首页> 外文期刊>Journal of nanoparticle research: An interdisciplinary forum for nanoscale science and technology >The effect of polyethylene glycol spacer chain length on the tumor-targeting potential of folate-modified PPI dendrimers
【24h】

The effect of polyethylene glycol spacer chain length on the tumor-targeting potential of folate-modified PPI dendrimers

机译:The effect of polyethylene glycol spacer chain length on the tumor-targeting potential of folate-modified PPI dendrimers

获取原文
获取原文并翻译 | 示例
       

摘要

The objective of the present investigation was to assess the tumor-targeting potential of ligand-spacer-engineered poly (propylene imine) (PPI) dendrimers as nanoscale drug delivery units for site-specific delivery of a model anticancer agent, docetaxel (DTX). PPI dendrimers were engineered by direct and indirect conjugation of folic acid (FA) via different types of polyethylene glycols (PEGs) Mw (molecular weight): 1,000, 4,000, 6,000, 7,500 as spacers. The synthesized nanoconjugates (PPIFA, PPIP1FA, PPIP4FA, PPIP6FA, and PPIP7.5FA) were characterized by Fourier transform infrared spectroscopy, nuclear magnetic resonance (~1H-NMR) and transmission electron microscopic (TEM) studies. Nanoconjugates were evaluated for entrapment, in vitro drug release (under various pH conditions) and hemolytic studies. Cell uptake and cytotoxicity studies were performed on human malignant cell lines (MCF-7) using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT assay. This debut study explored the effect of PEG spacer length on the targeting potential of folate-conjugated 5.0 G PPI dendrimer. DTX entrapment and in vitro drug release from nanoconjugates augmented, and hemolytic toxicity of nanoconjugates slashed with the molecular weight of PEGs. Further, nanoconjugates with PEG 4000 displayed highest tumor-targeting potential as compared to other spacer conjugated nanoconjugates due to optimized steric hindrance and receptor mediated endocytosis among other PEGs. This work is expected to shed new light on the role of spacer chain length in targeting potential of folate-anchored dendrimer. Graphical Abstract: Figure not available: see fulltext.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号