首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Partial syntheses of gibberellins A45and A63
【24h】

Partial syntheses of gibberellins A45and A63

机译:赤霉素A45和A63的部分合成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1985 Partial Syntheses of Gibberellins A,, and A,, Simon C. Dolan, David W. Holdup, Michael Hutchison, and Jake MacMillan Department of Organic Chemistry, The University, Bristol BS8 I TS The structures of the higher plant 15~-hydroxy-C,,-gibberellins, GA,, and GA,,, by rational syntheses from gibberellins A, and A,, respectively. 65 1 have been established R' R' R2 R3 Several 1 5P-hydroxylated gibberellins (GAS)have been detected in plant extracts. Only two 1 5P-hydroxy-C,, compounds have been previously characterised and therefore allocated GA numbers.' These are GA,, (2), first identified in immature seeds of pear 2*3 (Pyrus communis),and GA32 (8)from immature seeds of Prunus persica, and Prunus armeniaca.' Investigation of the biological properties of 1 5P-hydroxygibberellins has been hindered by the inaccessibility of these gibberellins from their natural sources.Some 1 5P-hydroxygibberellins have been available through microbiological transformations of 15p-hydroxykaurenoic acid (9)by cultures of Gibberella fujikuroi.6T A general synthetic method for the introduction of the 15P- hydroxy group into the available fungal gibberellins GA, (3), GA, (6),GA, (5),and GA, (7) was sought to give a range of l5P- hydroxyGAs for biological evaluation and to confirm their structures. This paper describes the partial syntheses of two gibberellins, GA,, (2) and 15P-hydroxyGA, (4). Both have been previously identified in plant extracts (Pyrus communis) and the latter is now assigned the gibberellin A number GA,,.Results and Discussion The successful routes to GA,, (2) and GA,, (4) are illustrated in Scheme 1 for GA6, (4). In early work towards the development of a general route to these compounds, no direct means of introducing a 1 5P-hydroxy group was found. Allylic oxidation at C-15 with selenium dioxide gave the a-alcohol. This reaction has been modified and found to be a convenient means for introducing a 1 Sa-hydroxy group. This reaction requires protection of the 7-C02H to prevent the formation of a 7,15a- lactone. Initially the methyl ester was used. The approach to the inversion of stereochemistry at C-15 has centred on oxidation and reduction. Many attempts were made to oxidise the 15a- hydroxy group to an enone.The most successful reagents were found to be activated dimethyl sulphoxide complexes.' These reactions are specific to alcohols and avoid oxidation of the adjacent double bond which occurs with many chromium reagents. Initially, the stereospecific reduction of these 15-oxogibberellins concentrated on the use of sodium borohydride in the presence of Ce"', shown by Luche et al.97'0 to give selective 1,2-reductions of conjugated ketones. However, optimisation of conditions still gave complex mixture of 1,2- and 1,4-reduced products as well as reduction of the C-7 methyl ester. Subsequent attempts to hydrolyse the methyl ester, before reduction, using thiolate,' ' butoxide,' and hydroxide anions were low yielding and were complicated by facile conjugate- addition of nucleophiles to the D ring enone system.Recourse to the use of phenacyl esters which are easily prepared and readily cleaved by treatment with zinc in acetic acidl39l4 provided a successful route to GA,, and 15P-hydroxyGA, (GA,,), as illustrated in Scheme 1. Thus GA, (3) was alkylated using phenacyl bromide, potas- sium hydrogen carbonate, and 18-crown-6 ether in acetonitrile and acetylated with acetic anhydride in pyridine to give the ester R' R2 R3 (1) H H H (6) H H H (2) H H OH (7) H OH H (3) OH H H (8) OH OH OH (4) OH H OH (5) OH OH H CO*H (9 1 (10). The 15a-hydroxy group was successfully introduced into the GA, phenacyl ester 3-acetate (10) using selenium dioxide and t-butyl hydroperoxide.' The product, the 15a-alcohol(l l), readily cyclised on standing in solution to give the 7,l Sa-lactone (13),the formation of which was minimised by immediate sub- mission of the 15a-alcohol(l1) to Swern oxidation.* The desired ketone (12) was obtained in reproducible and high yields. Reductive cleavage of the phenacyl group with zinc in acetic acid gave a product (15)with a 'H n.m.r.spectrum which not only confirmed the cleavage of the phenacyl group but also revealed a broad singlet (6 4.20)consistent with a CHOH group. Combined g.1.c.-mass spectroscopy on the deacetylated (potas- sium carbonate, methanol) product, as its methyl ester tri- methylsilyl ether derivative, indicated a dihydroxy compound with an ion at m/z 156 characteristic of the formation of a 15- trimethylsilyloxyGA, as illustrated in Scheme 2.Both the 15a- and 15P-epimers gave almost identical mass spectra as methyl ester trimethylsilyl ethers. However, their g.1.c. retention times were different. They also have different n.m.r.' spectra (see Table). Reduction with zinc in acetic acid provided a new route to the 1 SP-hydroxylated compound, the proton being introduced from the less hindered a-face. Careful analysis of the product ratios at regular time intervals throughout the course of this reaction showed that the rate of reduction of the 15-ketone was faster than the cleavage of the phenacyl ester. The structure (16) for a minor byproduct was supported by the hydrogenation of the a$-unsaturated ketone (18) to give a single g.1.c.component which cochromatographed with the byproduct (16) as its methyl ester on g.1.c. (OV210). Although the mass spectra of the methyl ester trimethylsilyl (10) I Ac 0 Ac 0 COZCHZCOPh (12 1 (11 1 On AcO@-OH (41 ' ?O,H (15) R co-0 (13) R = OAC (14) R= H Scheme 1. Reagents: i, PhCOCH,Br, 18-crown4 ether, KHCO,, CH,CN; ii, Ac,O-pyridine; iii, Se02-Bu'00H; iv, (COCI),-DMSO, Pr',EtN; v, Zn-AcOH; vi, K2C0,-MeOH Table N.m.r. data of 15-and 17-H, protons for some 15-oxygenated gibberellins in CDCl, Compounds 15-H 17-H2 (19) 4.08 5.18 and 5.27 (20) 3.97 5.10 and 5.13 (13) 4.59 5.19 and 5.31 (14) 4.54 5.17 and 5.30 ethers of 15a- and 15P-hydroxyGA, are almost identical, their g.1.c.retention times, underivatised mass spectra, n.m.r. spectra and stabilities are quite different. 15P-HydroxyGA, (4) was assigned gibberellin number GA,,, and is identical with a putative gibberellin detected in pear seeds and with a product of the metabolism of ent- 15~hydroxykaurenoic acid ' (9) by cultures of Gibberella fujikuroi.6,7 The synthetic sequence shown in Scheme 1 was also used to prepare GA,, (2) from GA, (I),one of the gibberellins detected in seeds of apple and The biological activities of the 15P-hydroxygibberellins are currently being investigated. Experimental General experimental details have been described in a previous paper. ' J. CHEM. SOC.PERKIN TRANS. I 1985 Me3Si0 C0,Me I Me,Si 0 0 'CH, Scheme 2. (After H. Obermann and G. Spitteller, Chern. Ber., 1976,104, 3450) (17) R' = H, R2= CH,COPh (18) R' = OAc, R2 = Me R' R2 R3 R4 (19) OAc Me OH H (20) OAc Me H OH (21) (22) H H CH2COPh CH,COPh H OH H H Phenacylation and Acetylation of ent-3a,lO-Dihydroxy-20-novgibberell-l6-ene-7,19-dioicAcid 19,lO-lactone (3).-Gibber- ellin A, (3) (500 mg) was added to a solution of phenacyl bromide (200 mg), 18-crown-6 ether (50 mg), and potassium hydrogen carbonate (400 mg) in acetonitrile (50 ml) and heated under reflux for 1 h. The reaction mixture was diluted with water (50ml), and acidified to pH 3, extracted with ethyl acetate (3 x 50 ml), and dried (Na,SO,).Evaporation of the solvent under reduced pressure gave the phenacyl ester. The product was treated with acetic anhydride (1 ml) in pyridine (5 ml) and stirred for 2 h. The reaction mixture was transferred into water (50 ml), acidified to pH 3 with hydrochloric acid and extracted with ethyl acetate (3 x 50 ml). The combined organic layers were evaporated under reduced pressure with the addition of toluene to assist the removal of the residual pyridine and acetic acid by azeotropic distillation. The ester (10) (500 mg) was obtained as a gum; S(CD,),CO, 1.13 (s, 18-H3), 2.20 (s, J. CHEM. SOC. PERKIN TRANS. I 1985 OCOMe),2.79(d,Jll Hz,6-H),3.23(d,Jll Hz,5-H),4.88(brs, 3-H), 4.88 and 5.0 (each br s, 17-H,), 5.57 (m, CO,CH,CO), and 7.6 and 8.0 (complex m, aromatic); m/z 492 (M+,3579,474 (3), 432 (lo), 388 (18), 356 (16), 296 (22), 269 (loo),224 (70), 120 (13), 105 (40), and 91 (12).Phenacylation of ent-10-Hydroxy-20-norgibberell-16-ene-7,19-dioic Acid 19,lO-lactone (I).-Gibberellin A, (1)(500 mg) was added to a solution of phenacyl bromide (230 mg), 18- crown-6 ether (50 mg), and potassium hydrogen carbonate (400 mg) in acetonitrile (50 ml) and heated under reflux for 1 h. The reaction mixture was extracted as described above and gave the ester (21) (450 mg) as a gum (Found: M+, 434.21 16. C,7H,@, requires M+,434.2093); G(CDC1,) 1.28 (s, 18-H3), 2.59 (d, J 10.5 Hz, 5-H), 2.91 (d, J 10.5 Hz, 6-H), 4.88 and 4.99 (each br s, 17-H,), 5.37 (m, CO,CH,CO), and 7.50 and 7.90 (complex m, aromatic);m/z434(M+, 97),417(1),416(4), 298(47), 270(100), 242 (21), 225 (23), 120 (27), 105 (69), and 91 (44).General Procedure for the Formation of 15a-A1~0h01~.-Compounds (10) and (21) (400 mg) in dichloromethane (2 ml) were added to a solution of selenium dioxide (80mg) and t-butyl hydroperoxide (320 pl) in dichloromethane (10ml). The mixture was stirred at room temperature for 2 h. Examination by t.1.c. showed complete conversion into a more polar product. The reaction mixture was washed with water, the pH was adjusted to 3.0 with hydrochloric acid, and the solution dried (Na,SO,). The solvent was removed to give: from compound (21), 15a- hydroxyGA, 7-phenacyl ester (22); G(CDC1,) 1.22 (s, 18-H3),2.58 (d, J9.8 Hz, 5-H), 2.81 (d, J9.8 Hz, 6-H), 4.09 (br s, 15-H), 5.18 and 5.29 (each br s, 17-H,), 5.27 (d, J 16.6 Hz, CO,CH,CO), 5.44 (d, J 16.6 Hz, CO2CH,CO), and 7.60 and 7.90 (complex m, aromatic); and, from compound (lo), 15a-hydroxyGA4 3-acetate 7-phenacyl ester (11); G(CDC1,) 1.20 (s, 18-H3), 2.17 (s, OCOMe), 2.78(d, JlOHz,6-H),3.25(d, JlOHz,5-H),4.13(brs, 15-H),5.01 (br s, 3-H), 5.19 and 5.30 (each br s, 17-H,), 5.28 (d, J 16.6 Hz, CO,CH,CO), 5.44 (d, J 16.6 Hz, CO,CH,CO), and 7.60 and 7.90(complex m, aromatic).Both compounds readily lactonised on standing to give compounds (14) and (13) respectively, and therefore could not be analysed fully. Swern Oxidation of Allylic AZcoho1s.-Oxalyl chloride (78 pl) was added to dry dichloromethane (20 ml) in a dry flask under nitrogen and cooled to -72 "C.After 10 min, dimethyl sulphoxide was added and allowed to react for 3 min before the addition of the 15a-alcohol(200 mg) in dichloromethane (2 ml). The reaction mixture was stirred at -72 "C for 45 min and at -60 "C for a further 15 min. Di-isopropylethylamine (1.0 ml) was added dropwise and the reaction mixture was then allowed to warm to ambient temperature. The solvent was removed under reduced pressure and the products separated by flash column chromatography "eluting with 20-50 ethyl acetate in light petroleum. (a)Oxidation of 1 5a-hydroxyGA9 7-phenacyl ester (22). The first compound eluted was ent- 10-hydroxy-20-nor- 15-oxogib- berell- 16-ene-7,19-dioic acid 19,lO-lactone 7-phenacyl ester (17) (100 mg) obtained as a gum (Found: M+,448.1875.C2,H,8O6 requires M+,448.1886); S(CD,),CO 1.22 (s, 18-H3), 2.72 (d, J 10.3 Hz, 5-H), 2.87 (d, J 10.3 Hz, 6-H), 5.05 (d, J 16.6 Hz, C0,CH2CO),5.39and 5.93(each brs, 17-H,),5.51(d,J16.6 Hz, CO2CH,CO), and 7.50 and 7.90 (complex m, aromatic); m/z 448 (M+,279,420 (l), 349 (2), 329 (60), 313 (43), 239 (27), 105 (loo), 91 (26), and 77 (30). The second compound eluted, GA, 7,15a-lactone (14) (50mg), was crystallised from acetone-light petroleum as needles m.p. 218-220 "C (Found: M+, 314.1516. C19H2204 requires M+, 314.1518); v,,,.(CHCl,) 3 050, 2 950, 1 780, and 880 cm-'; S(CDC1,) 1.36 (s, 18-H3), 2.30 (d, J 8.5 Hz, 5-H), 2.66(d, J 8.5 Hz, 653 6-H), 4.54 (br s, 15-H) and 5.17 and 5.30 (each br s, 17-H,); m/z 314 (M+,65), 270 (17), 242 (ll), 226 (loo), 214 (15), 211 (52), 183 (28), 169 (23), 129 (23), and 91 (40).(b) Oxidation of 1Sa-hydroxyGA, 3-acetate 7-phenacyl ester (11). The first compound eluted was ent-3a-acetoxy-10-hydroxy-20-nor-15-oxogibberell-l6-ene-7,19-dioicacid 19,lO-lactone 7- phenacyl ester (12) (103 mg), obtained as a gum (Found: M+, 506.1960. C29H3008 requires M', 506.1940); G(CDC1,) 1.21 (s, 18-H3), 2.14 (s, OCOMe), 2.86 (d, J 11 Hz, 6-H), 3.36 (d, J 11 Hz, 5-H), 5.01 (br s, 3-H), 5.06 (d, J 16.6 Hz, CO,CH,CO), 5.01 and 5.96(each s, 17-H2), 5.53 (d,J 16.6 Hz,CO,CH,CO),and 7.50 and 7.90 (complex m, aromatic); m/z 506 (M+,279,492 (1.5), 402 (3), 387 (24), 372 (loo), 268 (31), 224 (28), 105 (62), 91 (22), and 77 (25).The second compound eluted was GA, 7,15a-lactone 3- acetate (13) (50 mg) obtained as a gum (Found: M+, 372.1569.C,,H2,06 requires M+,372.1573); G(CDC1,) 1.34(s, 18-H3), 2.12 (s, OCOMe), 2.62(d7 J 8.8 Hz, 6-H),2.90(d,J8.8 Hz, 5-H),4.59 (br s, 15-H), 5.03 (br s, 3-H), and 5.19 and 5.31 (each br s, 17-H,); m/z 372 (M+,loo), 284 (22), 268 (39), 240 (23), 204, (36), 104 (24), and 43 (82). Reduction of 15-Ketones with Zinc and Acetic Acid.-Zinc dust (activated in 2~-hydrochloric acid, washed with methanol and light petroleum) was added to the starting material in acetic acid (5 ml) and stirred at room temperature for 1 h. The excess of zinc was filtered off and the acetic acid removed with toluene and methanol under vacuum.The product was purified by flash column chromatography," eluting with 20-50 ethyl acetate in light petroleum with 1 acetic acid. (a)Reduction of 1 5-oxo-GA9 7-phenacyl ester (17). Reduction of compound (17) (46 mg) yielded ent-l0,15a-dihydroxy-20-norgibberell-1 6-ene-7,19-dioic acid 19,lO-lactone (2) (3 1 mg) as a gum (Found: M+,332.1626. C19H2405 requires M+,332.1623); S(CD,),CO 1.05(s, 18-H,), 2.58 (m, 5-and 6-H,), 4.16 (br s, 15-H) and 5.04 (m, 17-H,); m/s 332 (M+,1273, 314 (loo), 286 (23), 242 (22), 230 (25), 183 (24), and 117 (22). (b)Reduction of l5-oxo-GA4 3-acetate 7-phenacyl ester (12). Reduction of compound (12) (80 mg) yielded 15p-hydroxy GA, 3-acetate (15)(50 mg) as a gum. The product was dissolved in methanol (5 ml).Potassium carbonate (10 mg) was added and stirred at room temperature for 12 h. The product was washed with acidified water (20 ml) and extracted with ethyl acetate (3 x 50 ml). The extract was backwashed, dried (Na,SO,) and the solvent removed under reduced pressure to yield ent- 3a,10,15a-trihydroxy-2O-norgibberell-16-ene-7,19-dioic acid 19,lO-lactone (4) (40 mg) as a gum (Found: M', 348.1560. Cl9H2,O6 requires M+, 348.1573); v,,,,(CHC1,), 3 450, 1 765, and 1 710 cm-'; S(CD,),CO 1.12(s, 18-H3),2.62 (d, J 11.2 Hz, 6-H), 3.17 (d, J 11.2 Hz, 5-H), 3.70 (br s, 3-H), 4.16 (br s, 15-H), and 5.03 and 5.06 (each br s, 17-H,); m/z 348 (M+,779,330 (97), 314 (19), 302 (25), 284 (25), 257 (26), 240 (30), 228 (30), 157 (33), 129 (40), 91 (71), and 41 (100).Acknowledgements We thank the S.E.R.C. for research studentships to S. C. D., D. W. H., and M. H. References 1 J. MacMillan and N. Takahashi, Nature, 1968,217, 170. 2 J. R. Bearder, F.G. Dennis, J. MacMillan, G. C. Martin, and B. 0. Phinney, Tetrahedron Lett., 1975,669. 3 G. C. Martin, F. G. Dennis, Jr., P. Gaskin, and J. MacMillan, Phytochemistry, 1977, 16,605. 4 I. Yamaguchi, T. Yokota, N. Murofushi, Y. Ogawa, and N. Takahashi, Agric. Bio. Chem., 1970,34,1439. 5 B. G. Coombe and M. E. Tate, Proceedings of the 7th International Conference on Plant Growth Substances, ed. D. J. Carr, Canberra, 1970. 6 D. W. Holdup, Ph.D. Thesis, University of Bristol, 1980. 7 K. Wada, T. Imai, and H. Yamashita, Agric. Biol. Chem., 1981, 45, 1833. 8 A. J. Mancuso and D. Swern, Synthesis, 1981,165. 9 J. L. Luche, J. Am. Chem. SOC.,1978,100,2226. 10 J. L. Luche, L. Rodriguez-Hahn, and P. Crabbk, J. Chem. SOC.,Chem. Commun., 1978,601. 11 P. A. Bartlett and W. S. Johnson, Tetrahedron Lett., 1970,4459. J. CHEM. SOC. PERKIN TRANS. I 1985 12 F. C. Chang and N. F. Wood, Tetrahedron Lett., 1964,40,2969. 13 J. H. Bateson and B. E. Cross, J. Chem. Soc., Perkin Trans. I, 1974, 2409. 14 R. B. Woodward, et al., J.Am. Chem. Soc., 1952,14,4223. 15 M. A. Umbreit and K. B. Sharpless, J.Am. Chem. SOC.,1977,99,5526. 16 D. E. U. Ekong and A. U. Ogan, J. Chem. SOC.C., 1968,311. 17 M. H. Beale and J. MacMillan, J. Chem. Soc., Perkin Trans. I, 1984, 541. 18 W. C. Still, M. Kahu, and A. Mitra, J. Org. Chem., 1978,43,2923. Receiued 6th August 1984; Paper 4/1380 6Copyright 1985 by The Royal Society of Chemistry
机译:J. CHEM. SOC. PERKIN 译.I 1985 赤霉素 A,, 和 A,, Simon C. Dolan, David W. Holdup, Michael Hutchison, and Jake MacMillan 布里斯托尔大学有机化学系 BS8 I TS 高等植物 15~-羟基-C,,-赤霉素、GA 和 GA,,, 的结构分别由赤霉素 A 和 A, 进行有理合成。65 1 已建立 R' R' R2 R3 在植物提取物中检测到几种 1 5P-羟基化赤霉素 (GAS)。以前只有两种1 5P-羟基-C化合物被表征过,因此被分配了GA编号。这些是GA,,(2),首先在梨2*3(Pyrus communis)的未成熟种子中鉴定出来,以及GA32(8)来自Prunus persica和Prunus armeniaca的未成熟种子。对1 5P-羟基赤霉素生物学特性的研究一直受到阻碍,因为这些赤霉素无法从其天然来源获得。通过对15p-羟基贝壳杉酸(9)的微生物转化,通过藤栗菌的培养物,已经获得了一些1 5P-羟基赤霉素.6T 寻求将15P-羟基引入可用的真菌赤霉素GA,(3),GA,(6),GA,(5)和GA,(7)的一般合成方法,以提供一系列用于生物学评估的l5P-羟基GAs并确认其结构。本文描述了两种赤霉素GA,(2)和15P-羟基GA,(4)的部分合成。两者以前都在植物提取物(Pyrus communis)中被鉴定出来,后者现在被分配为赤霉素A号GA,,.结果与讨论 GA6 的方案 1 说明了通往 GA、、(2) 和 GA、(4) 的成功途径。在开发这些化合物的一般途径的早期工作中,没有发现引入 1,5P-羟基的直接方法。烯丙基在C-15与二氧化硒氧化得到a-醇。该反应已被修饰并被发现是引入 1 Sa-羟基的便捷方法。该反应需要保护7-C02H,以防止形成7,15a-内酯。最初使用甲酯。C-15立体化学反转的方法集中在氧化和还原上。人们多次尝试将15a-羟基氧化成烯酮。发现最成功的试剂是活化的二甲基亚砜配合物。这些反应对醇具有特异性,并避免了许多铬试剂发生的相邻双键的氧化。最初,这些 15-氧代赤霉素的立体特异性还原集中在 Ce“' 存在下使用硼氢化钠,Luche 等人 97'0 所示,以提供共轭酮的选择性 1,2-还原。然而,条件的优化仍然提供了1,2-和1,4-还原产物的复杂混合物以及C-7甲酯的还原。随后尝试在还原前使用硫代酸盐、丁醇和氢氧根阴离子水解甲酯的收率较低,并且由于亲核试剂在D环烯酮系统中的简单共轭而变得复杂。如方案1所示,求助于使用易于制备且易于通过醋酸l39l4中的锌处理而裂解的酚酰酯,为GA,和15P-羟基GA(GA,,)提供了成功的途径。因此,GA,(3)使用苯酰溴、碳酸氢钾和18-冠醚在乙腈中烷基化,并用乙酸酐在吡啶中乙酰化,得到酯R' R2 R3 (1)H H H (6)H H H (2)H H OH (7) H OH H (3)OH H(8)OH OH (4)OH (5)OH OH HCO*H(9 1(10)。使用二氧化硒和叔丁基过氧化氢成功地将15a-羟基引入GA,酚基酯3-乙酸酯(10)。产物 15a-醇 (l l) 在溶液中静置后易于环化,得到 7,l 钴内酯 (13),通过立即将 15a-醇 (l1) 转化为 Swern 氧化,最大限度地减少了其形成。吩酰基在乙酸中与锌的还原裂解得到产物(15),其'H n.m.r.谱图不仅证实了酚基的裂解,而且揭示了与CHOH基团一致的宽单线态(6,4.20)。组合 g.1.c.-脱乙酰化(碳酸钾,甲醇)产物的质谱,作为其甲酯三甲基硅醚衍生物,表明二羟基化合物在m/z 156处具有形成15-三甲基硅氧基GA的特征,如方案2所示.15a-和15P-差向异构体的质谱与甲酯三甲基硅烷基醚几乎相同。但是,他们的 g.1.c.保留时间不同。它们也具有不同的n.m.r.谱图(见表)。在乙酸中用锌还原为1-SP羟基化化合物提供了一条新途径,质子从受阻较小的a面引入。在整个反应过程中,对产物比的定期时间间隔的仔细分析表明,15-酮的还原速率快于酚基酯的裂解速度。a$-不饱和酮(18)的氢化反应支持次要副产物的结构(16),得到单个g.1.c.组分,该组分与副产物(16)共色谱,作为g.1.c上的甲酯。(OV210)。虽然甲酯三甲基硅基(10)I Ac 0 Ac 0 COZCHZCOPh(12 1 (11 1 On AcO@-OH (41 ' ?O,H (15) R co-0 (13) R = OAC (14) R= H 方案 1.试剂:i,PhCOCH,Br,18-crown4 ether,KHCO,,CH,CN;ii, Ac,O-吡啶;iii, Se02-Bu'00H;iv, (COCI),-DMSO, Pr',EtN;v: Zn-AcOH;vi, K2C0,-MeOH 表 N.M.r.15-H和17-H,CDCl中一些15-含氧赤霉素的质子,化合物15-H 17-H2(19)4.08 5.18和5.27(20)3.97 5.10和5.13(13)4.59 5.19和5.31(14)4.54 5.17和5.30醚的15a-和15P-羟基GA的数据几乎相同,它们的g.1.c.保留时间、低浓度质谱图、N.M.R.光谱和稳定性完全不同。15P-羟基GA,(4)被赋予赤霉素编号GA,,,并且与梨籽中检测到的假定赤霉素相同,并且通过藤黑赤霉菌的培养物代谢ent-15~羟基贝壳藻酸'(9)的产物相同.6,7方案1所示的合成序列也用于制备GA,(2)来自GA,(I),在苹果种子中检测到的赤霉素之一,目前正在研究15P-羟基赤霉素的生物活性。实验 一般实验细节已在之前的论文中描述过。' J. CHEM. SOC.佩尔金译。I 1985 Me3Si0 C0,Me I Me,Si 0 0 'CH,方案 2.(在 H. Obermann 和 G. Spitteller 之后,陈。Ber., 1976,104, 3450) (17) R' = H, R2= CH,COPh (18) R' = OAc, R2 = Me R' R2 R3 R4 (19) OAc Me OH H (20) OAc Me H OH (21) (22) H H CH2COPh CH,COPh H OH H H ENT-3a,lO-二羟基-20-新赤霉烯-l6-烯-7,19-二酸 19,lO-内酯的苯酰化和乙酰化 (3).-Gibber- ellin A,(3)(500mg)加入苯酰溴(200mg),18-冠-6醚(50mg)和碳酸氢钾(400mg)的乙腈(50ml)溶液中,并在回流下加热1小时。将反应混合物用水(50ml)稀释,酸化至pH3,用乙酸乙酯(3×50ml)萃取,干燥(Na,SO,)。在减压下蒸发溶剂,得到酚酰酯。将产物用乙酸酐(1ml)在吡啶(5ml)中处理并搅拌2小时。将反应混合物转移到水(50ml)中,用盐酸酸化至pH 3,并用乙酸乙酯(3×50ml)萃取。结合后的有机层在减压下蒸发,加入甲苯,通过共沸蒸馏辅助去除残留的吡啶和乙酸。酯(10)(500mg)作为树胶获得;S[(CD,),CO], 1.13 (s, 18-H3), 2.20 (s, J. CHEM. SOC. PERKIN TRANS.I 1985 OCOMe),2.79(d,Jll Hz,6-H),3.23(d,Jll Hz,5-H),4.88(brs,3-H),4.88和5.0(每个br s,17-H,),5.57(m,CO,CH,CO)和7.6和8.0(复合m,芳香族);m/z 492 (M+,3579,474 (3)、432 (lo)、388 (18)、356 (16)、296 (22)、269 (loo)、224 (70)、120 (13)、105 (40) 和 91 (12)。ent-10-羟基-20-去甲赤霉烯-16-烯-7,19-二酸 19,lO-内酯的苯酰化反应 (I)。-赤霉素A,(1)(500mg)加入到苯酰溴(230mg),18-冠-6醚(50mg)和碳酸氢钾(400mg)的乙腈(50ml)溶液中,并在回流下加热1小时。如上所述提取反应混合物,并得到酯(21)(450mg)作为胶(Found:M+,434.21 16.C,7H,@,需要 M+,434.2093);G(CDC1,) 1.28 (s, 18-H3), 2.59 (d, J 10.5 Hz, 5-H), 2.91 (d, J 10.5 Hz, 6-H), 4.88 和 4.99 (各 br s, 17-H,), 5.37 (m, CO,CH,CO) 和 7.50 和 7.90 (复合物 m, 芳香族);m/z434(M+, 97%)、417(1)、416(4)、298(47)、270(100)、242(21)、225(23)、120(27)、105(69)和91(44)。将二氯甲烷(2 ml)中的15a-A1~0h01~.-化合物(10)和(21)(400 mg)加入到二氯甲烷(10ml)中的二氧化硒(80mg)和过氧化氢叔丁酯(320 pl)溶液中。将混合物在室温下搅拌2小时。t.1.c.的检查显示出完全转化为更具极性的产品。反应混合物用水洗涤,用盐酸调节pH至3.0,将溶液干燥(Na,SO,)。除去溶剂得到:从化合物(21)中得15a-羟基GA,7-苯酰基酯(22);G(CDC1,) 1.22 (s, 18-H3),2.58 (d, J9.8 Hz, 5-H), 2.81 (d, J9.8 Hz, 6-H), 4.09 (br s, 15-H), 5.18 和 5.29 (各 br s, 17-H,), 5.27 (d, J 16.6 Hz, CO,CH,CO), 5.44 (d, J 16.6 Hz, CO2CH,CO) 和 7.60 和 7.90(复合物m,芳香族);以及化合物 (lo) 的 15a-羟基 GA4 3-乙酸酯 7-苯酰酯 (11);G(CDC1,) 1.20 (s, 18-H3), 2.17 (s, OCOMe), 2.78(d, JlOHz,6-H),3.25(d, JlOHz,5-H),4.13(brs, 15-H),5.01 (br s, 3-H), 5.19 和 5.30 (每个 br s, 17-H,), 5.28 (d, J 16.6 Hz, CO,CH,CO), 5.44 (d, J 16.6 Hz, CO,CH,CO), 和 7.60 和 7.90(复合物 m, 芳香族)。这两种化合物在静置时都容易凝酸化,分别得到化合物(14)和(13),因此无法完全分析。将烯丙基AZcoho1s.-草酰氯(78 pl)的 Swern 氧化加入到干燥的二氯甲烷 (20 ml) 中,在氮气下干燥的烧瓶中,冷却至 -72“C.10 分钟后,加入二甲基亚砜并反应 3 分钟,然后加入 15a-醇(200 mg)在二氯甲烷(2 ml)中。将反应混合物在-72“C下搅拌45分钟,在-60”C下再搅拌15分钟,滴加二异丙基乙胺(1.0ml),然后使反应混合物升温至环境温度。减压除去溶剂,用快速柱层析分离产物“用20-50%乙酸乙酯在轻质石油中洗脱。(一)1,5a-羟基GA9 7-苯酰酯的氧化 (22)。洗脱的第一化合物是ent-10-羟基-20-去甲-15-氧代-贝雷尔-16-烯-7,19-二酸19,lO-内酯7-酚酯(17)(100mg)作为胶得到(Found: M+,448.1875.C2,H,8O6需要M+,448.1886);S[(CD,),CO] 1.22 (s, 18-H3), 2.72 (d, J 10.3 Hz, 5-H), 2.87 (d, J 10.3 Hz, 6-H), 5.05 (d, J 16.6 Hz, C0,CH2CO), 5.39 和 5.93(各 brs, 17-H,), 5.51(d,J16.6 Hz, CO2CH,CO), 和 7.50 和 7.90 (络合物 m, 芳香族);m/z 448 (M+,279,420 (l)、349 (2)、329 (60)、313 (43)、239 (27)、105 (loo)、91 (26) 和 77 (30)。洗脱的第二种化合物GA,7,15a-内酯(14)(50mg),由丙酮轻质石油结晶为针头m.p.218-220“C(发现:M+,314.1516。C19H2204需要M+,314.1518);v,,,.(CHCl,) 3 050, 2 950, 1 780, 和 880 cm-';S(CDC1,) 1.36 (s, 18-H3), 2.30 (d, J 8.5 Hz, 5-H), 2.66(d, J 8.5 Hz, 653 6-H), 4.54 (br s, 15-H) 和 5.17 和 5.30 (各 br s, 17-H,);m/z 314 (M+,65%)、270 (17)、242 (ll)、226 (loo)、214 (15)、211 (52)、183 (28)、169 (23)、129 (23) 和 91 (40)。(b) 1Sa-羟基GA,3-乙酸酯7-苯酰酯的氧化(11)。洗脱的第一个化合物是ent-3a-乙酰氧基-10-羟基-20-去甲-15-氧代赤霉烯-l6-烯-7,19-二酸-19,lO-内酯7-酚酯(12)(103mg),作为树胶获得(Found: M+, 506.1960.C29H3008需要 M', 506.1940);G(CDC1,) 1.21 (s, 18-H3), 2.14 (s, OCOMe), 2.86 (d, J 11 Hz, 6-H), 3.36 (d, J 11 Hz, 5-H), 5.01 (br s, 3-H), 5.06 (d, J 16.6 Hz, CO,CH,CO), 5.01 和 5.96(各 s, 17-H2), 5.53 (d,J 16.6 Hz,CO,CH,CO),和 7.50 和 7.90 (复合物 m, 芳香);m/z 506 (M+,279,492 (1.5)、402 (3)、387 (24)、372 (loo)、268 (31)、224 (28)、105 (62)、91 (22) 和 77 (25)。洗脱的第二种化合物是GA,7,15a-内酯3-乙酸酯(13)(50mg)作为胶得到(Found: M+,372.1569.C,,H2,06需要M+,372。1573);G(CDC1,) 1.34(s, 18-H3), 2.12 (s, OCOMe), 2.62(d7 J 8.8 Hz, 6-H), 2.90(d,J8.8 Hz, 5-H), 4.59 (br s, 15-H), 5.03 (br s, 3-H), and 5.19 和 5.31 (各 br s, 17-H,);m/z 372 (M+,loo%)、284 (22)、268 (39)、240 (23)、204、(36)、104 (24) 和 43 (82)。用锌和醋酸还原15-酮.-锌粉(在2~-盐酸中活化,用甲醇和轻质石油洗涤)加入到起始原料中,在醋酸(5ml)中,并在室温下搅拌1 h。滤去多余的锌,真空下用甲苯和甲醇除去醋酸。产品采用快速柱层析法纯化,“用20-50%乙酸乙酯在1%乙酸的轻质石油中洗脱。(一)还原 1,5-氧代-GA9 7-苯酰酯 (17)。化合物(17)(46mg)的还原得到ent-l0,15a-二羟基-20-去甲赤霉烯-1,6-烯-7,19-二酸19,lO-内酯(2)(3,1mg)作为胶(发现:M+,332.1626。C19H2405需要 M+,332.1623);S[(CD,),CO] 1.05(s, 18-H,), 2.58 (m, 5-and 6-H,), 4.16 (br s, 15-H) 和 5.04 (m, 17-H,);m/s 332 (M+,1273、314 (loo)、286 (23)、242 (22)、230 (25)、183 (24) 和 117 (22)。(二)l5-氧代-GA4 3-乙酸酯 7-苯酰酯的还原 (12)。化合物(12)(80mg)的还原得到15p-羟基GA,3-乙酸酯(15)(50mg)作为胶。将产物溶于甲醇(5ml)中。加入碳酸钾(10mg)并在室温下搅拌12小时。将产物用酸化水(20ml)洗涤,并用乙酸乙酯(3 x 50ml)提取。将提取物反洗,干燥(Na,SO,)并在减压下除去溶剂,得到ent-3a,10,15a-三羟基-2O-去甲赤霉烯-16-烯-7,19-二酸19,lO-内酯(4)(40mg)作为胶(发现:M',348.1560。Cl9H2,O6 需要 M+, 348.1573);v,,,,(CHC1,)、3 450、1 765 和 1 710 cm-';S[(CD,),CO] 1.12(s, 18-H3),2.62 (d, J 11.2 Hz, 6-H), 3.17 (d, J 11.2 Hz, 5-H), 3.70 (br s, 3-H), 4.16 (br s, 15-H), and 5.03 和 5.06 (各 br s, 17-H,);m/z 348 (M+,779,330 (97)、314 (19)、302 (25)、284 (25)、257 (26)、240 (30)、228 (30)、157 (33)、129 (40)、91 (71) 和 41 (100)。致谢 我们感谢 S.E.R.C. 为 S. C. D.、D. W. H. 和 M. H. 提供研究奖学金 参考文献 1 J. MacMillan 和 N. Takahashi, Nature, 1968,217, 170.2 J. R. Bearder、F.G. Dennis、J. MacMillan、G. C. Martin 和 B. 0。Phinney,四面体 Lett.,1975,669。3 G. C. Martin, F. G. Dennis, Jr., P. Gaskin, and J. MacMillan, Phytochemistry, 1977, 16,605.4 I. Yamaguchi, T. Yokota, N. Murofushi, Y. Ogawa, and N. Takahashi, Agric. Bio. Chem., 1970,34,1439.5 B. G. Coombe 和 M. E. Tate,《第七届植物生长物质国际会议论文集》,D. J. Carr 编,堪培拉,1970 年。6 D. W. Holdup,博士论文,布里斯托大学,1980年。7 K. Wada, T. Imai, and H. Yamashita, Agric. Biol. Chem., 1981, 45, 1833.8 A.J.Mancuso和D.Swern,《综合》,1981年,第165页。9 J. L. Luche, J. Am. Chem.SOC.,1978,100,2226.10 J. L. Luche, L. Rodriguez-Hahn, and P. Crabbk, J. Chem. SOC.,Chem. Commun., 1978,601.11 P. A. Bartlett 和 W. S. Johnson, Tetrahedron Lett., 1970,4459.J. CHEM. SOC. PERKIN 译.I 1985 12 F. C. Chang 和 N. F. Wood, Tetrahedron Lett., 1964,40,2969.13 J. H. Bateson 和 B. E. Cross, J. Chem. Soc., Perkin Trans.我,1974 年,2409 年。14 R. B. Woodward, et al., J.Am. Chem. Soc., 1952,14,4223.15 M. A. Umbreit 和 K. B. Sharpless, J.Am. Chem. SOC.,1977,99,5526.16 D. E. U. Ekong 和 A. U. Ogan, J. Chem. SOC.C., 1968,311.17 M. H. Beale 和 J. MacMillan, J. Chem. Soc., Perkin Trans.我,1984 年,541 年。18 W. C. Still, M. Kahu, and A. Mitra, J. Org. Chem., 1978,43,2923.1984年8月6日收款;论文 4/1380 6版权所有 1985 英国皇家化学学会

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号