首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Synthesis of new steroidal 11β-substituted spirolactones
【24h】

Synthesis of new steroidal 11β-substituted spirolactones

机译:新型甾体醛11β取代螺内酯的合成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. 1 1990 Synthesis of New Steroidal 1I p-Substituted Spirolactones Hassane Faraj," Michel Claire," Anne Rondot,a Andre Aumeiasb and Gilles Auzou a a U 300 INSERM, Faculte de Pharmacie, 15 Avenue Charles Flahault, 34060, Montpellier Cedex 7, France U 264 CNRS-INSERM, Rue de la Cardonille, BP 5055,34094, Montpellier Cedex A stereoselective synthesis of new 3-oxo-l l J3-(3-alkoxypropyl)-l9-nor-l7~t-pregna-4,9-diene-21,17-carbolactones has been achieved. The purpose of this study was to synthesize new llp- substituted spirolactones by a new approach. A variety of NMR techniques were utilized to make complete assignments of this type of steroids in solution. Steroid receptors are closely related structurally and in their mechanisms of action.Nevertheless, they exhibit large dif- ferences in their specificity for the various steroid hormones, and this has led to the identification of receptor superfamily and subfamilies. Steroidal receptor ligands for each of these subfamilies present typical binding areas such as the 4-ene-3- one A-ring, also present specific planarity of the A-ring for androgen receptor (AR), progestin receptor (PR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR).2 Slight modifications of the steroidal skeleton have been found to induce important affinity and specificity variations for the corresponding receptors. Several A-and D-ring-substituted steroidal 7a-alkoxycarbonyl spirolactones have recently been synthesized with the purpose of increasing the aldosterone antagonistic potency relative to the standard drug spirono- la~tone.~Various 11 P-substitutions of 17a-ethynyl or -prop- ynyl 19-norsteroids with PR and GR specificities could drastic- ally modify their affinity for the receptor^.^ The introduction of bulky unsaturated chains (vinylic, aromatic) in the C-11 position was found to enhance affinities for PR, GR,4 or estrogen receptor (ER).' These observations led to the hypothesis that, in the region corresponding to the 1 1 P-position of the steroids, a pocket exists on the GR, PR, and ER receptors, where hydrophobic interactions are probably involved.On the other hand, it has also been observed6 that electronic interactions could be involved in the same area since 1lP- halogen or 11 P-bulky substituents bearing a heteroatom can also enhance PR- or GR-binding a~tivity.~ Putative pocket characteristics have never been explored for MR.Specific 11 P-substituted MR ligands, agonists, or antagonists are necessary to perform this study. In the present paper, we describe the synthesis of new 1 lp-substituted 19-norsteroids bearing a 17y- lactone moiety, this latter is typical of the MR steroidal antagonist. An 11 P-hydroxypropyl chain was chosen first because it enables us to (1) condense various groups on the hydroxy group (2) make a further study of the influence of length, size, and electronic, geometric, and stereochemical interactions of these new llp-arms with a binding affinity for MR.This hydroxypropyl chain could also be easily linked to fluorescent molecules, enabling further hormone receptor interaction studies to be undertaken. Fluorescent label derivatives have been prepared previously with steroidal mineralocorticoids or antimineralocorticoids substituted in the 7a-position.' Only one paper' describes the synthesis of a few spirolactones bearing 1 1 P-alkyl, -alkenyl or -cycloalkyl substituents. The authors used different methods, but these methods required several steps. The starting material for the preparation of our new 17-spirolactone derivatives was 3,3-(ethy1enedioxy)estra-5( 10),9( 1 1)-dien- 17-one (1) (Scheme 1). Access to final derivatives was carried out by, first, introduction of the 11 0-function, then the 177-lactone. In so doing, we took advantage (1) of avoiding the 3-deacetalization during hydro- lysis of the intermediate 17-hydroxy-21-carbonitrilemoiety (5) and (2) of having ease of access to dienone (6) in a one step from compound (5). Results and Discussion The key intermediates leading to these compounds are 5a,10a- epoxyestr-9( 10)-enes (2).Selectivity in the a-epoxidation was improved by using hydrogen peroxide in the presence of hexafluoroacetone sesquihydrate.' With these reagents, epoxid- ation affords predominantly the 5a,lOa-epoxide, with only I@ 20 of the SP,lOP-conjugated epoxide, easily separated from the parent compound. When epoxide (2) was treated with the corresponding organomagnesium halide in the presence of a catalytic amount of copper(r) chloride,' the required product was obtained.The reaction is regio- and stereo-specific and only affords the 1 lp-substituted product (3). The most obvious approaches to synthesis of the desired y-lactones involve either propargyl alcohol fixation on the 17- keto derivative followed by hydrogenation and Oppenauer oxidation," ethynylation of the same function with lithium acetylide followed by carboxylation and hydrogenation,' ' or the Sturtz reaction.I2 In our case, these methods gave poor yields and often mixtures of undesired products. Steric hindrance, caused by the 11 P-hydroxypropyl and 18-methyl groups, could be a possible explanation for these results. The procedure we followed for this reaction consisted of methyl transfer to the 17-keto function by reaction with dimethyl- sulphonium methylide,' and condensation of acetonitrile on the thus produced spiro-oxirane (4) according to Creger's method.14 This method enabled us, by a one-step procedure, to convert the 17a-cyanoethyl- 17P-hydroxy steroid (9,after alkaline hydrolysis and acidic treatment into the 17y-spirolactone derivative, which was then deacetylized and concomitantly dehydrated to the dienones (6a-d).Compounds (6b) and (6c)had already been synthesized by another method.* Further hydrolysis of the t-butoxypropyl group of compound (6d) by conc. HC1 in dioxane produced compound (7). Etherification of the hydroxypropyl group by dimethyl sulphate and triethylbenzylammonium chloride as a phase-transfer catalyst (ptc) involving 50 aq.sodium hydroxide gave the methyl ether (8) in higher yields than usually obtained by other methods. In this case, purification involved preparative HPLC prior to chromatography on a silica gel column. The structure assignments were firmly established by a variety of NMR techniques. Generally, all compounds were characterized by COSY and 13C spectra. Using the DEPT sequence, multi- plicities of different carbon signals were defined. Where neces- sary, 'H-'H COSY and heterocorrelated I3C-lH experiments were performed on compound (6d).Results are reported in 3046 J. CHEM. SOC. PERKIN TRANS. I 1990 Table 1. The and 'Hchemical-shift assignments for the steroid (6d) (CDCI,; 307 K).6 Atom 'H I li 0// (6)a; R = H b; R=Me C; R=-CH=CH* d; R = -(CHOBu' 0 28 // (8) (7) Scheme 1. Reagents and conditions: i, H,O,-CF,COCF,, 6H,O, CH,CI,-C,H,N, 99: 1, 0 "C; ii, Bu'O(CH,),MgCI, THF, CuCI, -30 OC; iii, NaH-DMSO, 75 "C; Me,SI, -5 "C, THF; iv, LDAMeCN, THF, -40 "C; v, KOH-MeOH, HCI-MeOH, reflux; vi, HCI-Diox, room temp; vii, TEBA-CI, NaOH, CH,Cl,, room temp. Table 1. The molecules synthesized in this study are now being tested for MR and GR affinities and activities. Further details of the relative affinity of these derivatives for the MR receptor and structure-reactivity studies will be published elsewhere. ExperimentalM.p.s were determined on a Bioblock melting point apparatus and were uncorrected.IR spectra were recorded on a Perkin- Elmer 983 spectrophotometer for potassium bromide discs unless otherwise stated. NMR data were recorded on a WM 360 WB spectrometer (Brucker) at 360 MHz for 'H, and 90 MHz for the 13C nuclei. Compounds were dissolved in CDC1, from which the residual signal was taken as reference at tiH7.24 for 1 37.18 2.42 2 26.35 2.83 and 2.60 3 199.35 4 122.48 5.67 5 157.15 6 30.48 2.38 7 29.30 2.50 8 36.33 2.44 9 126.73 10 149.05 11 36.91 3.07 12 34.34 1.75 and 1.58 13 45.76 14 50.48 1.29 15 22.86 1.68 and 1.47 16 35.72 2.29 and 1.83 17 96.24 18 16.89 1.14 19 26.89 1.94 and 1.29 20 31.70 2.35 and 1.91 21 176.39 22 33.19 1.59 23 29.48 1.57 and 1.44 24 61.03 3.28 25 72.05 26, 27, 28 27.51 1.14 'H and tic 77.0 for 13C.In two-dimensional experiments, the 'H-'H COSY spectra was recorded in 512 experiments under standard condition^,'^ and the 'H-' 3C spectra were obtained in 160 experiments according to Bax's sequence.16 Optical rotations on chloroform solutions were measured with a Roussel-Jouan micropolarimeter. All reactions were carried out under argon with dry solvents being used under anhydrous conditions. Column chromatography was carried out with silica gel (Merck 60 A CC). Analytical and small-scale preparative HPLC were carried out on a 25 cm x 4.6 mm i.d. stainless steel column packed with 5p Hypersil (Beckman). Preparative HPLC purification of compound (7) was carried out on a 25 cm x 22.5 mm i.d.stainless steel column packed with 5j.1 Hypersil (S.F.C.C.). A mobile phase of methanol-water (7 :3) was used and detection was at 254 nm on a Gilson Model 111 LC detector. Analytical results were determined for C and H and were within 0.3 of the calculated values. All new compounds described in this Experimental section were homogeneous on TLC. Epoxidation of estra-5( 10),9( 1 1)-diene (1) was carried out by a standard method,' and yielded mainly the 5aYl0a-epoxide (2). Light petroleum refers to the fraction boiling in the range 148-150 "C. 1 1j3-(3-t-ButoxyprOpyl)-3-0~0-19-nor- 17a-pregna-4,9-diene- 21,17-carbolactone (a).-A 1.4M-SOlUtiOn of (3-t-butoxyprop- y1)magnesium chloride (22 ml, 31 mmol) was cooled to -30 "C and a solution of copper(1) chloride (480 mg, 4.9 mmol) in tetrahydrofuran (THF) (20 ml) was added.The reaction mixture was stirred for 0.5 h and then a solution of the pure epoxide (2) (2.9 g, 8.8 mmol) in THF (30 ml) was added dropwise, and the mixture was stirred for 3 h while the temperature rose from -30 to -10 "C. The reaction mixture was poured into cold, saturated aq. ammonium chloride and extracted with AcOEt. The extract was washed successively with saturated brine and water, dried over sodium sulphate, and J. CHEM.SOC. PERKIN TRANS. 1 1990 evaporated to dryness. Chromatography on silica gel with light petroleum-thy1 acetate (7 :3) as eluant yielded 1 1 P-(3-t- butoxypropyl)-3,3-ethylenedioxy-5-hydroxy-19-nor-5a-estr-9-ene-17-one (3)(2.9 g, 74) as a white powder from hexane, m.p.78-80 "C (Found: C, 72.6; H, 9.55. C2205 requires C, 72.6; H, 9.5); aD -214.5" (C 0.5);v,,, 3504 (OH), 1743 (17~- ketone) and 1606 cm-' (CS); tiH 1.00 (3 H, S, 18-H3), 3.25 (2 H, m, OCH2), 3.95 (4 H, m, OCH2CH20) and 4.25 (1 H, s, OH).A suspension of 60 sodium hydride (0.3 g, 7.5 mmol) in mineral oil in dimethyl sulphoxide (DMSO) (14 ml) was stirred and heated at 70 "C for 1 h. The cooled mixture was diluted with THF (20 ml) and further cooled to -5 "C. Next, a solution of trimethylsulphonium iodide (1.4 g, 6.9 mmol) in DMSO (10 ml) was added and the reaction mixture was stirred for 35 min at below 0 "C, followed by treatment with a solution of compound (3) (880 mg, 2 mmol) in THF (8 ml). The mixture was then stirred at 0 "C for 2 h, and then at room temperature for 20 h.The reaction mixture was poured into cold aq. ammonium chloride and extracted with AcOEt. The extract was washed with water, dried over sodium sulphate, and evaporated to dryness. The product, purified by column silica gel chromato- graphy with cyclohexane-AcOEt (4: 1) as eluant, yielded the 17- oxirane (4) (550 mg, 60). This amorphous residue was characterized by IR spectroscopy (absence of 17-c--O at 1742 cm-') and was then used immediately for the next step without further purification. A standard solution of butyl-lithium in hexane (1.6~; 1.7 mi, 2.6 mmol) was added to a solution of diisopropylamine (0.27 g, 2.6 mmol) in anhydrous THF (10 ml) at -30 "C and the mixture was stirred for 35 min.Next a solution of acetonitrile (0.15 ml, 2.6 mmol) in THF (3 ml) was added and the mixture was stirred at -30 to -20 "C for 1 h. A solution of the 17- oxirane (4) (0.4 g, 0.87 mmol) in THF (6 ml) was added dropwise during 10 min and the reaction mixture was stirred at ambient temperature for 20 h, poured into aq. ammonium chloride, and extracted with AcOEt. The extract was washed with water, dried over sodium sulphate and evaporated to dryness. The crude product (0.7 g) was purified by column silica gel chromatography with methylene dichloride-AcOEt (7 :3) as eluant to yield 1 1 ~-(3-t-butoxypropyl)-3,3-ethylenedioxy-5,17~-dih ydrox y-5a-estr-9-ene-21 -carboni trile (5) (350 mg, 80.5), vmax3457 (OH) and 2249 cm-' (CN).A mixture of compound (5) (300 mg, 0.6 mmol), methanol (0.4 ml) and ~M-KOH (0.35 ml) was heated to reflux for 4 h. The cooled mixture was acidified with conc. HCl (0.4 ml) and refluxed for 1.5 h. The solution was diluted with water and extracted with AcOEt. The extract was washed with water, dried over sodium sulphate, and evaporated to dryness to give a crude product (0.26 g). Chromatography on silica gel with CH2C12-AcOEt (4: 1) as eluant yielded 11 p-(3-t-butoxypropyl)- 3-0x0- 19-nor- 17a-pregna-4,9-diene-21,17-carbolactone(6d) (130 mg, 50) (Found: C, 76.2; H, 9.5. C28H4002 requires C, 76.3; H, 9.15);.ID -36.l0(c0.5)asa whitepowderfromdiethylether-pentane, m.p.122-123 "C; v,,, 1772 (y-lactone), 1662 (a$-unsaturated ketone) and 1610 cm-' (CS); 6,1.14 (12 H, m, Bu', 18-H), 3.07 (1 H, m, 11-H) and 5.67 (1 H, s, 4-H). 1 1 p-(3-Hydroxypropyl)-3-oxo- 1 nor- 17a-pregna-4,9-diene- 21,17-carbolactone (7).-Conc. HCl (2.3 ml) was added to a solution of compound (4d)(900 mg, 1.6 mmol) in 1,4-dioxane (6 ml). The reaction mixture was stirred for 1.5 h, then poured onto cold water and extracted with AcOEt. The extract was washed successively with saturated aq. sodium carbonate and water, dried over sodium sulphate, and evaporated to dryness. The crude product was purified by preparative reversed-phase HPLC with a mobile phase of methanol-water (7:3) to yield compound (7) (650 mg, 83) as a major component, separated as a white powder from light petroleum, m.p.157-159 "C (Found: C, 74.65; H, 8.55.C24H3204 requires C, 74.95; H, 8.4); .ID -78.5" (c 0.3); v,,, 3437 (OH), 1771 (y-lactone) and 1656 an-'(u.,p-unsaturated ketone); 8H1.16 (3 H, s, 18-H3), 3.09 (1 H, m, 11-H), 3.63 (2 H, m, CH20) and 5.7 (1 H, s, 4-H). 11j3-(3-Methoxypropyl)-3-oxo-1nor- 17a-pregna-4,g-diene- 2 1,17-carboluctone (!I).-Triethylbenzylammonium chloride (3 mg, 0.01 mmol) and 50 aq. NaOH (30 mg, 0.75 mmol) was added to a solution of compound (7) (40 mg, 0.1 mmol) in methylene dichloride (1.2 ml). Dimethyl sulphate (30 mg, 0.23 mmol) is then added dropwise, with cooling, for 1 h at a rate such that the temperature did not exceed 35°C.The whole mixture was then stirred for 24 h with frequent TLC controls. After addition of methylene dichloride (24 ml) the mixture was finally poured in aq. NH4C1 and the organic phase was separated, washed with water, and dried over Na2S04. Elution with CH2C12-AcOEt (9:l) gave compound (8) with some impurities. By reversed-phase HPLC with a mobile phase of methanol-water (7:3), compound (8) (22.5 mg, 54) was separated as a white powder from pentanediethyl ether (8: 2), m.p. 119-121 "C (Found: C, 75.5; H, 8.45. C25H3404 requires C, 75.3; H, 8.6); a)D -20" (c 0.5);v,,, 1772 (y-lactone) and 1665 cm-' (unsaturated ketone); tiH 1.16 (3 H, s, 18-H3), 3.30 (3 H, s, OMe), 3.33 (2 H, m, OCH2) and 5.70 (1 H, s, 4-H). 3-0x0-19-nor-17a-pregna-4,9-diene-21,17-carbolactone (6a).-Similar treatment of the ketone (1) as described for the reaction (3)-(4) yielded the 17-oxirane (81) (absence of 17-c--O at 1740 cm-').When treated as for reaction (4) --(5), the 17-oxirane steroid afforded the 17a-cyanoethyl-l7~-hydroxy compound (74) purified by chromatography on silica gel with CH2C12-AcOEt (9: 1) as eluant; v,,, 2245 cm-'.Similar treatment as described for reaction (5) (6d) afforded compound (6a)as needles after recrystallization from diethyl ether, m.p. 172-175°C (Found: C, 77.1; H, 8.0. C21H26O3 requires C, 77.3; H, 8.0); .ID -214.5' (c 0.55);v,,, 1765 (y-lactone) and 1655 cm-' (a$-unsaturated ketone); tiH 1.02 (3 H, s, 18-H3) and 5.7 (1 H, s, 4-H). 1 1 p-Methyl-3-0x0- 19-norpregna-4,9-diene-21,17-carbolactone (6b).-Similar treatment of the epoxide (2) as described for reaction (2) __+ (3), but using methylmagnesium bromide, afforded the 11p-methyl intermediate with 10 of the disubstituted 1 1 PJ7a-dimethyl moiety easily separated by chromatography on silica gel with hexane-AcOEt (6 :4) as eluant.The 17-oxirane (75) was obtained as for compound (4) (absence of 17-GO at 1740 cm-') and treated as for reaction (4) -(5) to yield the 17a-cyanoethyl-17P-hydroxysteroid (72), purified by chromatography on silica gel with CH2Cl,-AcOEt (8 :2) as eluant; v,,,(KBr) 2250 cm-' (CN). Similar treatment as described for (6d) afforded compound (6b)as needles after recrystallization from diethyl ether, m.p.208-210 "C (lit.,8 198-201 "C) (Found: C, 77.6; H, 8.3. Calc. for C22H2803: C, 77.1; H, 8.00); .ID -91.8" (C 0.5);v,,, 1722 (y-lactone), 1656 (unsaturated ketone) and 1607 cm-' (CX); GH(CDC13) 1.13 (3 H, s, 18-H3), 1.17 (3 H, d, 11-Me), 3.23 (1 H, m, 11-H) and 5.63 (1 H, s, 4-H). 1 1 P-Vinyl-3-0x0-19-norpregna-4,9-diene-21,17-cavbolactone (6c).-Similar treatment of the epoxide (2) with vinylmagnesium bromide afforded the 1 1 P-vinyl intermediate (7573, with 15 of the 11 p,17a-divinyl moiety, easily separated by chromatography on silica gel with hexane-AcOEt (6:4) as eluant. The 17-oxirane (73) was obtained as for compound (4) (absence of 17-C=0 at 1740 cm-') and treated in the usual way to yield the 172- cyanoethyl- 17P-hydroxy steroid (85), purified by chromato- graphy on silica gel with hexane-AcOEt (7:3) as eluant; v,,, 2247 cm-' (CN).Similar treatment as described for (6d) afforded compound (6c) as a white powder after recrystallization from diethyl ether, m.p. 143-144 "C (lit.,8 133-135 "C) (Found: C, 77.95; H, 7.9. Calc. for C23H2803: c, 78.36; H, 8.02); .ID -30" (c 0.5); vmax1770(y-lactone), 1664(a$-unsaturated ketone), 1630(C=C 11P-vinyl) and 1608 cm-' (C=C); 1.04 (3 H, s, 18-H,), 3.77 (1 H, m, 11-H), 4.75 (1 H, m, J 17.2 Hz, 22-H), 4.95 (1 H, m, J 10.2 Hz, 23-H), 5.70 (1 H, s, 4-H) and 5.82 (1 H, m, J 10.2 and 17.2 Hz, 23-H). Acknowledgements We are very grateful to Mr. A. Ramet of Roussel Uclaf for his generous gift of 3,3-(ethylenedioxy)-estra-5( 10),9(11)-dien-17-one.References 1 R.M. Evans, Science, 1988,240,s. 2 W. L. Duax, J. F. Griffin, C. M. Weeks and Z. Wawrzak, J. Steroid Biochem., 1988,31,481. 3 K. Nickisch, D. Bittler, H. Laurent, W. Losert, Y. Nishino, E. Schillinger and R. Wiechert, J. Med. Chem., 1990,33,509. J. CHEM. SOC. PERKIN TRANS. I 1990 4 G. Teutsch, in Adrenal Steroid Antagonism, ed. M. K. Agarwal, Walter de Gruyter, Berlin, 1984, p. 43. 5 G. Teutsch, T. Ojasso and J. P.Raynaud, J. Steroid Biochem., 1988, 31, 549. 6 F. J. Zelen, Trends Pharrnacol. Sci., 1983,520. 7 G. Auzou, F. Nique and L. Nedelec, Steroids, 1988,51,465. 8 K. Nickisch, K. Annen, H. Laurent, R. Wiechert, S. Beier and W. Elger, GP 3410 880/1985 (Chem. Abstr., 1986,104,662). 9 G. Teutsch, A. Belanger, D. Philibert and C. Tournemine, Steroids, 1982,39,607. 10 K. Nickisch, D. Bittler, H. Laurent, W.Losert, J. Casals-Stenzel,Y. Nishino, E. Schillinger and R. Wiechert, J.Med. Chem., 1987,30,1403. 11 S. Kamata, H. Haga, T. Mitsugi, E. Kondo, W. Nagata, M. Nakamura, K. Miyata, K. Odaguchi, T. Shimizu, T. Kawabata, T. Suzuki, M.Ishabashi and F. Yamada, J. Med. Chem., 1985,28,428. 12 G. Sturtz and J. J. Yaouanc, Synthesis, 1980,289. 13 E. J. Corey and M. Chaykovsky, J.Am. Chem. Soc., 1962,84,867. 14 P. L. Creger, J. Org. Chem., 1972,37, 1907. 15 W. P. Aue, E. Bartholdi and R. R. Emst, J. Chem. Phys., 1976, 64, 2229. 16 A. Bax and G. A. Morris, J.Magn. Reson., 1981,42,501. Paper 0/02301I Received 23rd May 1990 Accepted 13th July 1990
机译:J. CHEM. SOC. PERKIN TRANS. 1 1990 Synthesis of New Steroidal 1I p-Substituted Spirolactones Hassane Faraj,“ Michel Claire,” Anne Rondot,a Andre Aumeiasb and Gilles Auzou a a U 300 INSERM, Faculte de Pharmacie, 15 Avenue Charles Flahault, 34060, Montpellier Cedex 7, France U 264 CNRS-INSERM, Rue de la Cardonille, BP 5055,34094, Montpellier Cedex 新型3-氧代-l J3-(3-烷氧基丙基)-l9-nor-l7~t-孕甾-4的立体选择性合成,9-二烯-21,17-羧内酯已经实现。本研究的目的是通过一种新方法合成新的llp取代的螺内酯。利用各种核磁共振技术在溶液中完成这种类固醇的分配。类固醇受体在结构和作用机制上密切相关。然而,它们对各种类固醇激素的特异性表现出很大的差异,这导致了受体超家族和亚家族的鉴定。这些亚家族中的每一个的甾体受体配体都呈现典型的结合区域,例如 4-烯-3- 一个 A 环,也呈现雄激素受体 (AR)、孕激素受体 (PR)、糖皮质激素受体 (GR) 和盐皮质激素受体 (MR) 的 A 环的特异性平面性.2 已发现甾体骨架的轻微修饰可诱导相应受体的重要亲和力和特异性变化。最近合成了几种 A 环和 D 环取代的甾体 7a-烷氧羰基螺内酯,目的是提高醛固酮相对于标准药物螺酸 la~tone 的拮抗效力.~具有 PR 和 GR 特异性的 17a-乙炔基或-丙炔基 19-去甲类固醇的各种 11 P-取代可以极大地改变它们对受体的亲和力^.^ 引入笨重的不饱和链(乙烯基, 芳香族)在C-11位可增强对PR、GR、4或雌激素受体(ER)的亲和力。这些观察结果导致了这样的假设,即在与类固醇的 1 1 P 位置相对应的区域中,GR、PR 和 ER 受体上存在一个口袋,其中可能涉及疏水相互作用。另一方面,也观察到电子相互作用可能涉及同一区域6,因为带有杂原子的1lP-卤素或11个P-大块取代基也可以增强PR-或GR-结合a~tivity.~ MR的假定口袋特征从未被探索过。特异性 11 种 P 取代的 MR 配体、激动剂或拮抗剂是进行本研究所必需的。在本文中,我们描述了新的1lp取代的19-去甲甾体的合成,带有17y-内酯部分,后者是典型的MR甾体拮抗剂。首先选择了 11 对羟丙基链,因为它使我们能够 (1) 将各种基团浓缩在羟基上 (2) 进一步研究这些新的 llp 臂的长度、大小以及电子、几何和立体化学相互作用的影响,这些 llp 臂对 MR 具有结合亲和力。这种羟丙基链也可以很容易地与荧光分子连接,从而可以进行进一步的激素受体相互作用研究。荧光标记衍生物以前已经用甾体盐皮质激素或抗盐皮质激素取代在7a位。只有一篇论文描述了几种带有1 1 P-烷基、-烯基或-环烷基取代基的螺内酯的合成。作者使用了不同的方法,但这些方法需要几个步骤。制备新型17-螺内酯衍生物的起始原料是3,3-(乙基1烯二氧基)雌甾-5(10),9(1,1)-二烯-17-酮(1)(方案1)。首先,通过引入 11 0 函数,然后引入 177-内酯来获得最终衍生物。在这样做的过程中,我们利用了 (1) 避免中间体 17-羟基-21-甲腈 (5) 在水解过程中的 3-脱乙醛化和 (2) 在化合物 (5) 一步之遥即可轻松获得二烯酮 (6)。结果与讨论 导致这些化合物的关键中间体是 5a,10a-环氧雌甾-9(10)-烯 (2)。在六氟丙酮倍半水合物存在下使用过氧化氢提高了a-环氧化的选择性。使用这些试剂,环氧化主要提供5a,lOa-环氧化物,只有I@20%的SP,lOP共轭环氧化物,很容易从母体化合物中分离出来。当环氧化物(2)在催化量的氯化铜存在下用相应的有机卤化镁处理时,得到所需产物。该反应具有区域和立体特异性,仅提供 1 lp 取代的产物 (3)。合成所需y-内酯的最明显方法包括炔丙醇固定在17-酮衍生物上,然后进行氢化和Oppenauer氧化,“与乙炔锂进行相同功能的乙炔化,然后进行羧化和氢化,”或Sturtz反应。I2 在我们的案例中,这些方法的产量很差,而且经常是不需要的产品的混合物。由11个对羟丙基和18-甲基引起的空间位阻可能是这些结果的可能解释。我们遵循的该反应的程序包括通过与二甲基-甲基化磺铵反应将甲基转移到 17-酮功能,以及根据 Creger 的方法将乙腈缩合在由此产生的螺环氧乙烷 (4) 上。14 这种方法使我们能够通过一步法将 17a-氰乙基-17P-羟基类固醇 (9,经过碱性水解和酸性处理后转化为 17y-螺内酯衍生物,然后将其脱乙酰化并同时脱水为二烯熨 (6a-d)。化合物(6b)和(6c)已经通过另一种方法合成了化合物(6d)的叔丁氧基丙基,通过HC1在二氧六环中进一步水解生成化合物(7)。用硫酸二甲酯和三乙基苄基氯化铵作为相转移催化剂(ptc)对羟丙基进行醚化反应,其中含有50%的水溶液,氢氧化钠得到甲醚(8)的收率高于通常通过其他方法获得的收率。在这种情况下,纯化涉及在硅胶色谱柱上进行色谱分析之前的制备型 HPLC。通过各种核磁共振技术牢固地确定了结构分配。通常,所有化合物均采用COSY和13C光谱进行表征。使用DEPT序列,定义了不同碳信号的多重性。必要时,对化合物(6d)进行'H-'H COSY和异相关I3C-lH实验。结果报告于3046 J. CHEM. SOC. PERKIN TRANS.I 1990 表 1.类固醇的 和 'Hchemical-shift 赋值 (6d) (CDCI,; 307 K).6 Atom 'H I li 0// (6)a;R = H b;R=我 C;R=-CH=CH* d;R = -(CH&OBu' 0 28 // (8) (7) 方案 1.试剂和条件:i,H,O,-CF,COCF,,6H,O,CH,CI,-C,H,N,99:1,0“C;ii, Bu'O(CH,),MgCI, THF, CuCI, -30 OC;iii, NaH-DMSO, 75“C;我,SI,-5“C,THF;iv, LDAMeCN, THF, -40“C;v, KOH-MeOH, HCI-MeOH, 回流;vi, HCI-Diox, 室温;vii, TEBA-CI, NaOH, CH,Cl,, 室温. 表1.现在正在测试本研究中合成的分子的 MR 和 GR 亲和力和活性。这些衍生物对MR受体的相对亲和力和结构反应性研究的更多细节将在别处发表。在Bioblock熔点仪上测定实验M.p.s,未经校正。除非另有说明,否则红外光谱记录在 Perkin-Elmer 983 分光光度计上用于溴化钾圆盘。NMR数据记录在WM 360 WB波谱仪(Brucker)上,H为360 MHz,13C原子核为90 MHz。将化合物溶解在CDC1中,以1 37的tiH7.24为参考,以残余信号为参考。 18 2.42 2 26.35 2.83 和 2.60 3 199.35 4 122.48 5.67 5 157.15 6 30.48 2.38 7 29.30 2.50 8 36.33 2.44 9 126.73 10 149.05 11 36.91 3.07 12 34.34 1.75 和 1.58 13 45.76 14 50.48 1.29 15 22.86 1.68 和 1.47 16 35.72 2.29 和 1.83 17 96.24 18 16.89 1.14 19 26.891.94 和 1.29 20 31.70 2.35 和 1.91 21 176.39 22 33.19 1.59 23 29.48 1.57 和 1.44 24 61.03 3.28 25 72.05 26、27、28 27.51 1.14 'H 和 tic 77.0 用于 13C。在二维实验中,在标准条件下记录了512个实验中的'H-'H COSY光谱^,'^,根据Bax序列在160个实验中获得了'H-'3C光谱.16用Roussel-Jouan微偏振仪测量了氯仿溶液的旋光度。所有反应均在氩气下进行,并在无水条件下使用干燥溶剂。用硅胶(Merck 60 A CC)进行柱层析。在装有 5p Hypersil (Beckman) 的 25 cm x 4.6 mm 内径不锈钢色谱柱上进行分析和小规模制备型 HPLC。化合物(7)的制备型HPLC纯化是在装有5j.1 Hypersil(S.F.C.C.)的25 cm x 22.5 mm内径不锈钢色谱柱上进行的。使用甲醇-水流动相 (7 :3),并在 Gilson 111 型 LC 检测器上检测 254 nm 处进行检测。确定 C 和 H 的分析结果,并在计算值的 0.3% 以内。本实验部分描述的所有新化合物在TLC上都是均相的。采用标准方法对雌甾-5(10),9(1,1)-二烯(1)进行环氧化,主要得到5aYl0a-环氧化物(2)。轻质石油是指沸点在148-150“C.1,1j3-(3-叔丁氧基丙基)-3-0~0-19-nor-17a-孕甾-4,9-二烯-21,17-羧内酯(a).-A 1.4M-SOlUtiOn的(3-叔丁氧基丙基-y1)氯化镁(22ml,31mmol)的溶液冷却至-30”C和氯化铜(1)溶液(480mg,4.加入9 mmol)的四氢呋喃(THF)(20ml)溶液。将反应混合物搅拌0.5小时,然后滴加纯环氧化物(2)(2.9g,8.8mmol)在THF(30ml)中的溶液,搅拌混合物3h,同时温度从-30升至-10“C。将反应混合物倒入冷的饱和水溶液中,用AcOEt萃取。将提取物先后用饱和盐水和水洗涤,用硫酸钠干燥,J. CHEM.SOC. PERKIN TRANS. 1 1990 蒸发至干。用轻质石油-thy1乙酸酯(7 :3)作为洗脱液对硅胶进行色谱分析,得到1 1 P-(3-叔丁氧基丙基)-3,3-乙烯二氧基-5-羟基-19-nor-5a-雌甾-9-烯-17-酮(3)(2.9 g,74%)作为己烷的白色粉末,m.p.78-80“C(发现:C,72.6;H,9.55。C2&205 需要 C,72.6;H,9.5%);[一]D -214.5英寸(C 0.5);v,,, 3504 (OH)、1743 (17~- 酮) 和 1606 cm-' (CS);tiH 1.00 (3 H, S, 18-H3)、3.25 (2 H, m, OCH2)、3.95 (4 H, m, OCH2CH20) 和 4.25 (1 H, s, OH)。将60%氢化钠(0.3g,7.5mmol)在二甲基亚砜(DMSO)(14ml)中的矿物油悬浮液搅拌并在70“C下加热1小时。将冷却的混合物用THF(20ml)稀释并进一步冷却至-5“C。接下来,加入三甲基碘化亚砜(1.4g,6.9mmol)在DMSO(10ml)中的溶液,并将反应混合物在0“C以下搅拌35分钟,然后用化合物(3)(880mg,2mmol)在THF(8ml)中处理。然后将混合物在0“C下搅拌2 h,然后在室温下搅拌20 h,将反应混合物倒入冷水氯化铵中,并用AcOEt萃取。提取物用水洗涤,用硫酸钠干燥,蒸发至干。以环己烷-AcOEt(4:1)为洗脱液,通过柱硅胶色谱法纯化产物,得到17-环氧乙烷(4)(550mg,60%)。通过红外光谱对这种无定形残留物进行表征(在1742 cm-'处不存在17-c--O),然后立即用于下一步,无需进一步纯化。将丁基锂的己烷溶液(1.6~;1.7 mi,2.6 mmol)加入到二异丙胺(0.27 g,2.6 mmol)的无水THF(10 ml)溶液中,在-30“C下搅拌混合物35分钟。接下来加入乙腈(0.15ml,2.6mmol)在THF(3ml)中的溶液,并将混合物在-30至-20“C下搅拌1小时。在10分钟内滴加17-环氧乙烷(4)(0.4g,0.87mmol)在THF(6ml)中的溶液,并将反应混合物在环境温度下搅拌20小时,倒入氯化铵水溶液中,并用AcOEt萃取。提取物用水洗涤,用硫酸钠干燥并蒸发至干。粗产物(0.7 g)以二氯甲烷-AcOEt(7 :3)为洗脱液,采用柱硅胶色谱法纯化,得到1 1 ~-(3-叔丁氧基丙基)-3,3-乙烯二氧基-5,17~-二氢 Ydrox Y-5A-雌甾-9-烯-21-甲苯三苯(5)(350 mg,80.5%)、vmax3457 (OH) 和 2249 cm-' (CN)。将化合物(5)(300mg,0.6mmol),甲醇(0.4ml)和~M-KOH(0.35ml)的混合物加热回流4小时。将冷却的混合物用浓缩的HCl(0.4ml)酸化并回流1.5小时。将溶液用水稀释并用AcOEt萃取。提取物用水洗涤,用硫酸钠干燥,蒸发至干,得到粗品(0.26克)。用CH2C12-AcOEt(4:1)作为洗脱液的硅胶色谱得到11个p-(3-叔丁氧基丙基)-3-0x0-19-nor-17a-孕甾-4,9-二烯-21,17-羧内酯(6d)(130mg,50%)(发现:C,76.2;H,9.5。C28H4002要求C,76.3;H,9.15%);[.ID -36.l0(c0.5)asa whitepowderfromdiethylether-pentane, m.p.122-123 “C;v,,, 1772 (y-内酯)、1662 (a$-不饱和酮) 和 1610 cm-' (CS);6,1.14 (12 H, m, Bu', 18-H), 3.07 (1 H, m, 11-H) 和 5.67 (1 H, s, 4-H)。将1 1 p-(3-羟丙基)-3-氧代-1 %nor-17a-孕甾-4,9-二烯-21,17-羧内酯(7).-浓缩盐酸(2.3ml)加入到化合物(4d)(900mg,1.6 mmol)的1,4-二氧六环(6ml)溶液中。将反应混合物搅拌1.5 h,然后倒入冷水中并用AcOEt萃取。将提取物先后用饱和水、碳酸钠和水洗涤,用硫酸钠干燥,蒸干。粗品采用甲醇-水流动相(7:3)的制备型反相HPLC提纯,得到化合物(7)(650 mg,83%)为主要组分,从轻质石油中分离为白色粉末,m.p.157-159“C(发现:C,74.65;H, 8.55.C24H3204 需要 C, 74.95;H,8.4%);[.ID -78.5“ (c 0.3); v,,, 3437 (OH)、1771 (y-内酯) 和 1656 an-'(u.,p-不饱和酮); 8H1.16 (3 H, s, 18-H3), 3.09 (1 H, m, 11-H), 3.63 (2 H, m, CH20) 和 5.7 (1 H, s, 4-H). 11J3-(3-甲氧基丙基)-3-氧代-1%Nor- 17a-孕甾-4,g-二烯-2 1,17-羰基酮(!I).-三乙基苄基氯化铵(3mg,0.01mmol)和50%水。将NaOH(30mg,0.75mmol)加入到化合物(7)(40mg,0.1mmol)的二氯甲烷溶液(1.2ml)中。然后将硫酸二甲酯(30mg,0.23mmol)滴加,冷却,以温度不超过35°C的速率滴加1小时,然后将整个混合物搅拌24小时,并频繁控制TLC。加入二氯甲烷(24ml)后,最后将混合物倒入水溶液中。 NH4C1,分离有机相,用水洗涤,并用Na2S04干燥。用CH2C12-AcOEt(9:l)洗脱得到含有一些杂质的化合物(8)。通过用甲醇-水(7:3)流动相的反相HPLC将化合物(8)(22.5mg,54%)从戊二乙醚(8:2)中分离为白色粉末,熔点119-121“C(发现:C,75.5;H,8.45。C25H3404要求C,75.3;H,8.6%);[一]D -20“ (c 0.5);v,,, 1772 (y-内酯) 和 1665 cm-' (&不饱和酮);tiH 1.16 (3 H, s, 18-H3)、3.30 (3 H, s, OMe)、3.33 (2 H, m, OCH2) 和 5.70 (1 H, s, 4-H)。3-0x0-19-nor-17a-pregna-4,9-diene-21,17-carbolactone (6a).-与反应(3)-(4)所述的酮(1)的类似处理得到17-环氧乙烷(81%)(在1740 cm-'处不存在17-c--O)。当处理反应(4)--(5)时,17-环氧乙烷类固醇得到17a-氰乙基-l7~-羟基化合物(74%),用CH2C12-AcOEt(9:1)作为洗脱剂在硅胶上色谱纯化;v,,, 2245 厘米-'。与反应(5)(6d)所述的类似处理,在乙醚重结晶后,化合物(6a)作为针头,熔点172-175°C(发现:C,77.1;H,8.0。C21H26O3 要求 C,77.3;H,8.0%);[.ID -214.5' (c 0.55);v,,, 1765 (y-内酯) 和 1655 cm-' (a$-不饱和酮);tiH 1.02 (3 H, s, 18-H3) 和 5.7 (1 H, s, 4-H)。1 1 对甲基-3-0x0-19-去甲孕甾-4,9-二烯-21,17-羧内酯(6b).-与反应(2)__+(3)所述的环氧化物(2)类似,但使用甲基溴化镁,得到11p-甲基中间体与10%的二取代1,1 PJ7a-二甲基部分,以己烷-AcOEt(6:4)为洗脱剂,在硅胶上通过色谱法轻松分离。化合物(4)得到17-环氧乙烷(75%)(在1740 cm-'处不存在17-GO),并按反应(4)-(5)处理,得到17a-氰乙基-17P-羟基类固醇(72%),以CH2Cl,-AcOEt(8 :2)为洗脱液,在硅胶上色谱纯化;v,,,(KBr) 2250 cm-' (CN).与(6d)所述的化合物(6b)作为乙醚重结晶后的针头处理类似,m.p.208-210“C(lit.,8 198-201”C)(Found: C, 77.6;H,8.3。计算值 C22H2803: C, 77.1;H,8.00%);[.ID -91.8“ (C 0.5);v,,, 1722 (y-内酯), 1656 (&不饱和酮) 和 1607 cm-' (CX);GH(CDC13) 1.13 (3 H, s, 18-H3), 1.17 (3 H, d, 11-Me), 3.23 (1 H, m, 11-H) 和 5.63 (1 H, s, 4-H)。1 1 对乙烯基-3-0x0-19-去甲孕甾-4,9-二烯-21,17-沟内酯 (6c).-用乙烯基溴化镁对环氧化物 (2) 进行类似处理得到 1 1 对乙烯基中间体 (7573,15% 的 11 p,17a-二乙烯基部分,通过硅胶上的色谱法以己烷-AcOEt (6:4) 为洗脱液。获得化合物(4)的17-环氧乙烷(73%)(在1740 cm-'处不存在17-C=0),并以通常的方式处理,得到172-氰乙基-17P-羟基类固醇(85%),用己烷-AcOEt(7:3)作为洗脱剂在硅胶上色谱纯化;v,,, 2247 cm-' (中国).与(6d)所述的类似处理,得到化合物(6c)在由乙醚重结晶后为白色粉末,m.p. 143-144“C(lit.,8 133-135”C)(Found: C, 77.95;H,7.9。计算值 C23H2803: c, 78.36;H,8.02%);[.ID -30“ (c 0.5);vmax1770(y-内酯)、1664(a$-不饱和酮)、1630(C=C 11P-乙烯基)和1608 cm-'(C=C);1.04 (3 H, s, 18-H,)、3.77 (1 H, m, 11-H)、4.75 (1 H, m, J 17.2 Hz, 22-H)、4.95 (1 H, m, J 10.2 Hz, 23-H)、5.70 (1 H, s, 4-H) 和 5.82 (1 H, m, J 10.2 和 17.2 Hz, 23-H)。致谢 我们非常感谢 Roussel Uclaf 的 A. Ramet 先生慷慨赠送的 3,3-(乙烯二氧基)-雌甾-5( 10),9(11)-二烯-17-酮。参考文献 1 R.M. Evans, Science, 1988,240,s. 2 W. L. Duax, J. F. Griffin, C. M. Weeks and Z. Wawrzak, J. Steroid Biochem., 1988,31,481.3 K. Nickisch, D. Bittler, H. Laurent, W. Losert, Y. Nishino, E. Schillinger and R. Wiechert, J. Med. Chem., 1990,33,509.J. CHEM. SOC. PERKIN 译.I 1990 4 G. Teutsch, in Adrenal Steroid Antagonism, ed. M. K. Agarwal, Walter de Gruyter, Berlin, 1984, p. 43.5 G. Teutsch, T. Ojasso 和 J. P.Raynaud, J. Steroid Biochem., 1988, 31, 549.6 F. J. Zelen,《趋势法纳科尔》。科学, 1983,520.7 G. Auzou、F. Nique 和 L. Nedelec,类固醇,1988,51,465。8 K. Nickisch, K. Annen, H. Laurent, R. Wiechert, S. Beier and W. Elger, GP 3410 880/1985 (Chem. Abstr., 1986,104,662)。9 G. Teutsch、A. Belanger、D. Philibert 和 C. Tournemine,类固醇,1982,39,607。10 K. Nickisch, D. Bittler, H. Laurent, W.Losert, J. Casals-Stenzel, Y. Nishino, E. Schillinger and R. Wiechert, J.Med. Chem., 1987,30,1403.11 S. Kamata, H. Haga, T. Mitsugi, E. Kondo, W. Nagata, M. Nakamura, K. Miyata, K. Odaguchi, T. Shimizu, T. Kawabata, T. Suzuki, M.Ishabashi 和 F. Yamada, J.医学化学, 1985,28,428.12 G. Sturtz 和 J. J. Yaouanc,《综合》,1980,289。13 E. J. Corey 和 M. Chaykovsky, J.Am. Chem. Soc., 1962,84,867.14 P. L. Creger, J. Org. Chem., 1972,37, 1907.15 W. P. Aue, E. Bartholdi 和 R. R. Emst, J. Chem. Phys., 1976, 64, 2229.16 A.巴克斯和G.A.莫里斯,J.马格。共振, 1981,42,501.论文 0/02301我收到 1990年5月23日 录用 1990年7月13日 录用

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号