...
首页> 外文期刊>Journal of Geophysical Research, D. Atmospheres: JGR >Non-negligible effects of cloud vertical overlapping assumptions on longwave spectral fingerprinting studies
【24h】

Non-negligible effects of cloud vertical overlapping assumptions on longwave spectral fingerprinting studies

机译:Non-negligible effects of cloud vertical overlapping assumptions on longwave spectral fingerprinting studies

获取原文
获取原文并翻译 | 示例
           

摘要

In order to monitor and attribute secular changes from outgoing spectral radiances, spectral fingerprints need to be constructed first. Large-scale model outputs are usually used to derive such spectral fingerprints. Different models make different assumptions on vertical overlapping of subgrid clouds. We explore the extent to which the spectral fingerprints constructed under different cloud vertical overlapping assumptions can affect such spectral fingerprinting studies. Utilizing a principal component-based radiative transfer model with high computational efficiency, we build an OSSE (Observing System Simulation Experiment) with full treatment of subgrid cloud variability to study this issue. We first show that the OLR (outgoing longwave radiation) computed from this OSSE is consistent with the OLR directly output from the parent large-scale models. We then examine the differences in spectral fingerprints due to cloud overlapping assumptions alone. Different cloud overlapping assumptions have little effect on the spectral fingerprints of temperature and humidity. However, the amplitude of the spectral fingerprints due to the same amount of cloud fraction change can differ as much as a factor of two between maximum random versus random overlap assumptions, especially for middle and low clouds. We further examine the impact of cloud overlapping assumptions on the results of linear regression of spectral differences with respect to predefined spectral fingerprints. Cloud-relevant regression coefficients are affected more by different cloud overlapping assumptions than regression coefficients of other geophysical variables. These findings highlight the challenges in constructing realistic longwave spectral fingerprints and in detecting climate change using all-sky observations. Key Points Build a Climate OSSE with full treatment of sub-grid cloud variability. Use the OSSE to study effect of cloud overlapping assumption on fingerprinting. Cloud overlapping assumptions affect amplitudes of spectral fingerprints most.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号