首页> 外文期刊>Advances in Space Research: The Official Journal of the Committee on Space Research(COSPAR) >Numerical study of structural phase transitions in a vertically confined plasma crystal
【24h】

Numerical study of structural phase transitions in a vertically confined plasma crystal

机译:Numerical study of structural phase transitions in a vertically confined plasma crystal

获取原文
获取原文并翻译 | 示例
           

摘要

Dusty plasmas consists of an ionized gas containing small (usually negatively charged) particles. Dusty plasmas are of interest in both astrophysics and space physics as well as in research in plasma processing and nanofabrication. In this work, the formation of plasma crystals confined in an external one-dimensional parabolic potential well is simulated for a normal experimental environment employing a computer code called BOX_TREE. Such crystals are layered systems, with each layer a two dimensional lattice composed of grain particles. The number of layers is dependent upon the external potential parameter. For constant layer number, the intralayer structure transits from a square lattice to a hexagonal (triangular) lattice as the confining potential decreases. For hexagonal lattices, both hcp and fcc characteristics were found but hcp structures dominate. The relative thickness of the system was also examined. The results were compared with previous experimental and theoretical results and found to agree.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号