...
首页> 外文期刊>journal of applied physics >Temperature dependence of hydroxyl formation in the reaction of hydrogen with silica glass
【24h】

Temperature dependence of hydroxyl formation in the reaction of hydrogen with silica glass

机译:Temperature dependence of hydroxyl formation in the reaction of hydrogen with silica glass

获取原文

摘要

The formation of hydroxyl due to reaction of a silica glass made by the modified chemical vapor deposition process with hydrogen has been studied for temperatures between 200 and 900thinsp;deg;C. The glass is treated under 1 atm of hydrogen, which diffuses into and reacts with the glass. For treatment temperatures between 900 and 500thinsp;deg;C, spatial hydroxyl concentration profiles are measured. For treatment at 400thinsp;deg;C and below, only equilibrium OH concentrations are measured. Three temperature regimes are identified for the reaction:T700thinsp;deg;C, 700thinsp;deg;CT400thinsp;deg;C, andT400thinsp;deg;C. A simple model combining H2diffusion with chemical reaction explains the profile data for temperatures above 500thinsp;deg;C. The model assumes a finite number of preexisting reactive sites in the glass, which does not depend on treatment temperature. Assuming the same net reaction over the entire temperature range, enthalpies and entropies of reaction are derived from the data. The reaction at 800thinsp;deg;C of H2with the glass Suprasil W has also been studied. For this glass the reaction is extremely rapid compared to H2diffusion, and the kinetics are described by a tarnishing model. These results demonstrate that OH formation in silica glass due to reaction with H2depends on preexisting defects in the glass, and therefore depends strongly on the nature and thermal history of the glass.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号