首页> 外文期刊>IEEE Transactions on Magnetics >Effect of Intergranular Exchange on the Thermal Stability and Coercive Field of Perpendicular, Single Phase, Exchange Spring, and Coupled Granular Continuous (CGC) Perpendicular Recording Media
【24h】

Effect of Intergranular Exchange on the Thermal Stability and Coercive Field of Perpendicular, Single Phase, Exchange Spring, and Coupled Granular Continuous (CGC) Perpendicular Recording Media

机译:Effect of Intergranular Exchange on the Thermal Stability and Coercive Field of Perpendicular, Single Phase, Exchange Spring, and Coupled Granular Continuous (CGC) Perpendicular Recording Media

获取原文
获取原文并翻译 | 示例
       

摘要

We performed micromagnetic simulations in order to investigate the effect of intergranular exchange coupling on the magnetic properties of advanced magnetic recording structures. We found that the coercive field of granular recording media decreases with increasing intergrain exchange coupling $(A_{rm int})$. We observed this decay even for perfect films without switching field distributions and soft magnetic inclusions. A mean field exchange field of about $mu_{0}H_{rm ex} = 0.34$ T leads to the same thermal stability of the grains at the transition and in the center of a bit. A larger value of $A_{rm int}$ lowers the thermal stability of the grains close to the transitions. Micromagnetic simulations of coupled granular continuous (CGC) media indicate that the top layer in CGC media is not continuous. The simulations suggest that the top layer is granular with a relatively weak intergrain exchange coupling, $A_{rm int}$.
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号