首页> 外文期刊>journal of applied polymer science >Mechanical properties of PET short fiber–polyester thermoplastic elastomer composites
【24h】

Mechanical properties of PET short fiber–polyester thermoplastic elastomer composites

机译:PET短纤维-聚酯热塑性弹性体复合材料的力学性能

获取原文
获取外文期刊封面目录资料

摘要

AbstractPresented in this paper is the investigation of the mechanical properties of PET short fiber‐polyester thermoplastic elastomer (Hytrel) composites and the discussion of the short fiber reinforcement of the composites. Excellent adhesion of PET fiber to Hytrel elastomer was obtained by treating with isocyanate in toluene solution. The Hytrel composites filled with treated fiber showed a similar tensile behavior, with higher values, to that for the matrix elastomer when fiber loading was less than 5 vol . The composites loading fibers more than 5 vol displayed an obvious yield phenomenon, and their yield elongation (between 30–40) was greater than the fiber's break elongation, which suggested that extensibility of the fiber was quite different from that of the matrix. It is considered that the reinforcement of the short fiber mainly depends on the difference of extensibility between the fiber and the matrix because the difference directly affects the effective transference of the stress from matrix to fiber. The modified parallel model for Young's modulus and yield strength of the composite can be given by the following equations:documentclass{article}pagestyle{empty}begin{document}$$ E_{c0} = alpha V_f E_{f0} + beta left( {1 - V_f } right)E_{m0} , $$end{document}anddocumentclass{article}pagestyle{empty}begin{document}$$ sigma _{cy} = V_f sigma _f left( {alpha varepsilon _y } right) + left( {1 - V_f } right)sigma _m left( {beta varepsilon _y } right),$$end{document}respectively, through introducing two effective deformation coefficients, α and β, to represent the extensibility of the fiber and the matrix respectively. The α obtained from the experimental results did not depend on fiber loading but increased with increasing fiber length, and the α for Young's modulus was larger than the one for yield strength, which suggests that α is a function of the strain of the composite and may decrease with increasing the strain, namely, the deformation difference between the fiber and the matrix increases when the strain increases. On the other hand, β is a function of α as:documentclass{article}pagestyle{empty}begin{document}$$ beta = frac{{1 - alpha V_f }} {{1 - V_f }}. $$end{document}For the Hytrel elastomer, the maximum of each succeeding stress–strain cycle coincided with the original stress–strain curve for elongations under 600, but for the Hytrel composites such coincidence was limited to elongations under 30. This may be caused by the reforming of crystallites in the stress‐softened Hytrel elastomer phase at high strain. © 1993 Joh
机译:摘要介绍了PET短纤维-聚酯热塑性弹性体(Hytrel)复合材料的力学性能研究,并探讨了该复合材料的短纤维增强性能。在甲苯溶液中用异氰酸酯处理,获得了PET纤维对Hytrel弹性体的优异附着力。当纤维负载量小于5 vol %时,填充处理纤维的Hytrel复合材料表现出与基体弹性体相似的拉伸行为,但值更高负载纤维量大于5 vol %的复合材料表现出明显的屈服现象,其屈服伸长率(在30–40%之间)大于纤维的断裂伸长率,这表明纤维的延展性与基体的延展性存在较大差异。认为短纤维的增强主要取决于纤维与基体之间延展性的差异,因为这种差异直接影响应力从基体到纤维的有效传递。修正后的复合材料杨氏模量和屈服强度的并行模型可以由以下公式给出:documentclass{article}pagestyle{empty}begin{document}$$ E_{c0} = alpha V_f E_{f0} + beta left( {1 - V_f } right)E_{m0} , $$end{document}anddocumentclass{article}pagestyle{empty}begin{document}$$ sigma _{cy} = V_f sigma _f left( {alpha varepsilon _y } right) + left( {1 - V_f } right)sigma _m left( {beta varepsilon _y } right),$$end{document},分别通过引入两个有效变形系数α和β,分别表示纤维和基体的延展性。实验结果得到的α不依赖于纤维载荷,而是随着纤维长度的增加而增加,杨氏模量的α大于屈服强度的,这表明α是复合材料应变的函数,并可能随着应变的增加而减小,即纤维与基体的变形差随着应变的增加而增大。另一方面,β 是 α as:documentclass{article}pagestyle{empty}begin{document}$$ beta = frac{{1 - alpha V_f }} {{1 - V_f }}。$$end{document}对于Hytrel弹性体,当伸长率低于600%时,每个后续应力-应变循环的最大值与原始应力-应变曲线一致,但对于Hytrel复合材料,这种巧合仅限于伸长率低于30%。这可能是由于微晶在高应变下软化的Hytrel弹性体相中的重整引起的。© 1993年 Joh

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号