所需的 2-丙-OH 2-烯基取代的 4-羟基环戊烯酮 (10) 是大多数 (14) 从相应的对酮酯 (12) 或三乙氧基环戊烯酮 (13) 开始通过有据可查的程序获得的?在热甲醇钠甲醇存在下加热羟基-环戊烯酮,然后产生不对称的二酮(1 lad),收率很高。在我们的研究过程中,我们还通过在多磷酸存在下重排呋喃醇 (14) 合成了 2-烯丙基-4-羟基环戊二烯酮 [至 (15)] 然后进行异构化?用冷甲醇甲醇钠处理4-羟基环戊-2-烯酮(1,6),然后得到相同的环I5。7-戊烷-lY3-二酮(9a;R = H)通过直接烯丙基(17)与环戊烷-l,3-二酮衍生的二阴离子(8a)进行烯丙基化而得。使用n.m.r.光谱(lH和13C)对无环1,3-二羰基化合物之间的互变异构体平衡的研究已经很广泛.1°相比之下,除了少数例外Y1l对环戊烷-1,3-二酮中的互变异构知之甚少。==&2-甲基-4-(19)丙-2-烯基环戊烷-1,3-二酮(9a;R = Me)确定二酮在溶液中完全烯醇化,并且两种烯醇形式(18)和(19)正在经历快速互变异构。后一个特征在13C n.m.r.光谱中也得到了证实,其中只观察到一组碳共振;这些数据汇总在公式(17)中。0+c值得注意的是,二元中的C-2在6 113.5 '6.6p.p.m.以单线态的形式出现。指示其 SP2 字符。(9a;R = Me)是(20) (21)在α-丙烯侧链对C-3的优先脱屏蔽的基础上制成的。其余的共振很容易在'H n.m.r.和从位移数据的检查和比较中分配,以及I3C n.m.r.谱图中显示出一组共振。值得注意的是,乙烯基甲基质子也来自解耦光谱。共振为“表观”三联体(同烯丙基偶联ca。 二酮(9a;R = Me)与乙酸酐1.5 Hz)在'H n.m.r.谱图中指示结构(20)在乙酸钠存在下为乙酸烯醇提供单一烯醇,而不是(21)。相对位移(6 33.0 醋酸盐,在 g.1.c. 和 t.1.c. 分析中均匀。enol 和 44.6 p.p.m.)C-4 和 C-5 在 J. CHEM. SOC. PERKIN TRANS. 的 13C n.m.r. 光谱中。I 1983 表 N.m.r. 数据 (p.p.m. 来自 SiMe,) R 8 2 2 碳原子 (26) (28) (29) (30a) (31a) (30b) (31b) (35) (36) (41) (42) (37) (38) 1 207.8 208.8 206.8. 1 208.2 205.6 208.6 205.8 206.8 208.0 207.7 210.2 205.8 207.2 2 125.3 115.4 116.1 115.6 116.5 115.3 116.0 114.4 115.0 114.3 114.8 103.0 102.5 3 174.9 178.8 181.3 178.6 180.3 178.6 181.0 180.9 178.8 180.8 179.6 192.7 190.5 4 33.0 32.7 39.5 34.3 39.934.9 40.9 44.6 41.0 45.5 41.6 45.8 53.6 5 45.4 43.3 32.7 43.6 38.8 42.6 38.9 48.6 52.2 47.4 51.1 48.4 40.7 6 34.2 34.2 34.2 2 35.0 36.0 39.4 39.4 35.6 34.7 40.8 39.5 35.1 35.6 7 127.7 141.8 140.9 134.7 133.8 143.2 142.3 135.1 134.2 143.2 142.9 134.5 135.5 8 127.4 125.7 126.7 117.2 118.0 112.0 112.8 117.3 117.9 112.6 113.3 117.6 116.9 2-me 6.6 7/8-me 415 me 17.8 22.2 22.2 15.617.4 16.0 17.4 [6 166.2-166.5 (0 COCH,); 21.3 (OCOCH3)p.p.m.1 2 7.1-3L.3 AcOq-乙醇乙酸酯,与模型化合物(22)(6 27.1和34.3 p.p.m.)中发现的AcOq相比,也支持丙-2-烯基取代乙酸酯的形成(20)(即C-5更去屏蔽,因为它带有丙烯基侧链)。当相应的烯醇甲醚(23)(也是单一异构体)制备自(9a;R = Me)在用氢化铝锂还原后转化为环戊-2-烯酮(24)[而不是(25)],然后进行酸性处理。4-丁-2-烯基和4-环戊-1-烯基甲基取代的环戊烷-l,3-二酮(9b;R = Me) 和 (9d;R = Me),也导致用醋酸酐-乙酸钠处理的单一烯醇乙酸酯。烯醇酯显示出与(20)记录的n.m.r.数据非常相似,从而支持相似的结构分配,即分别(26)和(27)(参见表13C n.m.r.数据)。如2,4-二取代的环戊烷-l,3-二酮(9a,b和d;R = Me),4-环戊-l-烯基甲基环戊烷-1,3-二酮(9d ;R = H)表明该分子以(gd;R=H) AcO AcO 0a (30) a.R=H;b.R =Me 快速相互转化烯醇形式。然而,在乙酰化时,二酮提供了两种烯醇乙酸盐(28)和(29)的大约1:1的混合物(通过'H n.m.r.共振的整合)。两种烯醇乙酸盐在'H n.m.r.光谱中很容易区分,其中(28)中的环戊烯酮环烯烃质子在6 6.12处被观察到为“表观”三重态(烯丙基偶联J约1.5 Hz),而乙醇乙酸烯醇酯(29)中的相同质子在6 6.19处被观察到为双峰态(Jca.1)。通过压力液体和薄层色谱法的组合实现了异构体烯醇乙酸酯的部分分离,这使我们能够在酯的13C n.m.r.光谱中分配所有碳原子(见表)。以类似的方式,4-取代的环戊烷-l,3-二酮(9a;R = H) 和 (9c;R = H)分别导致相应的异构体烯醇乙酸酯(30)和(3 1)的混合物约1:1,用乙酸酐-乙酸钠处理。尽管 4,Sdi取代的环戊烷-l,3-二酮 (11a) (11 b) 和 (1lc) 可以作为合成异构体和抗非对映异构体的混合物存在,但它们的 'H n.m.r. 光谱仅显示 J. CHEM. SOC. PERKIN TRANS. 1 1983 一个二级甲基吸光度 (J 7, 6 ca. 1.23),在镧系元素位移试剂存在下没有进一步分裂。这些数据表明,仅存在一种非对映异构体,并且通过比较其 I3C n.m.r. 光谱 (6 16.8) 中仲甲基碳原子的位置与模型抗和同步环戊烷-1,3-二酮烯醇醚 (32) 和 (33) 的位置来支持每个二酮的反立体化学。 二酮(lla)的乙酰化, 在乙酸钠存在下使用乙酸酐,得到乙酸异构体烯醇酯的1:1混合物,通过检查和比较N.M.R.数据与类似物的数据;(20)、(30)和(31)分别被分配了结构(35)和(36)。在 13Cn.m,r.光谱(位移数据见表),混合物中的C-4/5甲基碳原子出现在6 17.4和15.6 p.p.m.,通过与(32)和(33)的比较,再次表明异构体烯醇乙酸酯中的C-4,C-5取代基是相互反的。当二酮(1 la)转化为烯醇甲醚的相应混合物时,证实了这一点,后者通过用氢化铝锂还原转化为环戊烯酮的混合物。因此,用碳酸钾-硫酸二甲酯处理抗二酮 (34) 导致两种抗烯醇甲醚 (37) 和 (38) 的 1:1 混合物,分别在 6 16.0 和 17.4 p.p.m. 显示 C-4/5 甲基碳原子共振。还原该混合物,然后进行酸处理,然后得到两种环戊烯酮 (39) 和 (40),其结构遵循它们的 nmr 光谱数据。以类似的方式,抗环戊烷-l,3-二酮(1 1 b)和(1 lc)在乙酰化时产生相当量的两种可能的相应抗烯醇乙酸酯,即分别为(41)/(42)和(43)/(44)。值得注意的是,辐照来自(9a,c,d,R = H)和(lla-c)的近似1:1烯醇乙酸酯混合物,产生仅来自5-丙-2-烯基异构体[即(28),(30a),(30b),(39,(41)和(43)]的分子内环加合物[即(2)或(4)]。由于 4-丙-2-烯基异构体 (29)、(31a)、(31b)、(36)、(42)、(44)在光环加成过程中被消耗,因此异构体烯醇乙酸酯之间的平衡,可能通过与光炸反应不无关系的过程,在辐照过程中必须非常迅速。这些和其他涉及环戊烷-l,3-二酮烯醇乙酸酯的光化学研究在随附的论文中进行了描述.12 实验性'H N.m.r.光谱是在Jeol JNM-MH 100光谱仪上测定的,或在250 MHz下在Bruker WM PFT仪器上测定的,作为CDC13中的稀溶液,内部%Me4参考.13C N.m.r.光谱在20“C下记录,JEOL-PS-100光谱仪在25.1 5 MHz下工作,与Nicolet 1085 20K计算机接口。除非另有说明,否则将溶液用硫酸镁干燥,并在减压下蒸发溶剂。对色谱分析的所有溶剂进行再蒸馏。G.1.c. 分析是在硅藻土上填充有 10% SE-30 的 5 英尺 x 3 柱上进行的。乙醚是指整个乙醚。(37) (38) 19.4 53 15 49.5 (411 (42) AcO 0 (43) (44) 4-丙-2-烯基取代的环戊烷-l,3-二酮 衍生自环戊烷-l,3-二酮和 2-甲基环戊烷-1,3-二酮 :一般程序(与 M.Mellor 一起)?-将正丁基锂(8.4 mM;2.1 当量)的己烷溶液加入环戊烷-l-的搅拌溶液中 5 分钟,3-二酮(4mM)在六甲基磷酰胺(3.4ml)和四氢呋喃(25ml)在-78“C。将混合物在-78“C下搅拌20分钟,然后用烷化剂(1.1当量)滴加处理5分钟以上。将混合物在-78“C下搅拌1h,然后用稀盐酸稀释时升温至25”C。分离水层,然后用乙醚(3×15ml)洗涤。用10%碳酸钠水溶液(5 x 10 ml)提取合并的有机层,然后酸化合并的水层(6rvr-HCl)并用乙醚(4 x 10 ml)提取。洗涤(水)和干燥的乙醚提取物蒸发后,留下二酮,无需进一步纯化即可使用。由于分子容易氧化,因此无法对任何二元进行令人满意的微量分析。4-丙-2-烯基环戊烷-1,3-二酮(9a;R = H).-通过一般程序,环戊烷-l,3-二酮与ally1溴化物的烷基化反应得到二酮(50%)为几乎无色的油,h,,,,(EtOH)241 nm;v,,,.(胶片) 2 670-3 250, 1 640, and 1 520-1 625 cm-';6 11.94 (OH), 5.45-5.96 (m, CH:CH2) 5.34 (COCH:), 4.9-5.23 (m, :CH,), and 1.97-2.93 (m, 5 h) (发现: M+,m/z 138.0682;C8H,,02 需要 M,138.0681)。J. CHEM. soc. PERKIN 译.I 1983 4-(2-Methy~rop-2-enyl)环戊烷-1,3-二酮(9c;R = H)。-按照一般程序,环戊烷-l,3-二酮与2-甲基ally1氯烷的烷基化反应得到二酮(72%)为淡黄色固体,熔点65-67“C(分解。), hmax(EtOH) 240 nm;vmax(KBr) 2 700-3 350、1 645 和 1 530-1 630 cm-l;6 11.94(OH)、5.28 (COCH:)、4.59-4.83 (m, :CH2)、1.75-2.99 (m, 5 H) 和 1.74 (:CMe) (发现:M+, m/z 152.0836。C9H1202 需要 M,152.0837)。4-环戊-L-烯基甲基环戊烷-l,3-二酮(9d;R = H).-通过一般程序,环戊烷-l,3-二酮与1-(溴甲基1)环戊烯3的烷基化反应得到二酮(29%)为黄色固体,熔点95-105“C,vmx(CHCI,)2730-3 350,1 640和1 550-1 620 cm-';6 10.36 (OH)、5.29-5.38 (m, 2 x XH)、2.45-3.0 (m, 4 H)、2.0-2.45 (m, 3 H) 和 1.7-2.0 (m, 2 H);6c 205.6、201.2、141.6、126.0(d)、105.O(d)、42.3(d)、37.8(t)、35.2(t)、33.6(t)、32.5 和 23.5 p.p.m.(发现:M,m/z178.1000。CllH1402 需要 M,178.0994)。2-甲基-4-丙-2-烯基环戊烷-1,3-二酮(9a;R = Me).-通过一般程序,2-甲基-环戊烷-lY3-二酮与烯丙基溴的烷基化反应得到二酮(51%)为无定形固体,熔点71-73“C,hmx。(环氧乙烷)243 nm;(CHC13) 2 665-3 515, 1 640 和 1 515-1 620 cm-';6 11.56 (OH)、5.19-5.83 (m, *CH:CH2)、4.65-5.07 (m, CH2)、1.75-2.84 (m, 5 H) 和 1.66 (:CMe);见公式(17)(找到:M+,m/z152.0830;GH1202需要M,152.0837)。4-丁-2-烯基-2-甲基环戊烷-1,3-二酮(9b;R = 我)。-通过一般程序,将2-甲基环-戊烷-lY3-二酮与E-l-溴丁-2-烯烷基化,得到二酮(50%)为无定形固体,m.p.85-88“C,vmX。(CHC13) 2650-3 450, 1640, 和 1 520-1 625 cm-';6 9.46(0H), 5.1-5.84 (m, 2 x :CH),1.9-2.88 (m, 5 h) 和 1.73br (2 x :CMe) (发现: M, m/z 166.0992.C10H1402需要 M,166.0993)。4-环戊-1-烯基甲基-2-甲基环戊烷-l,3-二酮(9d;R=Me).-按一般程序,将2-甲基环戊烯-1,3-二酮与1-(br omomet hy1)环戊烯l3烷基化,得到二酮(32%)为固体,熔点107-110“C,Lx(EtOH)245nm;hmx (KBr) 2 600-3 450, 1 670, 和 1 520-1 640 cm-';6 10.6(OH), 5.35 (m, :CH), 1.29-2.97 (m, 11 h), 1.66 (:CMe);6c 202.9、195.9、141.9、125.8(d)、113.0、41.3、36.6(t)、35.2(t)、32.5(t)、23.5(t)和5.8(q)p.p.m.(发现:M,m/z192.1169。C12Hl602 需要 M,192.1150)。抗-4-甲基-5-丙-2-烯基环戊烷-1,3-二酮(1 1 a).-如前所述制备二酮,并显示出6 12.4 (OH)、5.43-6.17 (m, CH:CHt)、5.23 (COCH:)、4.93- 5.22 (m, :CH2)、1.98-3.0 (m, 4 H)和1.23 (d, J7, CHMe);6c 204.4、202.7、134.7(d)、117.6(t)、104.l(d)、51.2(d)、43.3(d)、35.3(t)和16.8(q) p.p.m. 抗-4-甲基-5-(3-甲基丁-2-烯1)环戊烷-1,3-二酮(1 LC).-将4-羟基-3-甲基-2-(3-甲基丁-2-烯基)环戊-2-烯酮(0.25 mol)*在干燥甲醇(50 ml)中的溶液加入到甲醇(500 ml)中的钠(0.32 g原子)溶液中, 将深红色溶液回流加热21 h,冷却混合物,然后减压除去甲醇。残渣用水稀释,然后用乙醚洗涤溶液,用6~-盐酸酸化。用乙醚(6×50ml)萃取水溶液,然后将合并的乙醚提取物洗涤(水),干燥,蒸发,使&一(78%)为红色油,v,,,(薄膜)2 750-3 350,1640和1 590 cm-';6 6.88 (OH)、5.22 (COCH:)、5.07 (m, Me2C:CH)、2.64-3.1 (m, 1 H)、2.0-2.6 (m, 3 H)、1.71 (:CMe)、1.63 (:CMe) 和 1.18 (d, J 7, CHMe) (发现: M, m/z 180.1 1 52.CllH1602 需要 M, 180.1 150)。以4-羟基-3-甲基-2-(2-甲基丙-2-烯基)环戊-2~壬4为原料,按照类似物(LLA)所述的步骤,用甲醇钠处理,制备(84%)二酮。结果显示血压134-138/“C 0.3 mmHg,Lx.239 nm;hmx。(薄膜)2 670-3 400,l 640 和 1 585 cm-';6 11.1 (OH)、5.27 (d, J 2, COCH:)、4.654.9 (m, :CH2)、1.95-3.12 (m, 4 H)、1.8 (:CMe) 和 1.21 (d, J 7.5, CHMe) (m/z 166)。4-羟基-2-丙-2-烯基环戊-2-烯酮(1,6).-用烯丙基溴衍生的格氏试剂处理2-糠醛,按常规程序得到2-(l-羟基-丁-3-烯1)呋喃(7373,b.p.83-85“C/15 mmHg,vmX(薄膜)3 390 crn-';6 7.46 (d, J 1.5, OCH:), 6.4 (m, OCJXCH), 6.3 (m, OCH:CH), 5.63-6.1 (m, CH:CH2), 5.05-5.35 (m, :CH2), 4.76(t,J6.5,CHOH),2.76(OH),and 2.64(dd,J2and7,CH2) (Found: M, m/z138.0681.GHlOO2 requires M, 138.0681)。呋喃醇在多磷酸中的重排,根据Piancatelli等人的程序?生产4-羟基-5-丙-2-烯基环戊-2-烯-L-酮(15)(30%),VMX。(胶片)3 480、1 690 和 1 640cm-';6 7.8 (dd, J 1.5 and 6, CH:CHCO), 6.38 (d, J 6, :CHCO), 5.74-6.2 (m, CH:CH2), 5.12-5.44 (m,:CH2), 4.89 (CHOH), 3.55(0H), and 2.12- 2.9 (m, 3 H), 然后将其异构化为氧化铝上的羟基-环戊烯酮。羟基环戊烯酮显示,Am=。(环氧乙烷)239.5 nm;vmX.(胶片)3 480、1710、1 690 和 1 645 cm-l;6 7.55 (米, :CH.CHOH)、5.81-6.3 (m, CH:CH2)、5.04-5.49 (m, :CH2)、4.39 (CHOH)、3.08 (d, J 6, CH2CO)、2.3-2.8 (m, 2 H) 和 3.52 (OH) (Found: M, m/z 138.0681.C&Hl0O2 requires M, 138.0681)。将4-羟基环戊烯酮在0“C的甲醇甲醇钠溶液中重排至4-丙-2-烯基-环戊醇,3-二酮(9a;R = H) (60%),其光谱数据与上述环戊烷-l,3-二酮烯丙基反应制备的相同二酮的光谱数据相同。环戊烷-l,3-二酮乙醇乙酸酯:一般程序.- 将二酮(50mM)在含有无水乙酸钠(20mM)的乙酸酐(40ml)中的溶液在25“C下搅拌24小时;然后在减压下除去过量的醋酸酐和醋酸。残留物用水(150ml)稀释,并用乙醚(4×50ml)萃取。将合并的乙醚提取物用碳酸钠水溶液(5 x 25 ml)和水(2 x 25 ml)洗涤,然后干燥并蒸发,留下乙酸烯醇,乙酸烯醇通过蒸馏或色谱法纯化(产率80-9 8%)。-酯显示kmx。(环氧乙基)234 nm (E 12000);vMX 1 770,1700,L 665 和 1 640 cm-';6 5.47-5.94 (m, CH:CH2), 4.87-5.16 (m, :CH2), 2.01-3.13 (m, 5 H), 2.27 (OAc), and 1.62 (t, J 1.5, :CMe);见公式(20)。3-乙酰氧基-2-甲基环戊-2-烯-1-酮(22).-酯显示b.p.58-64“C/0.3mmHg(lit.,''* b.p.66-67.5”C/0.5mmHg),vmx。(胶片)1 765、1705和1 660cm-';6 2.76-2.96 (m, COCH2), 2.53 (dt, J 6 and 2, CH2C:), 2.32 (OAc), and 1.67 (t, J 2, :CMe) ;6c 见公式(22)。* 由 J. Martel 博士 (Roussel Uclaf) 友情捐赠。3-乙酰氧基-5-丁-2-烯基-2-甲基环戊-2-烯-l-酮(26).-酯显示hmX(EtOH)236 nm(E 12 500);(胶片)1 775,1 705 和 1 665 cm-';6c 见表(Found: M, m/z208.1 112.C12H1603 需要 M, 208.1 100)。3-乙酰氧基-5-环戊-1-烯基甲基-2-甲基环戊-2-烯-1-酮 (27).-酯显示hmX (EtOH) 237 nm (E 13 600);vmag(胶片)1 770,1 700和1 660 cm-l;6 5.35 (m, C:CHCH2), 1.51-3.08 (m, 11 H), 2.3 (OAc), and 1.63 (t, J 1.5,:CMe) (Found: M, m/z234.1236.C14Hla03 requires M, 234.1256)。2-甲基-4-丙-2-烯基环戊烯-2-烯-1-酮 (24).-在无水碳酸钾存在下,用热丙酮处理2-甲基-4-丙-2-烯基环戊烷-1,3-二酮与硫酸二甲酯,以通常的方式得到3-甲氧基-2-甲基-5-丙-2-烯基环戊烯-2-烯-1-酮(23)(93%),b.p.60-65 OC/O.O5 mmHg,hmx(EtOH)253 nm(E 11 000);vmX。(胶片)1695 和 1640 厘米-';6 6.0-7.47 (m, :CH)、4.95-5.25 (m, :CHI)、4.0 (OMe)、2.01-3.05 (m, 5 H) 和 1.64(:CMe)。用氢化铝锂在乙醚中还原烯醇甲醚,然后用稀硫酸处理粗产物(在25“C下2小时),然后得到环戊烯酮(65%)作为有臭油,h,,(EtOH)231nm;vmX. 1 715 和 1 645 cm-';6 5.28-5.79 (m, CH:CH2), 4.91 (m, :CH.CH), 4.684.87(m, :CH2) 1.7-2.9 (m, 5 h),1.59 (d, J 2,:CMe) (发现: M, m/z136.GH120 需要 M,136)。3-乙酰氧基-5-丙-2-烯基环戊烯-2-烯-l-酮(30a)和3-乙酰氧基-4-丙-2-烯基环戊-2-烯-1-酮(3 la).-以1:1的比例获得酯,结果为noZ2 1.4885,hmx。(环氧乙烷)235 nm;(胶片)1785、1705、1640 和 1 605 cm-';6 6.19 (d, J 1, COCK) [异构体 (31a)], 6.12(dd, J ca. 1, COCH:) [异构体 (3Oa)], 5.49-5.97 (m, CH:CH2), 4.95-5.25 (m, :CH2), 1.95-3.18 (m, 5 H) 和 2.33 (OAc),2.3 (OAc);请参阅表(找到:m/z 180.0776.C10H12O23需要 M 180.0786)。3-乙酰氧基-5-(2-甲基丙-2-烯基)环戊-2-烯-1-酮(30b)和3-乙酰氧基-4-(2-甲基丙-2-烯基)环戊-2-烯-1-酮(3 1 b).-酯以1:1的比例获得,显示Amax 239。5 海里 (E 12 500);VMX. 1785, 1705, 1645, 和 1 600 cm-L;6 6.26 (d, J 1, COCH:) [异构体 (31b)], 6.21 (dd, J 1, COCH:) [异构体 (30b)], 4.74.95(m, :CH2), 1.91-3.3 (m, 5 H), 2.33 (OAc), 2.35 (OAc) 和 1.78br (:CMe);6c 见表(找到:M,m/z 194.0963。CllH1403 需要 M, 194.0943).3-乙酰氧基-5-环戊-1 1 -酮(28)-烯基甲基环戊烯-2-烯和 3-乙酰氧基-4-环戊-1-烯基甲基环戊烯-2-烯-1 -酮 (29).-酯以 1 : 1 的混合物获得,显示 vmx.1780,1 700,1635 和 1 600 cm-';6 6.21 (d, J 1.5 COCH:) [异构体 (29)], 6.14 (dd, J ca. 1.5, COCH:) [异构体 (28)], 5.4 (m, CHICK) 和 1.6-3.3 (m, 11 H), 2.3 (OAc);6c 见表。使用醚轻石油(b.p. 60-80 “C) (1 : 1) 作为洗脱剂.3-乙酰氧基-4-甲基-5-丙-2-烯基环戊-2-烯-1-酮(35)和3-乙酰氧基-5-甲基-4-丙-2-烯基环戊-2-烯-1-酮(36).-酯以1:1的混合物形式获得,其显示b.p.104-106”C/1 mmHg, 1.4890,hmx.nDZ2e5 (EtOH) 234 (E 13 100) 和 287 nm (E 270);(胶片)1 785、1 705、1 645 和 1 600 cm-';6 6.19 (m, COCH:), 5.5-5.96 (m, CHZH,), 4.94-5.22 (m, :CH2), 1.9-2.9 (m, 4 H), J. CHEM. SOC. PERKIN TRANS.I 1983 2.31 (OAc) 和 1.23, 1.18 (d, J 7.5, CHMe, 两种异构体);见表;(找到:M,m/z194.0946.CllH1403 需要 M 194.0963)。5-甲基-4-丙-2-烯基异环戊-2-烯-l-酮(39)和4-甲基-5-丙-2-烯基环戊-2-烯-l-酮(4O).-在无水碳酸钾存在下,用热丙酮处理4-甲基-5-丙-2-烯基环戊烷-1,3-二酮与硫酸二甲酯,以通常的方式得到两种烯醇甲醚(37)和(38)(73%)的混合物,b.p.80-83“C/0.1 mmHg,h.,,,(EtOH)244 nm(E 11 500);(胶片)1 690、1640 和 1 595 cm-';6 5.54-5.98 (m, CH:CH2), 5.25 (d,J2,COCH:), 4.96-5.22 (m, :CH2), 3.86 (OMe), 1.94-2.69 (m, 4 H), 和 1.22,1.18 (d, J 7.5,CHMe, 两种异构体);aC 见表(找到:M,m/z166.0993;C&1402 需要 M,166.0994)。将烯醇醚混合物与氢化铝锂在乙醚中还原,然后用稀硫酸处理粗产物(25“C下2h),然后得到两种烯酮(39)和(40)(64%)的混合物,h,,,.(环氧乙烷)219 nm;6 7.56 和 7.48(dd, J 2 和 8, COCH: CH, 两种异构体), 6.11 和 6.05 (d, J 8, COCKCH, 两种异构体), 5.54-6.0 (m, CH:CH2), 4.92-5.22 (m, :CH2), 1.83-2.85 (m, 4 H) 和 1.21,1.18 (d, J 8, CHMe, 两种异构体), 6c 参见式 (39)和(40).3-乙酰氧基-4-甲基-5-(2-甲基丁-2-烯基)环戊-2-烯-l-酮 (43) 和 3-乙酰氧基-5-甲基-4-(2-甲基丁-2-烯基)环-戊-2-烯-1-酮 (44).-酯以 1:1 的比例获得,显示 kmx.(环氧乙烷)243 nm (E 16 500);v,,, (CHC13)1 780,1705 和 1 590 cm-I ;6 6.25 (m, COCH:), 5.0-5.3 (m, Me2C:CH), 2.95-3.28 (m, 1 H), 1.88-2.85 (m, 3 H), 2.34 (OAc), 1.74(:CMe)、1.66(:CMe)和1.22、1.20(d,J 7,CHMe,两种异构体)(发现:M,m/z222.1231。C13H1803需要 M,222.1256)。3-乙酰氧基-4-甲基-5-(2-甲基丙-2-烯基)环戊-2-烯-1-酮 (41) 和 3-乙酰氧基-5-甲基-4-(2-甲基丙-2-烯基)-环戊-2-烯-1-酮 (42).-酯以 1:1 的混合物获得,显示 b.p. 125-130 “C/1.5mmHg, h,,, (EtOH) 233 nm (E 12 900);h,, (胶片) 1 775,1 700 和 1 645 cm-';6 6.2 (m, COCH:)、4.81 (m, :CH2)、1.93-2.87 (m, 4 H)、2.33 (OAc)、1.81 (:CMe) 和 1.26, 1.18 (d, J 7, CHMe, 两种异构体);& 参见表格 (找到 :M, m/z208.1120.C12HI6O3 需要 M, 208.1 100)。致谢 我们感谢 S.E.R.C. 提供助学金(给 A. J. B.)。参考文献 1 (a) M. Mellor, D. A. Otieno, and G. Pattenden, J. Chem. SOC., Chem. Commun., 1978, 138;(b) A. J. Barker 和 G. Pattenden, Tetrahedron Lett., 1980,21, 3513;1981, 22, 2599 2 (a) L. NovAk, G. BaAn, J. Marosfalvi, and C.Sdntay, Tetru-hedron Lett., 1978, 487;(b) R. Bucourt, A. Pierdet, G. Coster- ousse, and E. Toromanoff, Bull.SOC。噗噗。Fr., 1965, 645;(c) H.Schick, G. Lehmann, and G. Hilgetag, Chem. Ber., 1967, 100, 2973;(d) V. J. Grenda, G. W. Lindberg, N. L. Wendler, and S. H. Pines, J. Org. Chem,, 1967,32, 1236;(e) H. Schick、G. Lehmann 和 G. Hilgetag, Angew。Chem., Int. Ed. Engl., 1967, 6, 80;(f)C. H. DePuy 和 E. F. Zaweski, J. Am. Chem. SOC., 1959,81,4920;(g)J. M. Mclntosh 和 P. M. Beaumier, J. Org. Chem., 1972, 37, 2905;(h) L. Van Wijnsberghe和M. Vande-walle, Bull.SOC。噗噗。比利时。, 1970,79,699;(一)T.Miki, K. Hiraga, T. Asako, and H. Masuya, Chem. Pharm. Bull., 1967, 15, 670;(j) M. Vandewalle和F. Compernolle, Bull.SOC。Chim.Belg., J. CHEM. SOC. PERKIN 译.I 1983, 1966,75, 349;(k) J-J.Panouse 和 C. SanniC,公牛。SOC。噗噗。Fr., 1955,1036;(I) E. Nakamura 和 I. Kuwajima, J.Am. Chem. SOC.,1977, 99, 961.3 M. Mellor 和 G. Pattenden,合成器。Commun., 1979, 9, 1.4 L. Weiler, J. Am. Chem. SOC.,1970, 92, 6702;T. M. Harris 和 CM Harris, Org. React., 1969, 17, 155.5 M. Koreeda, Y. Liang, and H. Akagi, J. Chem. SOC., Chem. Commun., 1979, 449.6 M. Elliott, J. Chem. Soc., 1965, 3097.7 G. Pattenden 和 R. Storer, J. Chem. Soc., Perkin Trans. 1,1974, 1606.8 L. Crombie、P. Hemesley 和 G. Pattenden, J. Chem. SOC.C, 1969, 1016;E. Madeleyn 和 M. Vandewalle,公牛。SOC。噗噗。比利时, 1973, 82, 293.9 (a) G. Piancatelli, A. Scettri, and S. Barbadoro, Tetrahedron.Lett., 1976, 3555;(b) G. Piancatelli和A. Scettri,同上,1977年,第1131页;综合, 1977, 116;(c) G. Piancatelli, A. Scettri, G. David and M. D'Auria, Tetrahedron, 1978, 34, 2775.10 (a)J. L. Burdett 和 M. T. Rogers, J. Am. Chem. SOC.,1964,86, 2105;(b) S. Bratan 和 F. Strohbusch, Chem. Ber., 1972, 105, 2284;(c) N. N. Shapet'ko, Org. Magn.共振, 1973, 5, 215;(d) N.N.Shapet'ko、I.L.Radushnova、Y.S.Bogachev、S.S.Berestova、V.M.Potapov、G.V.Kiryuschkina和I.K.Tale-barovskaya,同上,1975年,6,540;(e)M. Anteunis 和 N. Schamp, Bull.比利时, 1967, 76, 330;(f)J.H.Billmann, S. A. Sojka 和 P. R. Taylor, J. Chem. SOC.,Perkin Trans. 2, 1972, 2034;(g) L. F. Johnson 和 W. C. Jankowski,“碳-13 N.m.r. 光谱”,Wiley Interscience,1972 年,第 115、181 和 463 页;(h)N.N.Shapet'ko、S.S.Berestova、G.M.Lukovkin和Y.S.Bogachev,Org.Magn.共振, 1975, 7, 237;(i) J. C. J. Bama 和 M. J. T. Robinson, Tetrahedron Lett., 1979, 1455;(j) P.S.Steyn和P.L.Wessels,同上,1978年,第4707页。11 (a) S. Forsen, F. Merenyi, and M. Nilsson, Acta Chem. Scand., 1964, 18, 1208;(b) C. M. Cimarusti 和 J. Wolinsky, J. Org. Chem., 1966, 31, 4118;(c) M. Anteunis和F. Compernolle, Bull.SOC。噗噗。Belg., 1967,76,482, 另见参考文献。2h、2j、10e 和 1Oj。12 A. J. Barker, M. J. Begley, M. Mellor, D. A. Otieno, and G. Pattenden, J. Chem. SOC.,Perkin Trans. 1,1983, 以下论文;A. J. Barker和G. Pattenden,同上,1983年,1901年。13 参见M. J. Bullivant and G. Pattenden, J. Chem. SOC., Perkin Trans.我,1976,249;P. R. Pal, C. G. Skinner, R. L. Dennis, and W. Shive, J. Am. Chem. SOC.,1956, 78, 5116.14 L. Crombie, A. J. B. Edgar, S. H. Harper, M. W. Lowe, and D. Thompson, J. Chem. SOC.,1950, 3552.收稿日期: 1982-11-10;文件 2/1900

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号