首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Photocyclisation of enamides. Part 24. Total synthesis of (±)-isofumigaclavine B and (±)-lysergic acid
【24h】

Photocyclisation of enamides. Part 24. Total synthesis of (±)-isofumigaclavine B and (±)-lysergic acid

机译:烯酰胺的光环化。第 24 部分。(±)-异夫米加黄素B和(±)-麦角酸的全合成

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1985 941 Photocyclisation of Enamides. Part 24.' Total Synthesis of ( )-lsofumigaclavine B and (+_)-Lysergic Acid2 lchiya Ninomyia," Chiyomi Hashimoto, Toshiko Kiguchi, and Takeaki Naito Kobe Women's College of Pharmacy, Moto yamakita, Higashinada, Kobe 658,Japan Total syntheses of two ergoline-types of alkaloids, (f)-isofumigaclavine B (14) (for the first time) and methyl (4-)-lysergate (21) and methyl (+)-isolysergate (22), via a route involving reductive photocyclisation of the enamide (2) followed by glycol formation and oxidative cleavage of the dihydrofuran ring, are described. In Part 223 we have reported the establishment of a potential synthetic route to the despyrrole analogues of lysergic acid and isofumigaclavines, aiming at its application to the respective alkaloids.We now report novel total syntheses of isofumiga- clavine B and lysergic acid according to the synthetic methodology involving reductive photocyclisation of the enamide (2) followed by ring opening of the dihydrofuran ring of the photocyclised lactam (3). Previously, lysergic acid has been regarded as a central target alkaloid not only from the synthetic viewpoint but also because of its remarkable pharmacological potential, and it has been synthesized by six different method~logies,~.~ which are divided into two types depending upon the starting compounds used, i.e.route A from n R the indole derivatives (I) and the route B from the indoline derivatives(11).However, the synthesis of the alkaloid according to route A has only been successful when attempted by Oppolzer et a1.'"'' but the method has achieved some success in the synthesis of D-saturated ergo line^.^ These results reflect that the high reactivity of the indole ring and the feasibility of aromatisation of ring c might have been the major problems to overcome in the case of the synthesis starting from the indole derivatives (I).Therefore, this suggests that a synthetic approach by route B would be advantageous, in the case of the synthesis of ergolenes having a double bond in ring D, compared with route A. Therefore we chose our approach toward these ergolene alkaloids by starting from the enamide (2) which was prepared from the indoline derivative (1) and 3-furoic acid according to the methodology developed for the despyrrole analogue^.^ Acylation of the enamine prepared from 1 -benzoyl- 1,2,2a,3- tetrahydrobenzcdindol-4(5H)-one (1) and methylamine with furan-3-carbonyl chloride in the presence of triethylamine afforded the enamide (2) in 96 yield, which showed the n.m.r.peak for an olefinic proton at 6 6.45 as a broad singlet and broad and strong i.r. absorptions in the region of 1 640-1 620 cm-'.Irradiation of the enamide (2) in benzene-methanol (5: 1) in the presence of excess of sodium borohydride (10 mol equiv.) at 4-10°C with a high-pressure mercury lamp afforded the crystalline products in 81 yield, which were found to be a mixture of three compounds (3), (4), and (5) in the proportions 10:4: 1 by high-performance liquid chromatography (h.p.l.c.).t 0x0 BzNL 22 Bz N **" (3) (4) (5) OH e RN (6) R=H (8) R=H (7) R=Bz (9) R =Bz CHO Bz N t Although only two photocyclised lactams (3)and (4) were reported in the preliminary communication (ref.2), three isomers (3)-(5) have now been isolated by repeated column chromatography. These three products (3H5) were separated by repeated recrystallisation and column chromatography and were estab- lished as the expected products by reductive photocyclisation, from their mass spectra which exhibited a molecular ion peak at m/z 386, and from their i.r. absorptions at 1 660-1 620 cm-' (2NCO). Contrary to the cases of the model compounds3 (the despyrrole analogues of the alkaloids) in which the stereochemistry of the products was influenced by the solvent used, the proportions of the lactams (3)--45)were not influenced by the solvent, either by the amount of methanol or by the use of acetonitrile in place of benzene.Their stereochemistries were established from their n.m.r. spectra and by comparison of those of the model compound^.^ The DIE-C~Sfusion of three lactams (3x5) was determined from the coupling constants between the respective 3a- and 1 lc-H lo-1 1 Hz in (3)+5) and from the conversion of compound (3) into the 8,9-cis- disubstituted ergoline derivative (16). The trans relationship between 1Ib- and llc-H was deduced from their coupling constants of 10 Hz in (3)--(5) and by mechanistic considerations of enamide photocyclisation that have been well documented I as proceeding via conrotatory cyclisation of the 6 z-electron system in the enamide, thus forming a trans cyclic intermediate.The c/D-ring junctions were determined from the coupling constants between 5a- and llb- H lo Hz in (3) and (5), thus suggesting their C/D-trans fusion, while the value of 6 Hz in (4) suggested a cis fusion. Furthermore, the relative configuration between 5a-and 6a-H as being cis was also deduced from the signal pattern of 6-Ha, which appeared as a sharp quartet with J 12 Hz at 6 1.68 in (3)and at 6 1.55 in (4), thus suggesting their cis-1,3-diaxial relationship where ring c would take a half-chair conformation as shown in Figure 1. This deduction coincides well with that Figure 1.reached by Rebek et aL4"for the analogous compounds. On the other hand, the n.m.r. signals of hydrogens on rings D and E in (5) closely resemble those of (3)but the signals for 6-H, overlap at 6 ca. 2.38-2.02. This behaviour can be readily explained by assuming the conformation of ring c is a half-boat form which would have a trans relationship of two hydrogens at the 5a- and 6a-positions as shown in Figure 1. Previou~ly,4c*~~*~only those compounds having these two hydrogens at the 5a- and 6a-position in a cis-1,3-diaxial orientation had been isolated and this is the first time that a compound having a trans configuration between hydrogens at positions 5a and 6a has been prepared.Of the photocyclised lactams (3)-45), the c/D-trans-lactam (3),which was obtained predominantly, was used for the total syntheses of isofumigaclavine B and methyl lysergate. Ring opening of the dihydrofuran ring of the photocyclised lactam (3) was accomplished according to the procedure described previ~usly.~ Lithium aluminium hydride reduction of the c/D-trans-lactam (3)afforded the diamine (6) as a result of accompanying debenzoylation. This diamine (6) was then re- benzoylated with benzoyl chloride to give the N-benzoate (7) in 74 yield. A similar reduction of a mixture of the c/D-trans-and -cis-lactams (3) and (4) (5 :1) with lithium aluminium hydride J. CHEM. SOC. PERKIN TRANS. I 1985 gave a mixture of the corresponding N-debenzoylated amines (6) and (8)which were also rebenzoylated to yield a mixture of two benzoates (7) and (9) in 61 and 9 yield respectively; these benzoates were separated by column chromatography.Their n.m.r. spectra, which showed, for (7), 6 2.22 (td, J 10 and 2 Hz, 5a-H) and 1.43 (9, J 10 Hz, Ha,), and for (9),6 2.22 (br d, J 11 Hz, 5a-H) and 1.44 (4, J 11 Hz, 6-Ha,), established their structures. Hydroxylation of the dihydrofuran ring in the amine (7) was first carried out by using an equimolar amount of osmium tetraoxide followed by treatment with hydrogen sulphide gave the glycols (10) in 53 yield. The yield of the glycols (10) was improved to 83 by reaction with a catalytic amount of osmium tetraoxide and trimethylamine N-oxide as the oxidising agent.* The product (10) was found to be a mixture of two cis-glycols in the ratio 3 :2 which was estimated from the peak area of the two alcoholic proton signals in the n.m.r.spectrum, though it remained to be determined which isomer was predominant.* This glycol mixture was also observed in the case of despyrrole derivative^.^ The mixture of cis-glycols (lo), without separation, was then treated with sodium metaperiodate in methanol-water (1 :1) to cleave the glycol to afford the 9a- hydroxy-8P-aldehyde (1 1) as the sole unstable product upon work-up with sodium carbonate. This base treatment after the glycol cleavage brought about a complete isomerisation of the ring-opened 8-formyl group from the unstable 8a-orientation to the stable 8P-configuration. The structure of the 9a-hydroxy- 8P-aldehyde (11) was established from its spectral data v,,,.3 500 (OH) and 1 720 cm-' (CHO); 6 9.80 (br s, CHO) and 2.35 (s, NMe). On the other hand, similar glycol cleavage of a mixture of the glycols (10) but without the base treatment afforded a mixture of two epimeric aldehydes (11)and (12) with the ratio ca. 1 :1, which was estimated from the peak area of the 8-formyl protons in the n.m.r. spectrum (12); 6 9.93 (br s, CHO). The structures of these aldehydes (11)and (12)weTe later unambiguously established by their conversion into the stable synthetic intermediates (15) and (16). The aldehydes (11) and (12) bear all the functional groups required for the synthesis of ergot alkaloids having an ergoline nucleus.Total Synthesis of ( +)-Isofumigaclavine B (14).-Wolff-Kishner reduction of either the 9a-hydroxy-8P-aldehyde (11) or a mixture of the two epimeric aldehydes (11) and (12) gave the N-debenzoylated 8P-methyl-9a-01 (13) as the sole product in 40-47 yield, and which showed characteristic n.m.r. signals S 3.34 (t, J 10 Hz, 9-H) and 1.06 (d, J 7 Hz, 8-Me), thus confirming its structure as 2,3-dihydroisofumigaclavine B (ergoline numbering). Dehydrogenation of the indoline (13) with manganese dioxide gave ()-isofumigaclavine B (14) in 45 yield, which was identical with the natural alkaloid upon comparison of their i.r. and n.m.r. spectra and R, values.' Alternatively, conversion of the indoline (13) into ( +)-isofumigaclavine B (14) could be conveniently achieved by treatment with benzeneseleninic anhydride lo in 50 yield.Thus, we succeeded in the first total synthesis of the alkaloid (4 )-isofumigaclavineB. Novel Total Synthesis of Methyl (+)-Lysergute (21) and Methyl ( +)-lsolysergate (22)-The conversion of the aldehydes (11) and (12) into the desired unsaturated esters (17) and (18) was accomplished according to the procedure established previ~usly.~Oxidation of the 9a-hydroxy-8P-aldehyde (11) with chromium trioxide and sulphuric acid in methanol-acetone solution gave the 9a-hydroxy-8P-methyl * Although we reported that the glycol was described as a major product in the preliminary communication (ref.2), careful reinvestig- ation of the n.m.r. spectrum of a mixture of the glycols (10)showed the ambiguity of their assignment. J. CHEM. SOC. PERKIN TRANS. I 1985 R' Me (13) R'=Me, R2 = H (14) (16) (15) R'=C02Me, R =Bt 2CO,Me C0,Me (17) R=BZ (18) R=Bt (19) R= H (20) R= H C0,Me A ZMe (22) (23) ester (15)in 38 yield. Similar oxidation of a mixture of the two epimeric aldehydes (11) and (12) (ca. 1:1) gave the 9a-hydroxy- 8P-methyl ester (15) and 8a-methyl ester (16) in 11 and 14 yield respectively, which were separated by p.1.c. (preparative layer chromatography). The structures of these esters (15) and (16) were determined mainly from their n.m.r. spectra which suggested an equatorial orientation of the 8P-ester group in (15) S 4.04 (t, J 10 Hz, 9-H), 3.27 (dd, J 12 and 5 Hz,7-H,,), and 2.57 (t, J 12 Hz, 7-Hax), and an axial configuration of the 8a-ester group in (16)S 3.86 (br dd, J 11 and 4 Hz, 9-H), 3.48 (dd, J 12 and 3 Hz, 7-H,,), and 2.47 (dd, J 12 and 3 Hz, 7-Hax).Dehydration of the epimeric esters (15) and (16) was performed by heating with phosphoryl trichloride and 85 phosphoric acid in pyridine to afford a mixture of the two epimeric unsaturated esters (17) and (18)* in identical ratios (3:1), with the 8P-ester (17) as the major product in 44-55 yield from the respective esters (15)and (16). Recrystallisation of the above mixture afforded the homogeneous 8P-ester (17), the n.m.r. and i.r.spectra of which were completely identical with those of the N-benzoate of methyl 2,3-dihydrolysergate presented by Ramage. However, attempts to isolate the 8a-ester (18)on h.p.1.c. was unsuccessful due to ready isomerisation to the 8P-ester (17) during the course of purification. Furthermore, the facts that the homogeneous @-ester (17) yielded a 3: 1 mixture of two epimeric esters (17) and (18)upon being heated in methanol and that the same 3: 1 mixture was * Although the 8fLester (17) was described as the sole product in the preliminary communication (ref. 2), the epimeric -ester (18) was also detected by n.m.r. spectroscopy and h.p.1.c. formed during the course of purification of compound (17) supported the isomerisability of the respective esters (17) and (18)to afford the equilibrium mixture as reported by Rebek et ~l.~".?Furthermore, the n.m.r.peaks ascribable to the minor component (18)present in the 3: 1 mixture completely correlate with those of the N-benzoate of methyl 2,3-dihydroisolysergate reported by Rebek et aL4"*t Since the 8P-ester (17) had already been converted into ()-lysergic acid by Woodward et a1. and Ramage et a1., the present work formally completed the synthesis of (+)-lysergic acid. Selective removal of the N-benzoyl group from the 3: 1 mixture of the two epimeric esters (17)and (18)was achieved by alkylation with triethyloxonium tetrafluoroborate 4e followed by hydrolysis under mild acidic conditions to afford the indolines (19) and (20) in the ratio 5:2 in 55 combined yield.The n.m.r. spectra and the ratio of two isomers (19) and (20) were found to be identical with those of authentic samples reported by Ramage et a1.4' Dehydrogenation of the above mixture of indolines (19) and (20) with benzene seleninic anhydride lo furnished methyl ( f )-lysergate (21) and methyl (+)-isolysergate (22),in the ratio 3:2 in 60 yield, which were separated by h.p.1.c. The respective isomers (21) and (22) were identical with natural alkaloids 1on comparison of their n.m.r. spectra and R, values; thus we had completed a novel total synthesis of (+)-lysergic acid. Equilibrium and Stereochemical Study of the Unsaturated Esters (17)-(22).-Through our results in the synthesis of lysergic acid and its derivatives based on the synthetic route developed for their despyrrole analogue^,^ we have succeeded in the synthesis of eight compounds having analogous structures, i.e.a 9-ergolene-8-methyl ester and its despyrrole analogues, and this offers us a good opportunity of establishing their stereochemistry and of analysing the relationship between the isomerisation between respective epimers and their conform- ation, details of which have not been fully clarified even though a couple of syntheses of lysergic acid have been achieved. By taking advantage of the fact that we possessed two pairs of epimers, we investigated the isomerisation of these 9-ergolene-8- carboxylates (17) and (18), and (21) and (22), and their despyrrole analogues (23)once we had isolated the respective epimers and had measured their n.m.r.spectra at 200 MHz. As described above, the 8P-ester (17) and 8a-ester (18) underwent isomerisation in methanol to yield identical equilibrium (3:l) mixtures, with epimer (17) as the major component, which were detected by h.p.1.c. (Microporasil; 5 MeOH-CH,Cl,). This isomerisation mixture ratio coincided with that reported by Rebek et ~l.~", though Ramage el a1. stated that the isomerisation only occurred with pure compound (Is).?Attempts to isolate a pair of epimers of the N-nor derivatives were unsuccessful due to their instability, though it has previously been recognised 4e*4e that compounds (19) and (20) exist as an equilibrium mixture.Methyl ()-lysergate (21) and methyl (f)-isolysergate (22) were separated by h.p.1.c. using Microporasil in 3 MeOH- CHC1, and their structures were completely assigned by 'H n.m.r. spectroscopy for the first time as described later in this t Although the 8a-methyl ester (18) had been already synthesized both by Ramage et and Rebek ef al,,4etheir respective n.m.r. spectra and the equilibrium experiment results did not coincide. Comparison of the n.m.r. spectrum of an equilibrium mixture (3: 1) of (17) and (18), which we prepared, with those reported by Professors Ramage and Rebek clearly established that the n.m.r. spectrum of compound (18)quoted by the latter should be correct. $ The samples were gifts from Dr. P. A.Stadler, Sandoz Ltd. Table 1. 'H N.m.r. data for methyl (+)-lysergate (21) in CDC1, (200 MHz) 6 (J in Hz) 6 on irradiation (observation) NH 2-H 5-H 7-Heq 7-Hax 8-H 9-H CO,Me 7.95 (br) 6.95 (t, J 2)3.55 (dd, J 14, 6) 2.74 (ddd, J 14, 12, 2) 3.24 (m) 3.31 (br dd, J 11, 5) 2.72 0, J 11)3.77 (m) 6.64 (br s) 3.80 (s) 7.95 (lose J 2) 2.74 (lose J 2) 3.24 (lose J 6) 2.74 (lose J 14) 6.95 (lose J 2) 3.55 (lose J 14) 3.24 (lose J 12) 6.64, 3.77, 3.55, 2.74 (sharpeningof peaks) 6.64 (sharpening of peaks; J 11, 5 apparent) 3.77 (lose J 5) 2.74 (change)" 3.77 (lose J 11) 3.31 (lose J 11) 6.64, 3.31, 3.24 (sharpening of peaks) 2.74 (change)" 3.77, 3.31, 3.24 (sharpening of peaks) NMe 2.64 (s) " Irradiation at 6 2.74 (4-H,,) changed the signal patterns of 8-H and 7-He, in addition to that of 4-He, as a result of double irradiations both at 4-Ha, and 7-Ha, (6 2.72).paper. The respective epimers were each found to give an equilibrium mixture (3 :2), with epimer (21) the major component, upon being heated in methanol. In addition to the results obtained from the despyrrole analogues(23) described in a previous paper,13 the results given in this paper would indicate that, as a generalisation, isomerisation of the 8-ester group in the ergoline and benzoCflquinoline derivatives is relatively easy in methanol and leads to the respective equilibrium mixtures. Additionally, it was also found that all the 8P-esters, (17), (19), and (21), have larger R,values than their -ester counterparts, (18), (20), and (22), on h.p.l.c., thus providing a convenient method for their identification.Then we analysed the n.m.r. spectra of methyl (f)-lysergate (21) and methyl (f)-isolysergate (22). As a result of the spin- decoupling experiments on the n.m.r. spectrum of methyl (+)-lysergate (21), the following assignments of signals as summarised in Table 1 were reached. Bailey and Grey had reported14 a detailed study of the conformation of NN-dimethyl-lysergamide and NN-dimethyl- isolysergamide by n.m.r. spectroscopy. Upon taking these results into consideration, the present assignments for the esters (17)--(20) allowed us to suggest that methyl ( )-lysergate (21) has its c and D rings in the half-chair form as shown in Figure 2.(22) R'= H, R2=COZMe Figure 2. The reasons for the above conclusion are as follows; we observed an allylic coupling between 2-H and 4-H,,, thus J. CHEM. SOC. PERKIN TRANS. I 1985 Table 2. 'H N.m.r. data for methyl (+)-isolysergate (22)in CDCl, (200 MHz) 6 (J in Hz) 6 on irradiation (observation) NH 2-H 4-He, 4-Ha, 5-H 7-H, 7.96 (br) 6.92 0, J 2) 3.44 (dd, 2.75 (ddd, J 14, 5) J 14, 11, 2) 3.22 (m) 3.37 (m)b 7.96 (lose J 2) 2.75 (lose J 2) 3.22 (lose J 5) 2.75 (lose J 14)" 6.92 (lose J 2) 3.44 (lose J 14) 3.22 (lose J 11) 6.58, 3.44, 2.75 (sharpening of peaks) 6.58 (sharpening of peaks) 2.75 (change)" 7-Ha, 8-H 9-H 2.74 (m)3.32 (m) 6.58 6.58 (sharpening of peaks) 2.75 (change)" 3.22 (sharpening of peaks; J 4 apparent) C0,Me NMe (br, d, J 4)3.74 (s) 2.59 (s) Irradiation at 6 2.75 (4-Ha3 changed the signal patterns of 8-H and 7-He, in addition to that of 4-He, as a result of double irradiations both at 4-H,, and 7-H,, (6 2.74).* The signal pattern of 7-Hc, was described as a broad doublet (J 12 Hz) in our recent paper (ref. 13). suggesting a cu. 90" dihedral angle between these two hydrogens, the signal for 4-H,, appearing at much lower field than that for 4-Ha, by virtue of its being almost coplanar with ring B. The observation of an allylic coupling between 5-H and 9-H would suggest a near perpendicular orientation of 5-H with respect to the double bond at the 9,lO-position. Further, it has been shown that methine hydrogens in structurally related fragments which are gauche to the nitrogen lone pair are deshielded by about 0.6-4.8 p,p.m.relative to those orientated trans-axially which are found at 6 cu. 3.2.15 Therefore, the chemical shift of 5-H, 6 3.24, suggests its trans-axial orientation to the nitrogen lone pair. Such an arrangement can only be realised if ring D exists in that half-chair conformation in which C-5,-10, -9, and -8 are more or less in the same plane. As a result, C-7 is situated above this plane on the same side as 5-H while the nitrogen and its lone pair are directed below. The existence of a long-range W-shaped coupling between 7-He, and 9-H suggests the half-chair conformation of the ring D where two hydrogens, 7-He, and 9-H, are in the same plane. Furthermore, the pseudo-equatorial orientation of the 8-methyl ester group is also suggested from the following data; there are couplings with J 5 Hz between 7-H,, and 8-H and J 11 Hz, between 7-H,, and 8-H, a homoallylic coupling between 5-H and 8-H, and a small coupling with J cu.1 Hz between 8-H and 9-H. The above conclusion on the conformation of methyl (+)-lysergate (21) coincided with that proposed by Stoll et all6 for lysergic acid. Next, wecarried out a spin-decoupling analysis on the n.m.r. spectrum of methyl (+)-isolysergate (22). As shown in Table 2, the chemical shifts of all the protons are assigned. However, the chemical shift of 8-H appeared very close to that of 7-He, and the signal for 7-H,, overlapped with that of 4-Ha,, thus rendering the mutual coupling constants between 8-H, 7-Ha,, and 7-H,, indeterminable.In addition, the very close chemical shifts of 5-H and 8-H made the existence of a homoallylic coupling uncertain. On the other hand, the chemical shifts of 2-H, 4-H, and 5-H and their signal patterns are very similar to those observed for compound (21) and similar allylic couplings are observed between 2-H and 4-H,, and 5-H and 9-H as for (21). In particular, the almost identical chemical shift of 5-H, 6 J. CHEM. SOC. PERKIN TRANS. I 1985 Taw 3. 'HN.m.r. data (6; J in Hz) for compounds (17)-(22) in CDCl, (200 MHz) (17) (18)" (19) (20) 2-H 2-H, 4.34 (br) 3.70 4.M.10 (m) 3.67 3.82-3.60 (m) 3.67 (t, J 7) 6.95' 6.92' 3-H 3.42 (m)(t, J 10) 3.45-3.30(t, J 11) (m) 3.46-3.10 (m) 4-Hq 4-Hm 5-H 7-Hq 7-Ha, 8-H 9-H C0,Me NMe 2.57 (m) 1.40 3.04 (br d, J 12) 3.28 (br dd, J 11.5, 6) 2.69 (t, J 11.5) 3.68 (m) 6.55 (br s) 3.76 (s) 2.51 (s) (9, J 12) 2.51 (d, J 6.8)b 1.41 2.89 (br dd, J 11.7, 2) 3.45 (d, J 11.7) 2.58 (dd, J 11.7, 5) 3.18 (br t) 6.55 (d, J 3.2) 3.74 (s) 2.48 (s) (q, J 11.7) 2.62-2.43 (m) 1.43 1.42 3.05 2.89 (br d, J 12) 3.46-3.10 (m) 3.45 2.70 2.62-2.43 (m) (t, J 12)3.82-3.60 (m) 3.46-3.10 (m) (s,J 12) (4, J 12) (br d, J 12) (br d, J 12) 6.60-6.48 (m) 3.77 (s) 3.74 (s) 2.53 (s) 2.50 (s) 2.52 (d, J 5Ib 1.42 (q, J 11.5)2.90 (br dd, J 11.5, 2.5) 3.44 (4 J 12)2.57 (dd, J lZ4.7) 3.31-3.10 (m) 6.53-6.49 (m) 3.72 (s) 2.52 (s) 3.55 (dd, J 14, 6) 2.74 (ddd, J 14, 12, 2) 3.24 (m) 3.31 (br dd, J 11, 5) 2.72 (t, J 11)3.77 (m) 6.64 (brs) 3.80 (s) 2.64 (s) 3.44 (dd, J 14, 5) 2.75 (ddd, J 14, 11, 2) 3.22(m) 3.37 (m) 2.74 (m) 3.32(m) 6.58 (br d, J 4)3.74 (s) 2.59 (s) " We assigned the respective protons from the data reported by Rebek et Reported" signal patterns are different from the expected ones.Assigned from the n.m.r. spectrum of a mixture of compounds (19) and (20) in the ratio 5:2. 'Signal for 2-H. 3.22, with that in compound (21), 6 3.24, and the existence of a long-range W-shaped coupling between 9-H and 7-H,, can only be explained by assuming a conformation for compound (22)as shown in Figure 2. Therefore, the 8-methyl ester group would take a pseudo-axial orientation as supported by the coupling constant of 4 Hz between 8-H and 9-H. Furthermore, the above conclusion on the conformation of methyl (+)-isolysergate(22) coincides with that proposed by Stoll et for isolysergic acid.Based upon the assignment of the n.m.r. spectra of compounds (21) and (22), we then compared the spectra of compound (17) and the mixture of esters (19) and (20). Though .~~Rebek et ~1 have isolated compounds (18) and (20) and described the chemical shifts and signal patterns of the peaks, they have not assigned the respective peaks. Therefore, upon comparison of the n.m.r. spectra of compounds (21)and (22),we have succeeded in the assignment of the respective peaks as summarised in Table 3. It is clear that the n.m.r. spectra, particularly the chemical shifts and the signal patterns of protons in ring D, which is the common structural moiety in the compounds compared in this study, are very similar depending on the type of compound, as shown by the 8P-esters (17),(19), and (21),and the -esters (18), (20), and (22).Thus, we conclude that all these compounds have the same conformation under the conditions of the measurements and further we assigned the orientation of the substituents as follows. The orientation of the 8-ester group would not have any effect on the chemical shift of 9-H but would alter its signal pattern. Thus the signal for 9-H, which was coupled with 8-H, appeared as a broad singlet in the spectrum of the 8P-ester, while it appeared as a broad doublet, J 34 Hz, in the spectrum of the 8a-ester. In addition the n.m.r.signals for the methyl protons in the ester moiety and the N-CH, group appear at slightly higher field in the 8a-esters than in the 8p-esters. In conclusion, the stereostructures of the epimers, including the orientation of the ester group at C-8, can now be deduced from the n.m.r. behaviour of three proton groups, i.e., of the olefinic proton 9-H, and the methyl protons of the methyl ester at C-8 and the N-CH, group. Experimental'H N.m.r. spectra were measured with JEOL PMX-60 and Varian XL-200 instruments for solutions in deuteriochloroform unless otherwise stated (tetramethylsilane as internal reference), i.r. spectra for solutions in chloroform with a Hitachi 215 spectrophotometer, and mass spectra with a Hitachi M-80 machine.H.p.1.c. was carried out on a Waters Associates instrument with a U.V. detector at 254 nm using a Microporasil column (30 cm x 7.8 mm i.d.). M.p.s were determined with a Kofler-type hot-stage apparatus. Extracts from the reaction mixtures were washed with water and dried over anhydrous sodium sulphate. The photochemical reactions were carried out by irradiation at 4-10 "C with a high-pressure mercury lamp (300 W) (Eikosha PIH-300). Ether refers to diethyl ether. N-(1 -BenzoyI- 1,2,2a,3-tetrahydrobenzcd)indol-4-yI)-N-me thy Furan- 3 -carboxam ide (2)-Anhydrous met h ylamine gas was bubbled into a boiling solution of l-benzoyl-l,2,2a,3-tetrahydrobenzcd)indol-4-(5H)-one (1)ti (2 g) in benzene (200 ml) under a nitrogen stream for 5 h; water was removed as it formed.The mixture was refluxed further to remove the excess of methylamine by the bubbling nitrogen. To the resulting ice- cooled, stirred solution were added dropwise triethylamine (1 g) and then a solution of freshly prepared furan-3-carbonyl chloride (1.13 g) in anhydrous benzene (30 ml). After being refluxed for 2 h the mixture was ice-cooled and diluted with benzene, washed, and dried. The solvent was removed under reduced pressure and the residue was recrystallised from methanokther to afford the enamide (2) (2.66 g, 96), m.p. 130-131 "C; v,,,. 1 640-1 620 cm-' (2NCO); 6 (inter alia)6.45 (1 H, br s, 5-H) and 3.27 (3 H, s, NMe) (Found C, 74.8;H, 5.15; N,7.45. C2,H,,N20, requires C, 75.0 H, 5.25; N, 7.3).Reductive Photocyclisation of the Enamide (2).-A solution of a mixture of the enamide (2) (1.5 g) and sodium borohydride (1.5 g) in benzene-methanol (5:1; 900 ml) was irradiated for 3 h. The reaction mixture was washed, dried, and evaporated to give a viscous oil which was triturated with ethanol to afford crystals (1.22 g, 81). These were found to be a mixture of three lactams (3), (4), and (5) in the proportions 10:4: 1 by h.p.1.c. 1 500 p.s.i.; 5 MeOH-MeCN (0.4 ml min-I); (3)R, 45.6 min; (4) R, 49.6 min; (5)R, 48.8 min). Repeated recrystallisation of the crystals from methylene dichlorideethyl acetate afforded pure (3af3,5ap,6ap,l lba,l lci3)-8-benzoyl-5,5a,6,6a,7,8,1lb,l lc-octah ydro- 5-methyFur03,2 -c indo lo4,3-fg quino Iin-4(3 aH)- one (3) (813 mg, 5473, m.p.204-206 "C; v,,,. 1 660-1 620 cm-' (2NCO); 6 (inter alia) 6.46 (1 H, t, J2 Hz, 2-H), 5.37 (1 H, t, J 2 Hz, 3-H), 4.88 (1 H, dd, J 11 and 10 Hz, 1 lc-H), 4.44 (1 H, br, 7-H,), 3.87 (1 H, dt, J 11 and 2 Hz, 3a-H), 3.76 (1 H, t, J 12 Hz, 7-H2, 3.63 (1 H, br dd, J 12 and 10 Hz, 5a-H), 3.40 (1 H, m, 6a-H), 3.08 (3 H, s, NMe), 3.03 (1 H, t, J 10 Hz, llb-H), 2.68 (1 H, br d, J 12 Hz, 6-He,), and 1.68 (1 H, q, J 12 Hz, 6-Ha,); m/z 386 (M+)(Found: C, 72.95; H, 5.8; N, 7.05. C,,H,,N20,~~AcOEt requires C, 73.2; H, 6.0; N, 6.75). The residue obtained from the mother liquor was chromatographed on silica gel. The first fraction eluted with chloroform gave (3aP,5aP,6aa,ll ba,l 1cP)- 8-benzoy1-5,5a,6,6a,7,8,11b,l lc-octahydro-5-rnethylfuro3,2-c-indoZo4,3-fgquinolin-4(3aH)-one(5) (81 mg, 573, m.p. 250- 252 "C (decomp.) (from methylene dichloride-thy1 acetate); v,,,.1 660-1 620 cm-' (2NCO); 6 (inter alia) 6.38 (1 H, t, J2 Hz, (1 H, br, 7-HJ, 4.17 (1 H, dt, J 10 and 2 Hz, 3a-H), 3.73 (1 H, t, J 10 Hz, 7-H,), 3.60 (1 H, m, 6a-H), 3.28 (1 H, q, J 10 Hz, 5a-H), 3.00 (3 H, s, NMe), 2.97 (1 H, t, J 10 Hz, llb-H), and 2.38-2.02 (2 H, m, 6-Hz); m/z 386 (M') (Found: C, 74.3; H, 5.75; N, 7.25. C24H22NZ03requires C, 74.6; H, 5.75; N, 7.25). The second fraction eluted with chloroform gave (3aP,5aa,6aa,ll ba,l 1cP)- 8-benzoy1-5,5a,6,6a,7,8,11b, 1 lc-octahydro-5-methyrfuro3,2-c-indolo4,3-fgquinoZin-4(3aH)-one(4) (325 mg, 22), m.p. 2 19-221 "C (from methylene dichloride-ethyl acetate); vmax.1 6-1 620 cm-' (2NCO); 6 (inter alia) 6.41 (1 H, t, J 3 Hz, 2-H),5.34(1H,t,J3H~,3-H),4.59(lH,t,JlOH~,11c-H),4.38 (1 H, br, 7-H,), 3.85 (1 H, dt, J 10 and 3 Hz, 3a-H), 3.74 (1 H, t, J 11 Hz, 7-H,), 3.66 (1 H, m, 5a-H), 3.43 (1 H, m, 6a-H), 3.30(1 H, dd, J 10 and 6 Hz, llb-H), 3.10 (3 H, s, NMe), 2.38 (1 H, m, 6-He,), and 1.55 (1 H, q, J 12 Hz, 6-Ha,); m/z 386 (M') (Found: M+, 386.1637. C2,H,,N,03 requires M, 386.1629). (3ap,5aP,6ap,ll ba,l lcP)-8-Benzoyl-3a,4,5,5a,6,6a,7,8,1lb,l lc- decah ydro- 5-methylfuro3,2-c indolo 4,3 -fg quinoline (7) .-To an ice-cooled solution of the c/D-trans-lactam (3) (970 mg) in anhydrous ether-tetrahydrofuran (THF) (1 :2; 150 ml) was added lithium aluminium hydride (970 mg) in small portions.The mixture was refluxed under a nitrogen stream for 2 h. Usual work-up afforded the N-debenzoylated amine (6) v,,,. 3 400 cm-' (NH); 6 (inter alia) 4.85 (1 H, t, J 2.5 Hz, 3-H) and 2.40 (3 H, s, NMe), which was without further purification rebenzoylated by refluxing in benzene (95 ml) with benzoyl chloride (640mg) in the presence of triethylamine ( 500 mg) to afford the N-benzoate (7) 688 mg, 74 from (3), m.p. 187-189 "C (decomp.) (from benzene-ether); v,,,. 1 640 cm-' (NCO); 6 (inter alia) 6.47 (1 H, br s, 2-H), 4.98 (1 H, br s, 3-H), 4.68 (1 H, t, J 10 Hz, llc-H), 4.34 (1 H, br, 7-H,), 3.68 (1 H, t, J 11 Hz, 7-Ha), 3.44-3.22 (2 H, m, 3a- and 6a-H), 3.14 (1 H, dd, J 13 and 7 Hz, 4-He,), 3.14 (1 H, t, J 10 Hz, llb-H), 2.60 (1 H, dd, J 13 and 4 Hz, 4-H,,), 2.46 (3 H s, NMe), 2.42 (1 H, m, 6-He,), 2.22 (1 H, td, J 10 and 2 Hz, 5a-H), and 1.43 (1 H, q, J 10 Hz, 6-H,,) (Found C, 77.5; H, 6.45; N, 7.65.C,,H,,N,O, requires C, 77.4; H, 6.5; N, 7.5). Similar reduction of a mixture of the C/D-trUnS- and cis-lactams (3)and (4) (5:1; 970 mg) with lithium aluminium hydride gave a mixture of the corresponding N-debenzoylated amines (6)and (8),which were also rebenzoylated as described above and separated by column chromatography on silica gel to afford the N-benzoate (7) (569 mg, 61) and (3aP,5aa,6aa,l lba,l lcp)-8-benzoyl- 3a,4,5,5a,6,6a,7,8,11 b, 1 lc-decahydro-5-methyIfuro3,2-c-indolo4,3-fgJquinoline (9) (83 mg, 979, m.p. 172-174 "C (decomp.) (from benzene); v,,,.1 640 cm-'(NCO);6 (inter alia) 6.43 (1 H, br s, 2-H), 4.94 (1 H, br s, 3-H), 4.46 (1 H, t, J 10 Hz, llc-H), 4.36 (1 H, br, 7-Ha), 3.70 (1 H, t, J 10 Hz, 7-HP), 3.48 (1 H, m, 3a-H), 3.42-3.22 (2 H, m, 6a- and llb-H), 2.92 (1 H, ddd, J 11, 7, and 3 Hz, 6-He,), 2.79 (2 H,d, J 8 Hz, 4-H,), 2.50 (347 mg, 53); v,,,.(Nujol) 2-H),5.33(1H,t,J2H~,3-H),5.10(1H,t,J10H~,ll~-H),4.52(inter alia) 6.49 (0.6 H, d, J 5 Hz, OH), 6.25 (0.4 H, S(CD,),SO J. CHEM. SOC. PERKIN TRANS. I 1985 11 Hz, 6-H,,) (Found: M+,372.1843. C2,H2,N202 requires M, 372.1837). Hydroxylationof the N-Benzoate (7).-(a) To a solution of the N-benzoate (7) (600 mg) and pyridine (1ml) in anhydrousTHF (15 ml) was added a solution of osmium tetraoxide (410 mg) in anhydrous THF (3 ml) at -30 "C.The reaction mixture was kept at -30 "C for 2 h, and then the solvent was evaporated off to give a solid which was washed with ether and dissolved in methylene dichloride*thanol (1:1; 20 ml). Hydrogen sulphide was bubbled vigorously into the solution at 0 "C for 1 min and the black precipitate was removed by filtration. The filtrate was evaporated and the residue was crystallised from methanol- ether to give a mixture of two cis-glycols (10) in the ratio 312 3 370 (OH) and 1 640cm-' (NCO); m, OH), 5.41 (0.6 H, d, J 5 Hz, OH), 5.16 (1 H, m, 2-H), 4.73 (0.4 H, d, J 6 Hz, OH), 2.24 (3 H, s, NMe), 1.97 (1 H, m, 5a-H), and 1.21 (1 H, br q, J 11.5 Hz, 6-Ha,); m/z 406 (M'). (b) A solution of osmium tetraoxide (1mg) in t-butyl alcohol (0.5 ml) was added to a mixture of the N-benzoate (7) (480 mg), trimethylamine N-oxide dihydrate (195 mg), pyridine (0.1 ml), water (0.8 ml), and t-butyl alcohol (10 ml).After being refluxed under a nitrogen stream for 1 h, the solution was cooled and treated with 20 aqueous sodium hydrogen sulphite (50 ml). To the concentrated reaction mixture was added water and the precipitate thus formed was collected and washed successively with water and with methylene dichloride to give a mixture of two cis-glycols (10)in the ratio 3:2 (435 mg, 83). This mixture was used in the next step without further purification. (3~)-2,3-DihydroisofumigaclauineB (13).*-A mixture of the glycols (10) (100 mg) and sodium metaperiodate (100 mg) in methanol-water (1 :1; 80 ml) was stirred at room temperature for 1 h, and then sodium carbonate (100 mg) was added to the reaction mixture which was then stirred for a further 1 h.The reaction mixture was repeatedly extracted with methylene dichloride. The combined extracts were washed, dried, and evaporated to give the 9a-hydroxy-8P-aldehyde (11) vmax. 3 500 (OH), 1 720 (CHO), and 1 640 em-' (NCO); 6 (inter alia) 9.80 (1 H, br s, CHO) and 2.35 (3 H, s, NMe) which was without further purification dissolved in ethylene glycol (5 ml). To the resulting solution were added sodium hydroxide (40 mg) and hydrazine hydrate (0.5 ml). The mixture was then refluxed under a nitrogen stream for 30 min. The reaction mixture was diluted with water and repeatedly extracted with methylene dichloride. The combined extracts were washed, dried, and evaporated to give a residue which was purified by p.1.c.on silica gel to afford the 8P-methyl-9a-01 (13) (30 mg, 4779, m.p. 182-183 "C (decomp.) (from benzene); v,,,.(Nujol) 3 330 cm-' (NH); 6 7.41 (1 H,d, J~Hz, 13-H),6.56(1 H,d, J8 12-H),7.01(1 H, t, J~Hz, Hz, 14-H),3.66(1 H,m,2-H,), 3.34(1 H, t, JlOHz,9-H),3.22- 3.10 (2 H, m, 2-Ha and 3-H), 2.99 (1 H, dd, J 12 and 4.5 Hz, 7- Heq), 2.82 (1 H, t, J 10 Hz, 10-H), 2.46-2.38 (1 H, m, 4-He,), 2.40 (3 H, s,NMe), 2.28 (1 H, br t, J 11 Hz, 5-H),2.18 (1 H, t, J12 Hz, 7-H,,), 2.00 (1 H, m, 8-H), 1.44 (1 H, q, J 11 Hz, 4-Ha,), and 1.06 (3 H, d, J 7 Hz, CMe) (Found: M+, 258.1756.Cl6Hz2N,O requires M, 258.173 1). Oxidation of the glycols (10) (100 mg) with sodium meta- periodate (53 mg) as described above but without treatment with sodium carbonate gave a mixture of two epimeric aldehydes (11) and (12) in the ratio ca. 1: 1 v,,,. 3 500 (OH), 1 720 (CHO), and 1 640 cm-' (NCO); 6 (inter alia) 9.80 (0.5 H, br s, P-CHO), 9.67 (0.5 H, br s, a-CHO), and 2.35 (3 H, s, NMe). Wolff-Kishner reduction of this mixture gave the 8P-methyl-9a- (3H,s,NMe),2.22(1H,brd,JllHz,5a-H),and1.44(1H,q,J* Ergoline-type numbering is used for compounds (llH20). J. CHEM. SOC. PERKIN TRANS. I 1985 01 (13)(25 mg, 40)as the sole product which was identical with that obtained above. (+)-Isofwnigaclauine B (14).-(a) To a solution of the Sp-methyl-9a-01 (13) (18 mg) in chloroform (10 ml) was added manganese dioxide (40 mg).The mixture was stirred at room temperature for 18 h and was then filtered and the residual solid was washed thoroughly with chloroform. The combined chloroform layers were evaporated to give a residue which was purified by p.1.c. on silica gel to afford (+)-isofumigaclavine B (14) (8 mg, 45), m.p. 271-273 "C (decomp.) (from methanol) lit.,g" 222-224 "C (sublimed.); lit.,9b 278-282 "C (decomp.); vmax.(NuJol)3 495 cm-' (NH); 6 (CDCl,-CD,OD) 7.65 (1 H, d, J8 Hz, 12-H), 7.20(1 H,d, J8 Hz, 14-H), 7.11 (1 H, t, J8 Hz, 13- (1 H, m, 4-H,,), 2.35 (3 H, s, NMe), 2.12 (1 H, br t, J 10 Hz, 5-H), and 1.41 (1 H, q, J 12 Hz, 4-Ha,) (Found: M', 406.1911. C,,H,,N,O, requires M, 406.1891).Dehydration of the 9a-Hydroxy-8P-ester (15).-To a solution of the 9a-hydroxy-8P-ester (15)(42 mg) in anhydrous pyridine (1 ml) was successively added 85 phosphoric acid (0.01 ml) and phosphoryl trichloride (0.2 ml). l1 The solution was warmed at 60 "C under a nitrogen stream for 45 min. The reaction mixture was poured into ice-water, made alkaline by the addition of aqueous sodium carbonate solution, and extracted with methyl- ene dichloride. The organic layer was washed, dried, and evaporated. Purification of the residue by p.1.c. on silica gel gave a solid (22 mg, 55) which was found to be a mixture of two epimers (17) and (18)in the ratio 3: 1 by h.p.1.c. l 500 p.s.i.; 5H),6.92(1H,d,J1.5H~,2-H),3.54(1H,t,JlOH~,9-H),3.41(1 H, dd, J 14 and 4 Hz, 4-H,,), 3.03 (1 H, t, J 10 Hz, 10-H), 2.96 (1 MeOH-CH,Cl, (0.5ml min-'): (17) R, 50min; (18)R, 42.8 min.H, dd, J 12 and 4 Hz, 7-H,,), 2.79 (1 H, ddd, J 14,11, and 1.5 Hz, Recrystallisation of the solid from ethyl acetate afforded homo- 4-Ha,), 2.53 (3 H, s, NMe), 2.44 (1 H, ddd, J 11, 10, and 4 Hz, 5-geneous methyl (3p)- 1-benzoyl- 1,2-dihydrolysergate (17), m.p. H),2.18(1H,t,J12Hz,7-Ha,),2.00(1H,m,8-H),and1.13(3H,165-168 "C (lit.? 165-168 "C); v,,,. 1 725 (C0,Me) and d, J 7 Hz, CMe). The i.r. and n.m.r. spectra and R, values of (+)-1 640cm-' (NCO). The i.r. and n.m.r. spectra are superimposable (14) were found to be identical with those of natural isofumigaclavine B (Found: M', 256.1571. C16H2,N20 requires M,256.1574).(b) A solution of the 8P-methyl-9a-01 (13) (10 mg) and benzeneseleninic anhydride (7.2 mg) in THF (1 ml) was stirred at 40 "C under a nitrogen stream for 2 h. After being diluted with methylene dichloride, the solution was washed successively with aqueous sodium carbonate and water, dried, and evaporated to give a residue which was purified by p.1.c. on silica gel to afford (f)-isofumigaclavineB (14) (5mg, 50). Methyl (3P,Sp,9a)-1-Benzoyl-2,3-dihydro-9-hydroxy-6-methylergoline-8-carboxylate (15).-To a stirred, ice-cooled solution of the homogeneous 9a-hydroxy-8p-aldehyde (1l), which was prepared from the glycols (10) (200 mg), in methanol- acetone (1 :4; 50 ml) was added dropwise a solution (0.5 ml) of 4.0n4-chromiurn trioxide-sulphuric acid in water.The mixture was stirred at 0°C for 1 h. The precipitate thus formed was filtered and washed with methylene dichloride. The filtrate was washed successively with aqueous sodium carbonate and water. Upon removal of the solvent, the solid obtained was purified by column chromatography on silica gel to give the 9a-hydroxy-SB- methyl ester (15) (75 mg, 38), m.p. 22G228 "C (from methanol); v,,,. 1 720 (C0,Me) and 1 630 cm-' (NCO); 6 7.83 (1 H, brd, J8 Hz, 12-H), 7.6-6.90(7 H, m,ArH),4.36(1 H, m, 2-H,), 4.04 (1 H, t, J 10 Hz, 9-H), 3.78 (3 H, s, OMe), 3.65 (1 H, t, J 10.5 Hz, 2-Ha), 3.40 (1 H, m, 3-H), 3.27 (1 H, dd, J 12 and 5 Hz, 7-H,,), 2.98 (1 H, ddd, J 12, 10, and 5 Hz, 8-H), 2.80 (1 H, t, J 10 Hz, 10-H), 2.57 (1 H, t, J 12 Hz, 7-Ha,), 2.42 (3 H, s, NMe), 2.40 (2 H, m, 5-H and 4-H,,), and 1.47 (1 H, q, J 12 Hz, 4-Ha,) (Found: C, 71.05; H, 6.45; N, 6.95.C,,H,,N,O, requires C, 70.9; H, 6.45; N, 6.9). Oxidation of an Epimeric Mixture of the Aldehydes (11)and (12).-A mixture of the epimeric aldehydes (11)and (12) (ca. 1:l), which was prepared by metaperiodate oxidation of the glycols (10) (290 mg) according to the procedure given above but without sodium carbonate treatment, was oxidised with chromium trioxide as described above. Separation of the crude product by p.1.c. on silica gel afforded the 9a-hydroxy-8P-ester (15)(33 mg, 11) and methyl (3P,Sa,9a)-l-benzoy1-2,3-dihydro-9-hydroxy-6-methylergoline-8-carboxylate(16)(40 mg, 14), m.p.195-197 "C (from ethyl acetate); v,,,. 1710 (C0,Me) and 1 630cm-' (NCO); 6 7.90( 1 H, br d, J8 Hz, 12-H), 7.64-6.90(7 H, m,ArH),4.24(1 H,m,2-H,), 3.86(1 H, brdd, Jl1 and4Hz,9-H), 3.80(3 H, s, OMe), 3.64 (1 H, t, J 12 Hz, 2-Ha), 3.48 (1 H, dd, J 12 and3Hz,7-HC,),3.35(1H,m,3-H),3.17(1H,t,JlOHz, 10-H), 3.01 (1 H, m, 8-H), 2.47 (1 H, dd, J 12 and 3 Hz, 7-Ha,), 2.40 with those of the authentic sample reported by Ramage er a1. and Rebek et d4' From the n.m.r. spectrum of the equilibrium mixture (17) and (18)(3:l),the following peaks were assignable for methyl (3P)-l- benzoyl-2,3-dihydroisolysergate(18):6 3.74 (s, OMe), 2.89 (br d, J 12 Hz, 5-H), 2.48 (s,NMe), and 1.41 (4, J 12 Hz, 4-Ha,). These peaks were found to coincide with those which were present in the n.m.r.spectrum of compound (18)reported by Rebek et aL4' Each isomer gave the same equilibrium mixture in methanol (17):(18) 3: 1). Dehydration of the 9a-Hydroxy-8a-ester (16).-A mixture of the 9a-hydroxy-8a-ester (16)(40 mg), anhydrous pyridine (1 ml), 85 phosphoric acid (0.01 ml), and phosphoryl trichloride (0.2 ml) was worked up in the same manner as given for the dehydration of compound (15) to give a mixture of compounds (17) and (18)(17 mg, 44) in the same ratio (3: 1) as described for the dehydration of the 9a-hydroxy-Sp-ester (15). Methyl (3P)-2,3-Dihydrolysergate(19) and Methyl (38)-2,3- Dihydroisolysergate (20).-To a solution of an epimeric mixture of the esters (17) and (18)(3:l; 20 mg) in methylene dichloride (4 ml) were added successively sodium carbonate (10 mg) and excess of triethyloxonium tetrafluoroborate at room temperature under a nitrogen stream.After being stirred for 18 h, the reaction mixture was treated with 5 hydrochloric acid (20 ml) for 15 min, neutralised with saturated aqueous sodium hydrogen carbonate, and extracted with methylene dichloride. The extract was dried and evaporated to give a residue which was purified by p.1.c. on silica gel to afford a solid mixture of debenzoylated esters (19)and (20) (8 mg, 55) in the ratio 5:2, v,,,. 3 400 (NH) and 1 730 cm-l (C0,Me). The i.r. and n.m.r. spectra and the ratio of the two isomers (19) and (20) are identical with those of the authentic sample reported by Ramage et a1. This mixture was used in the next step without further purification.Methyl (+)-Lysergate (21) and Methyl (f)-Isolysergate (22).-A solution of an epimeric mixture of the esters (19) and (20)(5:2; 5 mg) and benzeneseleninic anhydride (3 mg) in THF (1 ml) was stirred at 40 "Cunder a nitrogen stream for 2 h. Usual work-up as in the manner given for compound (14) afforded a mixture of methyl (f)-lysergate (21) and methyl ()-isolysergate (22) (3 mg, 60) in the ratio 3:2 (Found M+, 282.1389. C, ,H *N202requires M, 282.1368). This mixture was separated by h.p.1.c. SO0 p.s.i.; 3 MeOH-CHCl, (0.8 ml min-')I: methyl (+)-lysergate: Rt 35.2 min, methyl ()-isolysergate: R,32.8 min. The n.m.r. spectra of (21) and (22) are superimpsable with those of natural methyl lysergate and methyl isolysergate respectively.Each isomer gave the same equilibrium mixture in methanol (21) :(22) 3 :21. Equilibrium Experiments.-Two solutions, one of methyl ( )-lysergate (21) (1 mg) and the other of methyl (+)-isolysergate (22) (1 mg) in methanol (1 ml each), were refluxed under a nitrogen stream. After 3 h, the reaction mixtures were found to isomerise to an equilibrium mixture of these two esters with identical ratio (3: 2) with methyl ()-lysergate (21) the major product. The ratio was not changed even after prolonged refluxing. The isolated 8P-ester (17) was also isomerised in a similar manner as above to give an equilibrium mixture of the 8P-ester (17) and 8a-ester (18) in the ratio 3: 1.Acknowledgements We thank the Ministry of Education, Science, and Culture (Japan) for a research grant, Professor R. Ramage, UMIST, for gifts of spectra of the authentic samples, and Professor M. Ohmomo, The University of Tsukuba, and Dr. P. A. Stadler, Sandoz Ltd., for their gifts of natural alkaloids. We are also grateful to Sir Derek H. R. Barton, I.C.S.N., for his advice and encouragement. References 1 Part 23, T. Naito, Y.Tada, Y.Nishiguchi, and I. Ninomiya, J. Chem. SOC.,Perkin Trans. 1, 1985, in the press. 2 Preliminary communication, T. Kiguchi, C. Hashimoto, T. Naito, and I. Ninomiya, Heterocycles, 1982, 19, 2279. J. CHEM. soc. PERKIN TRANS. I 1985 3 I. Ninomiya, C. Hashimoto, T. Kiguchi, and T. Naito, J. Chem. SOC., Perkin Trans. I, 1984, 291 1. 4 (a) E. C. Kornfeld, E.J. Kornefeld, G. B. Kline, M. J. Mann, D. E. Morrison, R. G. Jones, and R. B. Woodward, J. Am. Chem. Soc., 1956,78,3087; (b)M.Julia, F. Le Goffic, J. Igolen, and M.Baillarge, Tetrahedron Lett., 1969, 1569; (c)R. Ramage, V. W.Armstrong, and S. Coulton, Tetrahedron, 1981, 37, supplement 1, 157; (d) W. Oppolzer, E. Francotte, and K. Battig, Helu. Chim. Acta, 1981, 64, 478; (e)J. Rebek, Jr., D. F. Tai, and Y.K. Shue, J. Am. Chem. Soc., 1984, 106, 1813. 5 M. Natsume and H. Muratake, Heterocycles, 1981, 16, 1481; W. Oppolzer, J. I. Grayson, H. Wegmann, and M. Urrea, Tetrahedron, 1983,39, 3695. 6 D. E. Nichols, J. M.Robinson, G. S. Li, J. M.Cassady, and H. G. Floss, Org. Prep. Proced. Int., 1977, 9, 277. 7 P. A. Stadler, A. J. Frey, F. Troxler, and A. Hofmann, Helu. Chim. Acta, 1964, 47, 756. 8 R. Ray and D. S. Matteson, Tetrahedron Lett., 1980, 21, 449. 9 (a) S. Ohmomo, Bokin Bobai, 1982, 10, 253; (b) B. Arnoux, M.A. Merrien, C. Pascard, J. Polonsky, and P. M. Scott, J. Chem. Res. (S), 1978, 210. 10D. H. R. Barton, X.Lusinchi, and P. Millet, Tetrahedron Lett., 1982, 23, 4949. 11 Z. Horii, T. Watanabe, T. Kurihara, and Y.Tamura, Chem. Pharm. Bull., 1965, 13, 420. 12 S. Smith and G. M. Timmis, J. Chem. SOC.,1936, 1440. 13 T. Kiguchi, C. Hashimoto, T. Naito, and I. Ninomiya, Heterocycles, 1984,22, 1719. 14 K. Bailey and A. A. Grey, Can. J. Chem., 1972,50, 3876. 15 T. A. Crabb, R. F. Newton, and D. Jackson, Chem. Rev., 1971,71,109. 16 A. Stoll, T. Petrzilka, J. Rutschmann, A. Hofmann, and H. H. Giinthard, Helv. Chim. Acta, 1954, 37, 2039. Received 6th August 1984; Paper 411392
机译:J. CHEM. SOC. PERKIN 译.I 1985 941 烯酰胺的光环化。第 24 部分。( )-lsofumigaclavine B 和 (+_)-麦角酸的全合成2 lchiya Ninomyia,“Chiyomi Hashimoto、Toshiko Kiguchi 和 Takeaki Naito Kobe Women's College of Pharmacy, Moto yamakita, Higashinada, Kobe 658,Japan 两种麦角碱类生物碱的总合成,(f)-异嘧啉类生物碱 B (14)(首次)和甲基 (4-)-裂酶醛 (21) 和甲基 (+)-异麦角醛 (22),通过涉及烯酰胺 (2) 的还原光环化,然后形成乙二醇和氧化裂解的途径的二氢呋喃环,均有描述。在第 223 部分中,我们报道了麦角酸和异烟曲霉酸的去吡咯类似物的潜在合成途径的建立,旨在将其应用于相应的生物碱。我们现在报告了异烟藻黄素 B 和麦角酸的新型全合成,其合成方法涉及烯酰胺 (2) 的还原光环化,然后打开光环化内酰胺的二氢呋喃环 (3)。以前,麦角酸不仅从合成的角度来看,而且由于其显著的药理潜力,一直被认为是中心靶生物碱,并且已经通过六种不同的方法~logies,~.~根据所使用的起始化合物分为两种类型,即n的路线A是吲哚衍生物(I)和吲哚啉衍生物的路线B(11)。然而,根据路线A合成生物碱只有在Oppolzer等人尝试时才成功'“'',但该方法在D-饱和麦角线的合成中取得了一些成功^.^ 这些结果表明,吲哚环的高反应性和环c芳构化的可行性可能是从吲哚衍生物(I)开始合成时需要克服的主要问题。因此,这表明,与路线 A 相比,在合成在环 D 中具有双键的麦角烯的情况下,通过路线 B 进行合成将是有利的。因此,我们选择了这些麦角烯生物碱的方法,从吲哚啉衍生物(1)和3-糠酸制备的烯酰胺(2)开始,根据为去吡咯类似物开发的方法^.^ 由1-苯甲酰基-1,2,2a,3-四氢苯并[cd]吲哚-4(5H)-酮(1)和甲胺制备的烯胺酰化,在三乙胺存在下与呋喃-3-甲酰氯,得到烯酰胺(2),收率为96%, 结果显示,烯烃质子在6 6.45处的N.M.R.峰为宽单线态,在1 640-1 620 cm-'范围内有宽而强的I.R.吸收。在过量硼氢化钠(10 mol equiv.)在4-10°C下用高压汞灯获得81%收率的结晶产物,通过高效液相色谱法(H.P.L.C.).T 0x0 BzNL 22 & Bz N **“ (3) (4) (5) OH & e RN (6) R=H (8) R=H (7) R=Bz (9) R =Bz (9) R =Bz CHO Bz N t 虽然只有两种光环化内酰胺 (3) 和 (4)在初步通报(参考文献2)中报道,现在已通过重复柱层析分离出三种异构体(3)-(5)。通过反复重结晶和柱层析分离这三种产物(3H5),并通过还原光环化法确定为预期产物,质谱在m/z 386处显示分子离子峰,在1 660-1 620 cm-' (2NCO)处吸收。与模型化合物3(生物碱的去吡咯类似物)的情况相反,其中产物的立体化学受到所用溶剂的影响,内酰胺(3)--45)的比例不受溶剂的影响,无论是甲醇的量还是使用乙腈代替苯。它们的立体化学是根据它们的 nmr 光谱和模型化合物^的光谱比较确定的。^ 三种内酰胺 (3x5) 的 DIE-C~融合是根据各自的 3a- 和 1 lc-H [lo-1 1 Hz in (3)+5)] 之间的偶联常数以及化合物 (3) 转化为 8,9-顺式二取代麦角林衍生物 (16) 确定的。1Ib-和llc-H之间的反式关系是从(3)--(5)中10 Hz的耦合常数和烯酰胺光环化的机理考虑中推导出来的,I通过烯酰胺中6 z-电子系统的旋转环化进行,从而形成反式环状中间体。c/D环结是根据5a-和llb-H之间的耦合常数确定的[(3)和(5)中的lo Hz],从而表明它们的C/D-反式融合,而(4)中6 Hz的值表明顺式融合。此外,从6-Ha的信号模式中也推断出5a-H和6a-H之间的相对构型为顺式,6-Ha的信号模式表现为一个尖锐的四重奏,J 12 Hz在6 1.68 in (3)和6 1.55 in (4)处,从而表明它们的顺式-1,3-二轴关系,其中环c将采取半椅子构象,如图1所示。这一推论与图1.Rebek等人aL4“得出的类似化合物非常吻合。另一方面,(5)中D环和E环上氢的n.m.r.信号与(3)非常相似,但6-H的信号在6 ca. 2.38-2.02处重叠。这种行为可以很容易地解释为假设环c的构象是半船形式,在5a和6a位置具有两个氢的反式关系,如图1所示。Previou~ly,4c*~~*~只分离出在顺式-1,3-二轴取向的5a-和6a-位上具有这两种氢的化合物,这是首次制备在5a和6a位的氢之间具有反式构型的化合物。在光环化内酰胺(3)-45)中,主要获得的c/D-反式内酰胺(3)用于异烟咪曲碱B和甲基裂曲胺的总合成。光环化内酰胺(3)的二氢呋喃环的开环是按照前面描述的程序完成的~usly.~氢化铝锂还原c/D-反式内酰胺(3)得到二胺(6)作为伴随的脱苯甲酰化的结果。然后将该二胺 (6) 与苯甲酰氯重新苯甲酰化,得到 N-苯甲酸酯 (7),收率为 74%。c/D-反式和顺式内酰胺类 (3) 和 (4) (5 :1) 与氢化铝锂的混合物的类似还原 J. CHEM. SOC. PERKIN TRANS.I 1985给出了相应的N-脱苯甲酰胺(6)和(8)的混合物,它们也被重新苯甲酰化,分别以61%和9%的收率得到两种苯甲酸盐(7)和(9)的混合物;这些苯甲酸盐通过柱层析分离。他们的 n.m.r. 光谱,显示 (7), 6 2.22 (td, J 10 and 2 Hz, 5a-H) 和 1.43 (9, J 10 Hz, &Ha,) 以及 (9),6 2.22 (br d, J 11 Hz, 5a-H) 和 1.44 (4, J 11 Hz, 6-Ha,) 建立了它们的结构。首先使用等摩尔量的四氧化锇进行胺(7)中二氢呋喃环的羟基化,然后用硫化氢处理,得到乙二醇(10),收率为53%。乙二醇(10)的收率通过催化量的四氧化锇和三甲胺N-氧化物作为氧化剂反应提高到83%。 虽然还有待确定哪种异构体占主导地位。 这种乙二醇混合物在去吡罗衍生物的情况下也被观察到^.^ 顺二醇 (lo) 的混合物,在没有分离的情况下,然后在甲醇水 (1 :1) 中用偏高碘酸钠处理以裂解乙二醇,在与碳酸钠处理后得到 9a-羟基-8P-醛 (1 1) 作为唯一不稳定的产物。乙二醇裂解后的这种碱处理使开环的 8-甲酰基从不稳定的 8a 取向到稳定的 8P 构型完全异构化。9a-羟基-8P-醛(11)的结构是根据其光谱数据确定的[v,,,.3 500 (OH)和1 720 cm-' (CHO);6 9.80 (br s, CHO)和2.35 (s, NMe)]。另一方面,乙二醇混合物(10)的类似乙二醇裂解,但未进行碱处理,可产生两种差向异构体醛(11)和(12)的混合物,其比例约为1:1,这是根据N.M.R.光谱中8-甲酰基质子的峰面积估计的[(12); 6 9.93 (br s, CHO)]。这些醛(11)和(12)的结构后来通过转化为稳定的合成中间体(15)和(16)而明确地建立起来。醛 (11) 和 (12) 具有合成具有麦角核的麦角生物碱所需的所有官能团。( +)-异烟咪杂黄素 B (14).-Wolff-Kishner 还原 9a-羟基-8P-醛 (11) 或两种差向异构醛 (11) 和 (12) 的混合物的全合成,得到 N-脱苯甲酰化的 8P-甲基-9a-01 (13) 作为收率为 40-47% 的唯一产物,并显示出特征性的 n.m.r. 信号 [S 3.34 (t, J 10 Hz, 9-Hz) 和 1.06 (d, J 7 Hz, 8-Me)],从而确认其结构为 2,3-二氢异烟嘧啶 B(麦角林编号)。吲哚啉(13)与二氧化锰脱氢得到(&)-异夫吲哚黄素B(14),收率为45%,与天然生物碱的i.r.和n.m.r.谱图和R值比较相同。或者,通过用苯硒酸酐处理,可以方便地将吲哚啉(13)转化为(+)-异夫吲唑黄素B(14),收率为50%。因此,我们成功地完成了生物碱(4)-异嘧啶腺素B的首次全合成。甲基(+)-麦角酸酯(21)和甲基(+)-松血角酸酯(22)的新型全合成-醛(11)和(12)转化为所需的不饱和酯(17)和(18)是按照以前建立的程序完成的~~9a-羟基-8P-醛(11)在甲醇-丙酮溶液中与三氧化铬和硫酸氧化得到9a-羟基-8P-甲基 * 尽管我们在初步沟通中报告说 &乙二醇被描述为主要产品(参考文献2),仔细地重新研究乙二醇混合物的N.M.R.谱图(10)表明其分配的模糊性。J. CHEM. SOC. PERKIN 译.I 1985 R' Me (13) R'=Me, R2 = H (14) (16) (15) R'=C02Me, R =Bt 2CO,Me C0,Me (17) R=BZ (18) R=Bt (19) R= H (20) R= H C0,Me A ZMe (22) (23) 酯 (15),收率为 38%。两种差向异构体醛(11)和(12)(约1:1)的混合物的类似氧化得到9a-羟基-8P-甲酯(15)和8a-甲酯(16)的收率分别为11%和14%,分别按p.1.c分离。(制备层色谱)。这些酯(15)和(16)的结构主要根据它们的n.m.r.谱图确定,该谱图表明(15)[S 4.04 (t, J 10 Hz, 9-Hz)、3.27 (dd, J 12 and 5 Hz,7-H,,)和2.57 (t, J 12 Hz, 7-Hax)]中8P-酯基团的赤道取向[S 3]。86 (br dd, J 11 和 4 Hz, 9-H)、3.48 (dd, J 12 和 3 Hz, 7-H,,) 和 2.47 (dd, J 12 和 3 Hz, 7-Hax)]。差向异构酯(15)和(16)的脱水是通过用磷酰氯和85%磷酸在吡啶中加热来进行的,以得到两种差向异构不饱和酯(17)和(18)*的混合物,比例相同(3:1),其中8P-酯(17)作为主要产物,各自酯(15)和(16)的收率为44-55%。上述混合物的重结晶得到均相8P-酯(17),其n.m.r.和i.r.光谱与Ramage提出的甲基2,3-二氢裂解鞘的N-苯甲酸酯的光谱完全相同。由于在纯化过程中已准备好异构化成 8P-酯 (17),因此未成功。此外,均相@-酯(17)在甲醇中加热后产生两种差向异构酯(17)和(18)的3:1混合物,并且相同的3:1混合物是*尽管8fLester(17)在初步通讯中被描述为唯一产物(参考文献2),但差向异构体和酯(18)也通过n.m.r.光谱和h.p.1.c检测到。在化合物(17)的纯化过程中形成的化合物支持各自酯(17)和(18)的异构性,以提供Rebek等人报道的平衡混合物~l.~“.?此外,n.m.r.可归因于3:1混合物中存在的次要组分(18)的峰与Rebek等人报道的甲基2,3-二氢异丝醛酯的N-苯甲酸酯的峰完全相关4“*t由于Woodward等人a1.&和Ramage等人已经将8P-酯(17)转化为(&)-麦角酸,&本工作正式完成了(+)-麦角酸的合成。通过与四氟硼酸三乙基氧铵 4e 烷基化,然后在温和的酸性条件下水解,以得到吲哚啉 (19) 和 (20) 的比例为 5:2,总收率为 55%,从两种差向异向异构酯 (17) 和 (18) 的 3:1 混合物中选择性去除 N-苯甲酰基。发现n.m.r.谱图和两种异构体(19)和(20)的比例与Ramage等人报道的正品样品相同,以3:2的比例,收率为60%,将上述吲哚啉(19)和(20)混合物与苯硒酸酐脱氢, 它们被 H.P.1.c 隔开。各异构体(21)和(22)与天然生物碱1的n.m.r.谱图和R值比较相同;因此,我们完成了(+)-麦角酸的新型全合成。不饱和酯的平衡和立体化学研究 (17)-(22)。-通过我们基于去吡咯类似物^,^开发的合成路线合成麦角酸及其衍生物的结果,我们成功地合成了八种具有类似结构的化合物,即9-麦角烯-8-甲酯及其去吡咯类似物,这为我们提供了一个很好的机会来建立它们的立体化学,并分析各个差向异构体之间的异构化与其一致性之间的关系, 尽管已经实现了麦角酸的几种合成,但其细节尚未完全澄清。利用我们拥有两对差向异构体的事实,我们研究了这些 9-麦角烯-8-羧酸酯 (17) 和 (18) 以及 (21) 和 (22) 及其去吡咯类似物 (23) 的异构化,一旦我们分离出各自的差向异构体并在 200 MHz 下测量了它们的 n.m.r.谱图。如上所述,8P-酯(17)和8a-酯(18)在甲醇中进行异构化反应,得到相同的平衡(3:l)混合物,差向异构体(17)为主要成分,通过h.p.1.c检测。(Microporasil;5%MeOH-CH,Cl,)。这种异构化混合物比例与Rebek等人~l.~“报道的比例一致,尽管Ramage el a1.&指出异构化仅发生在纯化合物(Is)中。?由于N-nor衍生物的一对差向异构体的不稳定性,分离出它们的尝试没有成功,尽管以前已经认识到化合物(19)和(20)作为平衡混合物存在4e*4e。甲基(&)-麦角醛(21)和甲基(f)-异麦角醛(22)通过h.p.1.c分离。在3%MeOH-CHC1中使用Microporasil,其结构首次完全由'H n.m.r.光谱法分配,如本文后面所述,尽管Ramage等人和Rebek ef al已经合成了8a-甲酯(18),4e它们各自的n.m.r.光谱和平衡实验结果不一致。将我们制备的(17)和(18)的平衡混合物(3:1)的n.m.r.谱与Ramage教授和Rebek教授报告的谱图进行比较,可以清楚地确定后者引用的化合物(18)的n.m.r.谱图应该是正确的。$ 样品是山德士有限公司 P. A.Stadler 博士赠送的礼物。 表 1.'H N.m.r. CDC中甲基(+)-裂解醚 (21) 的数据1, (200 MHz) 6 (J in Hz) 6 照射(观察) NH 2-H 5-H 7-Heq 7-Hax 8-H 9-H CO,Me 7.95 (br) 6.95 (t, J 2)3.55 (dd, J 14, 6) 2.74 (ddd, J 14, 12, 2) 3.24 (m) 3.31 (br dd, J 11, 5) 2.72 0, J 11)3.77 (m) 6.64 (br s) 3.80 (s) 7.95 (失去 J 2) 2.74 (失去 J 2) 3.24 (失去 J 6) 2.74 (失去 J 14) 6.95 (失去 J 2) 3.55 (失去 J 14) 3.24 (失去 J 12) 6.64, 3.77, 3.55, 2.74 (峰锐化) 6.64 (峰锐化;J 11, 5 明显) 3.77 (失去 J 5) 2.74 (变化)“ 3.77 (失去 J 11) 3.31 (失去 J 11) 6.64, 3.31, 3.24 (峰尖化) 2.74 (变化)“ 3.77, 3.31, 3.24 (峰尖化) NMe 2.64 (s) ” 6 2.74 (4-H,,) 的辐照改变了 8-H 和 7-He 的信号模式,除了 4-He 的信号模式外,由于 4-Ha 的双重辐照, 和 7-Ha, (6 2.72).paper.在甲醇中加热后,发现各自的差向异构体均产生平衡混合物(3:2),差向异构体(21)为主要成分。除了从先前论文中描述的去吡咯类似物(23)获得的结果外,13 本文给出的结果表明,作为推广,麦角林和苯并氟喹啉衍生物中 8-酯基团的异构化在甲醇中相对容易,并导致各自的平衡混合物。此外,还发现所有8P-酯(17)、(19)和(21)在h.p.l.c上的R值都大于它们的&-酯对应物(18)、(20)和(22),从而为它们的鉴定提供了一种方便的方法。然后,我们分析了甲基(f)-裂酶醛(21)和甲基(f)-异裂醛(22)的n.m.r.谱图。通过对甲基(+)-裂解醚(21)的n.m.r.谱进行自脱耦实验,得出了表1中总结的以下信号分配。Bailey 和 Grey 报告了 14 通过 nmr 光谱对 NN-二甲基-麦角酰胺和 NN-二甲基-异麦角酰胺构象的详细研究。在考虑了这些结果后,目前酯(17)--(20)的分配允许我们提出甲基(&)-裂酶醚(21)的c和D环为半椅子形式,如图2所示。(22) R'= H, R2=COZMe 图2.得出上述结论的理由如下:我们观察到 2-H 和 4-H 之间的烯丙基偶联,,,因此 J. CHEM. SOC. PERKIN TRANS.I 1985 表 2.'H (+)-异裂醛酸甲酯 (22)在 CDCl 中的数据,(200 MHz) 6 (J in Hz) 6 照射(观察) NH 2-H 4-He, 4-Ha, 5-H 7-H, 7.96 (br) 6.92 0, J 2) 3.44 (dd, 2.75 (ddd, J 14, 5) J 14, 11, 2) 3.22 (m) 3.37 (m)b 7.96 (失去 J 2) 2.75 (失去 J 2) 3.22 (失去 J 5) 2.75 (失去 J 14)“ 6.92 (失去 J 2) 3.44 (失去 J14) 3.22 (损失 J 11) 6.58, 3.44, 2.75 (峰尖化) 6.58 (峰尖化) 2.75 (变化)“ 7-Ha, 8-H 9-H 2.74 (m)3.32 (m) 6.58 6.58 (峰尖化) 2.75 (变化)” 3.22 (峰尖化;J 4 表观) C0,Me NMe (br, d, J 4)3.74 (s) 2.59 (s) 6 2.75 (4-Ha3 辐照除了 4-He,由于 4-H,和 7-H 的双重辐照,改变了 8-H 和 7-He 的信号模式,以及 4-He,, (6 2.74).* 7-Hc 的信号模式, 在我们最近的论文(参考文献 13)中被描述为宽双峰 (J 12 Hz)。表明这两个氢之间有一个 cu. 90“ 的二面角,4-H 的信号,由于它与环 B 几乎共面,因此出现在比 4-Ha 低得多的场中。对 5-H 和 9-H 之间烯丙基偶联的观察表明,相对于 9,lO-位置的双键,5-H 的取向接近垂直。此外,已经表明,相对于在 6 立方米处发现的跨轴取向的亚甲基氢,相对于在 6 立方米处发现的跨轴取向的碎片,与氮孤对电子相关的结构相关碎片中的亚甲基氢被屏蔽了约 0.6-4.8 p,p.m. 因此,5-H, 6 3.24 的化学位移表明其对氮孤对电子的跨轴取向。只有当环 D 存在于 C-5、-10、-9 和 -8 或多或少在同一平面的半椅子构象中时,才能实现这种排列。因此,C-7位于该平面上方,与5-H位于同一侧,而氮及其孤对电子则位于下方。7-He和9-H之间存在长程W形耦合,表明了环D的半椅子构象,其中两个氢,7-He和9-H,在同一平面上。此外,从以下数据中还提出了 8-甲酯基团的伪赤道取向;在 7-H、和 8-H 之间有 J 5 Hz 和 J 11 Hz 的耦合,在 7-H 和 8-H 之间,在 5-H 和 8-H 之间有同烯丙基耦合,在 8-H 和 9-H 之间有 J cu.1 Hz 的小耦合。上述关于甲基(+)-麦角酸构象的结论(21)与Stoll等人6提出的麦角酸构象一致。接下来,我们对n.m.r.进行了自旋解耦分析。甲基(+)-异裂醚的谱图 (22)。如表2所示,分配了所有质子的化学位移。然而,8-H的化学位移与7-He的化学位移非常接近,并且7-H的信号与4-Ha的信号重叠,从而使得8-H、7-Ha和7-H之间的相互耦合常数无法确定。此外,5-H和8-H非常接近的化学位移使得均烯基偶联的存在不确定。另一方面,2-H、4-H和5-H的化学位移及其信号模式与化合物(21)非常相似,在2-H和4-H之间以及5-H和9-H之间观察到类似的烯丙基偶联。特别是,5-H,6 J. CHEM. SOC. PERKIN TRANS.I 1985 Taw 3.'HN.m.r. 数据 (6;J in Hz) 对于化合物 (17)-(22) 在 CDCl, (200 MHz) (17) (18)“ (19) (20) 2-H 2-H, 4.34 (br) 3.70 4.M.10 (m) 3.67 3.82-3.60 (m) 3.67 (t, J 7) 6.95' 6.92' 3-H 3.42 (m)(t, J 10) 3.45-3.30(t, J 11) (m) 3.46-3.10 (m) 4-HQ 4-HM 5-H 7-HQ 7-Ha, 8-H 9-H C0,Me NMe 2.57 (米) 1.40 3.04 (br d, J 12) 3.28 (br dd, J 11.5, 6) 2.69 (t, J 11.5) 3.68 (米) 6.55 (br s) 3.76 (秒) 2.51 (秒) (9, J 12) 2.51 (d, J 6.8)b 1.41 2.89 (br dd, J 11.7, 2) 3.45 (d, J 11.7) 2.58 (dd, J 11.7, 5) 3.18 (br t) 6.55 (d, J 3.2) 3.74 (s) 2.48 (s) (q, J 11.7) 2.62-2.43 (m) 1.43 1.42 3.05 2.89 (br d, J 12) 3.46-3.10 (m) 3.45 2.70 2.62-2.43 (m) (t, J 12)3.82-3.60 (m) 3.46-3.10 (m) (s,J 12) (4, J 12) (br d, J 12) 6.60-6.48 (米) 3.77 (秒) 3.74 (秒) 2.53 (秒) 2.50 (秒) 2.52 (d, J 5Ib 1.42 (q, J 11.5)2.90 (br dd, J 11.5, 2.5) 3.44 (4 J 12)2.57 (dd, J lZ4.7) 3.31-3.10 (米) 6.53-6.49 (米) 3.72 (秒) 3.55 (dd, J 14, 6) 2.74 (dd, J 14, 12, 2) 3.24 (米) 3.31 (br dd, J 11, 5) 2.72 (t, J 11)3.77 (m) 6.64 (brs) 3.80 (s) 2.64 (s) 3.44 (dd, J 14, 5) 2.75 (ddd, J 14, 11, 2) 3.22(m) 3.37 (m) 2.74 (m) 3.32(m) 6.58 (br d, J 4)3.74 (s) 2.59 (s) “我们从Rebek等人报告的数据中分配了各自的质子” 信号模式与预期的不同。从化合物 (19) 和 (20) 混合物的 n.m.r. 光谱中以 5:2 的比例分配。'2-H. 3.22的信号,与化合物(21)、6 3.24的信号,以及9-H和7-H之间存在长程W形耦合,只能通过假设化合物(22)的构象来解释,如图2所示。因此,8-甲酯基团在8-H和9-H之间的耦合常数为4 Hz的支持下,将采取伪轴向取向。此外,上述关于甲基(+)-异麦角酸构象的结论(22)与Stoll等人提出的异麦角酸的结论一致。根据化合物(21)和(22)的n.m.r.谱图的分配,我们比较了化合物(17)和酯(19)和(20)的混合物的谱图。尽管 .~~Rebek et ~1 分离了化合物 (18) 和 (20) 并描述了峰的化学位移和信号模式,但他们没有分配各自的峰。因此,通过比较化合物(21)和(22)的n.m.r.谱图,我们成功地分配了表3中总结的各自峰。很明显,n.m.r.谱图,特别是环D中质子的化学位移和信号模式,这是本研究中比较的化合物的共同结构部分,根据化合物的类型,如8P-酯(17),(19)和(21)和&-酯(18),(20)所示, 和 (22)。因此,我们得出结论,所有这些化合物在测量条件下都具有相同的构象,并进一步分配了取代基的方向如下。8-酯基团的取向不会对9-H的化学位移产生任何影响,但会改变其信号模式。因此,与8-H耦合的9-H信号在8P-酯的光谱中表现为宽单峰,而在8a-酯的光谱中表现为宽双峰J 34 Hz。此外,酯部分和N-CH基团中甲基质子的n.m.r.信号在8a-酯中出现在场略高于8p-酯中。总之,差向异构体的立体结构,包括酯基在C-8处的取向,现在可以从三个质子基团的n.m.r.行为中推导出来,即烯烃质子9-H,以及甲酯在C-8和N-CH基团处的甲基质子。实验性'H N.M.R.除非另有说明,否则使用 JEOL PMX-60 和 Varian XL-200 仪器测量氘氯仿溶液的光谱(四甲基硅烷作为内部参比),即用 Hitachi 215 分光光度计测量氯仿溶液的光谱,用 Hitachi M-80 机器测量质谱图。M.p.s是用Kofler型热阶段装置测定的。将反应混合物中的提取物用水洗涤并用无水硫酸钠干燥。光化学反应是通过用高压汞灯(300W)(Eikosha PIH-300)在4-10“C下照射进行的。乙醚是指乙醚。N-(1-苯甲酰I-1,2,2a,3-四氢苯并[cd)吲哚-4-yI)-N-甲基呋喃-3-甲胺-3-甲胺(2)-无水遇见h胺气体在氮气流下鼓泡成l-苯甲酰基-l,2,2a,3-四氢苯并[cd)吲哚-4-(5H)-酮(1)ti(2g)在苯(200ml)中的沸腾溶液中5 h;水在形成时被去除。将混合物进一步回流,以通过鼓泡的氮气除去过量的甲胺。向所得冰冷、搅拌的溶液中滴加三乙胺(1克),然后加入新鲜制备的呋喃-3-甲酰氯(1.13克)在无水苯(30毫升)中的溶液。回流2小时后,将混合物冰冷并用苯稀释,洗涤并干燥。减压除去溶剂,将残留物从甲烷中重结晶,得到烯酰胺(2)(2.66g,96%),熔点130-131“C;v,,,.1 640-1 620 厘米-' (2NCO);6(除其他外)6.45 (1 H, br s, 5-H) 和 3.27 (3 H, s, NMe) (发现 C, 74.8;H,5.15;N,7.45。C2,H,,N20,需要C,75.0 H,5.25;N,7.3%)。烯酰胺(2)的还原光环化-烯酰胺(2)(1.5g)和硼氢化钠(1.5g)在苯甲醇(5:1;900ml)中的混合物溶液辐照3小时。将反应混合物洗涤、干燥和蒸发,得到粘稠的油,用乙醇研磨得到晶体(1.22 g,81%)。这些被发现是三种内酰胺 (3)、(4) 和 (5) 的混合物,比例为 10:4:1 by h.p.1.c.[1 500 p.s.i.;5%MeOH-MeCN(0.4ml min-I);(3)R,45.6 分钟;(4) R, 49.6 min;(5)R,48.8 分钟)。由二氯乙酸乙酯对晶体进行重复重结晶,得到纯(3af3,5ap,6ap,l lba,l lci3)-8-苯甲酰基-5,5a,6,6a,7,8,1lb,l lc-octah ydro-5-methyFur0[3,2 -c]吲哚并[4,3-fg]喹啉Iin-4(3 aH)-酮(3)(813mg,5473,m.p.204-206“C;v,,,.1 660-1 620 厘米-' (2NCO);6(除其他外)6.46(1 H,t,J2 Hz,2-H)、5.37(1 H、t、J 2 Hz、3-H)、4.88(1 H、dd、J 11和10 Hz、1 lc-H)、4.44(1 H、br、7-H、)、3.87(1 H、dt、J 11和2 Hz、3a-H)、3.76(1 H、t、J 12 Hz、7-H2、 3.63 (1 H, br dd, J 12 和 10 Hz, 5a-H), 3.40 (1 H, m, 6a-H), 3.08 (3 H, s, NMe), 3.03 (1 H, t, J 10 Hz, llb-H), 2.68 (1 H, br d, J 12 Hz, 6-He,) 和 1.68 (1 H, q, J 12 Hz, 6-Ha,);m/z 386 (M+)(发现: C, 72.95;H,5.8;N,7.05。C,,H,,N20,~~AcOEt 需要 C, 73.2;H,6.0;N,6.75%)。从母液中获得的残留物在硅胶上色谱。用氯仿洗脱的第一组分得到(3aP,5aP,6aa,ll ba,l 1cP)- 8-苯甲酰1-5,5a,6,6a,7,8,11b,l lc-八氢-5-rn乙基呋喃并[3,2-c]-吲哚并[4,3-fg]喹啉-4(3aH)-酮(5)(81 mg,573,m.p. 250-252“C(分解)(来自二氯甲烷-thy1乙酸酯);v,,,.1 660-1 620 cm-' (2NCO);6 (除其他外) 6.38 (1 H, t, J2 Hz, (1 H, br, 7-HJ, 4.17 (1 H, dt, J 10 and 2 Hz, 3a-H), 3.73 (1 H, t, J 10 Hz, 7-H,), 3.60 (1 H, m, 6a-H), 3.28 (1 H, q, J 10 Hz, 5a-H), 3.00 (3 H, s, NMe), 2.97 (1 H, t, J 10 Hz, llb-H)和2.38-2.02(2 H,m,6 Hz);m/z 386 (M') (发现: C, 74.3;H,5.75;N,7.25。C24H22NZ03需要C,74.6;H,5.75;N,7.25%)。用氯仿洗脱的第二组分得到(3aP,5aa,6aa,ll ba,l 1cP)-8-苯甲酰1-5,5a,6,6a,7,8,11b,1lc-八氢-5-甲基呋喃并[3,2-c]-吲哚并[4,3-fg]喹啉锌-4(3aH)-酮(4)(325mg,22%),熔点2 19-221“C(来自二氯甲烷-乙酸乙酯);vmax.1 6-1 620 cm-' (2NCO);6(除其他外)6.41 (1 H, t, J 3 Hz, 2-H),5.34(1H,t,J3H~,3-H),4.59(lH,t,JlOH~,11c-H),4.38 (1 H, br, 7-H,), 3.85 (1 H, dt, J 10 and 3 Hz, 3a-H), 3.74 (1 H, t, J 11 Hz, 7-H,), 3.66 (1 H, m, 5a-H), 3.43 (1 H, m, 6a-H), 3.30(1 H, dd, J 10 and 6 Hz, llb-H), 3.10 (3 H, s, NMe), 2.38 (1 H, m, 6-He,) 和 1.55 (1 H, q, J 12 Hz, 6-Ha,);m/z 386 (M') (找到: M+, 386.1637.C2,H,,N,03 需要 M, 386.1629)。(3ap,5aP,6ap,ll ba,l lcP)-8-苯甲酰基-3a,4,5,5a,6,6a,7,8,1lb,l lc-decah ydro-5-甲基呋喃并[3,2-c]吲哚并[4,3-fg]喹啉(7).-在无水乙醚-四氢呋喃(THF)(1:2;150ml)中的c/D-反式内酰胺(3)(970mg)的冰冷溶液中加入少量氢化铝锂(970mg)。将混合物在氮气流下回流2小时。通常的检查得到N-脱苯甲酰胺(6)[v,,,. 3 400 cm-' (NH); 6(除其他外)4.85 (1 H, t, J 2.5 Hz, 3-Hz) 和 2.40 (3 H, s, NMe)],在三乙胺(500 mg)存在下,通过在苯(95 ml)和苯甲酰氯(640mg)中回流来重新纯化,得到N-苯甲酸盐(7)[688 mg, 74% 来自 (3)], m.p. 187-189 “C (decomp.)(来自苯醚);v,,,.1 640 cm-' (士官);6(除其他外)6.47 (1 H, br s, 2-H)、4.98 (1 H, br s, 3-H)、4.68 (1 H, t, J 10 Hz, llc-H)、4.34 (1 H, br, 7-H、)、3.68 (1 H, t, J 11 Hz, 7-Ha)、3.44-3.22 (2 H, m、3a- 和 6a-H)、3.14 (1 H, dd、J 13 和 7 Hz、 4-He,)、3.14 (1 H, t, J 10 Hz, llb-H)、2.60 (1 H, dd, J 13 和 4 Hz, 4-H,,)、2.46 (3 H s, NMe)、2.42 (1 H, m, 6-He,)、2.22 (1 H, td, J 10 和 2 Hz, 5a-H) 和 1.43 (1 H, q, J 10 Hz, 6-H,,) (发现 C, 77.5;H,6.45;N, 7.65.C,,H,,N,O, 需要 C, 77.4;H,6.5;N,7.5%)。将C/D-trUnS-和顺式内酰胺(3)和(4)(5:1;970mg)与氢化铝锂的混合物类似还原,得到相应的N-脱苯甲酰胺(6)和(8)的混合物,它们也如上所述再苯甲酰化,并通过硅胶上的柱层析分离,得到N-苯甲酸酯(7)(569mg,61%)和(3aP,5aa,6aa,l lba,l lcp)-8-苯甲酰基-3a,4,5,5a,6,6a,7,8,11 b, 1 lc-十氢-5-甲基氟吲呋并[3,2-c]-吲哚并[4,3-fgJquinoline (9) (83 mg, 979, m.p. 172-174“ C (decomp.)(来自苯);v,,,.1 640 cm-'(NCO);6(除其他外)6.43 (1 H, br s, 2-H)、4.94 (1 H, br s, 3-H)、4.46 (1 H, t, J 10 Hz, llc-H)、4.36 (1 H, br, 7-Ha)、3.70 (1 H, t, J 10 Hz, 7-HP)、3.48 (1 H, m, 3a-H)、3.42-3.22 (2 H, m, 6a- 和 llb-H)、2.92 (1 H, ddd、 J 11、7 和 3 Hz,6-He,)、2.79 (2 H,d,J 8 Hz,4-H,)、2.50 (347 mg,53%);v,,,.(Nujol) 2-H),5.33(1H,t,J2H~,3-H),5.10(1H,t,J10H~,ll~-H),4.52(除其他外) 6.49 (0.6 H, d, J 5 Hz, OH), 6.25 (0.4 H, S[(CD,),SO] J. CHEM. SOC. PERKIN TRANS.I 1985 11 Hz, 6-H,,) (发现:M+,372.1843。C2,H2,N202 需要 M, 372.1837)。N-苯甲酸盐的羟基化(7).-(a)向N-苯甲酸酯(7)(600mg)和吡啶(1ml)的无水THF(15ml)溶液中加入四氧化锇(410mg)在-30“C下的无水THF(3ml)溶液,将反应混合物在-30”C下保持2h,然后蒸去溶剂,得到固体,用乙醚洗涤并溶于二氯甲烷*乙醇(1:1;20毫升)。将硫化氢在0“C下剧烈鼓泡溶液1min,过滤除去黑色沉淀。滤液蒸发,残留物由甲醇-醚结晶,得到两种顺二醇(10)的混合物,比例为312 3 370 (OH)和1 640cm-' (NCO);m, OH)、5.41 (0.6 H, d, J 5 Hz, OH)、5.16 (1 H, m, 2-H)、4.73 (0.4 H, d, J 6 Hz, OH)、2.24 (3 H, s, NMe)、1.97 (1 H, m, 5a-H) 和 1.21 (1 H, br q, J 11.5 Hz, 6-Ha);m/z 406 (M')。(b)将四氧化锇(1mg)在叔丁醇(0.5ml)中的溶液加入到N-苯甲酸酯(7)(480mg),三甲胺N-氧化物二水合物(195mg),吡啶(0.1ml),水(0.8ml)和叔丁醇(10ml)的混合物中。在氮气流下回流1小时后,冷却溶液并用20%亚硫酸氢钠水溶液(50ml)处理。向浓缩反应混合物中加入水和这样形成的沉淀,收集并用水和二氯甲烷连续洗涤,得到两种顺二醇(10)的混合物,比例为3:2(435mg,83%)。该混合物在下一步中使用,无需进一步纯化。(3~)-2,3-二氢异烟嘧乙酰胺B (13).*-乙二醇(10)(100mg)和偏碘酸钠(100mg)在甲醇-水(1:1;80ml)中的混合物在室温下搅拌1 h,然后向反应混合物中加入碳酸钠(100 mg),然后再搅拌1 h。反应混合物用二氯甲烷反复萃取。将合并的提取物洗涤、干燥和蒸发,得到9a-羟基-8P-醛(11)[vmax.3 500(OH)、1 720(CHO)和1 640 em-'(NCO);6(除其他外)9.80(1 H,br s,CHO)和2.35(3 H,s,NMe)],未经进一步纯化,溶解在乙二醇(5ml)中。向所得溶液中加入氢氧化钠(40mg)和水合肼(0.5ml)。然后将混合物在氮气流下回流30分钟。将反应混合物用水稀释,并用二氯甲烷反复萃取。将合并的提取物洗涤、干燥和蒸发,得到残留物,该残留物通过p.1.c.on硅胶纯化,得到8P-甲基-9a-01(13)(30mg,4779,m.p.182-183“C(分解)。(来自苯);v,,,.(努约尔) 3 330 cm-' (NH);6 7.41 (1 H,d, J~Hz, 13-H),6.56(1 H,d, J8 12-H),7.01(1 H, t, J~Hz, Hz, 14-H),3.66(1 H,m,2-H,), 3.34(1 H, t, JlOHz,9-H),3.22- 3.10 (2 H, m, 2-Ha and 3-H), 2.99 (1 H, dd, J 12 and 4.5 Hz, 7-Heq)、2.82(1 H、t、J 10 Hz、10-H)、2.46-2.38(1 H、m、4-He、)、2.40(3 H、s、NMe)、2.28(1 H、br t、J 11 Hz、5-H)、2.18(1 H、t、J12 Hz、7-H、、2.00(1 H、m、8-H)、1.44(1 H、q、J 11 Hz、4-Ha、)和 1.06(3 H, d, J 7 Hz, CMe) (Found: M+, 258.1756.Cl6Hz2N,O requires M, 258.173 1).如上所述,用偏高碘酸钠(53mg)氧化乙二醇(10)(100mg),但未用碳酸钠处理,得到两种差向异构体醛(11)和(12)的混合物,比例约为1:1 [v,,,. 3 500 (OH)、1 720 (CHO) 和 1 640 cm-' (NCO); 6 (除其他外) 9.80 (0.5 小时, br s, P-CHO)、9.67 (0.5 H, br s, a-CHO) 和 2.35 (3 H, s, NMe)]。该混合物的Wolff-Kishner还原得到8P-甲基-9a-(3H,s,NMe),2.22(1H,brd,JllHz,5a-H)和1.44(1H,q,J*麦角林型编号用于化合物(llH20)。 J. CHEM. SOC. PERKIN TRANS.I 1985 01 (13)(25 mg, 40%) 作为与上述产品相同的唯一产品。(+)-异甲基-9a-01(13)(18mg)在氯仿(10ml)中的溶液中加入二氧化锰(40mg)。将混合物在室温下搅拌18小时,然后过滤,残留固体用氯仿彻底洗涤。将合并的氯仿层蒸发得到残留物,该残留物通过p.1.c纯化。在硅胶上提供(+)-异夫咪唑黄素B(14)(8mg,45%),m.p.271-273“C(分解。(来自甲醇)[lit.,g“ 222-224 ”C(升华)。lit.,9b 278-282 “C (decomp.)];vmax。(NuJol)3 495 cm-' (NH);6 (CDCl,-CD,OD) 7.65 (1 H, d, J8 Hz, 12-H), 7.20(1 H,d, J8 Hz, 14-H), 7.11 (1 H, t, J8 Hz, 13- (1 H, m, 4-H,,), 2.35 (3 H, s, NMe), 2.12 (1 H, br t, J 10 Hz, 5-H) 和 1.41 (1 H, q, J 12 Hz, 4-Ha,) (找到:M',406.1911。C,,H,,N,O,需要 M,406.1891)。将9a-羟基-8P-酯(15)脱水,依次加入85%的磷酸(0.01ml)和三氯化磷酰(0.2ml)的9a-羟基-8P-酯(15)(42mg)溶液中。l1 将溶液在氮气流下在 60“C 下加热 45 分钟。将反应混合物倒入冰水中,加入碳酸钠水溶液制成碱性,并用二氯甲烷萃取。将有机层洗涤、干燥并蒸发。通过p.1.c纯化残留物在硅胶上得到固体(22mg,55%),通过H.P.1.C发现它是两种差向异构体(17)和(18)的混合物,比例为3:1。[l 500 p.s.i.; 5%H),6.92(1H,d,J1.5H~,2-H),3.54(1H,t,JlOH~,9-H),3.41(1 H, dd, J 14 and 4 Hz, 4-H,,), 3.03 (1 H, t, J 10 Hz, 10-H), 2.96 (1 MeOH-CH,Cl, (0.5ml min-'): (17) R, 50min;(18)R,42.8 分钟]。H, dd, J 12 和 4 Hz, 7-H,,), 2.79 (1 H, ddd, J 14,11, 和 1.5 Hz, 从乙酸乙酯中重结晶固体得到均-4-Ha,), 2.53 (3 H, s, NMe), 2.44 (1 H, ddd, J 11, 10, and 4 Hz, 5-geneous methyl (3p)- 1-benzoyl- 1,2-dihydrolysergate (17), m.p. H),2.18(1H,t,J12Hz,7-Ha,),2.00(1H,m,8-H),和1.13(3H,165-168“C(lit.?165-168“C);v,,,.1 725 (C0,Me) 和 d, J 7 Hz, CMe)。i.r.和n.m.r.光谱和R,值为(+)-1 640cm-'(NCO)。发现 i.r. 和 n.m.r. 光谱是可叠加的 (14) 与天然异烟曲霉素 B 的光谱相同(发现:M',256.1571。C16H2,N20 需要 M,256.1574)。(b)将8P-甲基-9a-01(13)(10mg)和苯硒酸酐(7.2mg)在THF(1ml)中的溶液在氮气流下在40“C下搅拌2小时。用二氯甲烷稀释后,用碳酸钠水溶液和水先后洗涤,干燥,蒸发,得到残渣,经p.1.c纯化。在硅胶上提供(f)-异烟孢曲克拉文B(14)(5mg,50%)。(3P,Sp,9a)-1-苯甲酰基-2,3-二氢-9-羟基-6-甲基麦角啉-8-羧酸甲酯(15).-在由乙二醇(10)(200mg)制备的均相9a-羟基-8p-醛(1l)的搅拌冰冷溶液中,在甲醇-丙酮(1:4;50ml)中滴加4-三氧化铬-硫酸的水溶液(0.5ml)。将混合物在0°C下搅拌1小时。这样形成的沉淀物被过滤并用二氯甲烷洗涤。滤液依次用碳酸钠水溶液和水洗涤。除去溶剂后,将得到的固体在硅胶上柱层析纯化,得到9a-羟基-SB-甲酯(15)(75mg,38%),熔点22G228“C(来自甲醇);v,,,.1 720 (C0,Me) 和 1 630 cm-' (NCO);6 7.83 (1 H, brd, J8 Hz, 12-H), 7.6&-6.90(7 H, m,ArH),4.36(1 H, m, 2-H,), 4.04 (1 H, t, J 10 Hz, 9-H), 3.78 (3 H, s, OMe), 3.65 (1 H, t, J 10.5 Hz, 2-Ha), 3.40 (1 H, m, 3-H), 3.27 (1 H, dd, J 12 和 5 Hz, 7-H,,)、2.98(1 H、ddd、J 12、10 和 5 Hz、8-H)、2.80(1 H、t、J 10 Hz、10-H)、2.57 (1 H, t, J 12 Hz, 7-Ha,), 2.42 (3 H, s, NMe), 2.40 (2 H, m, 5-H and 4-H,,) 和 1.47 (1 H, q, J 12 Hz, 4-Ha,) (发现: C, 71.05;H,6.45;N, 6.95.C,,H,,N,O, 需要 C, 70.9;H,6.45;N,6.9%)。醛(11)和(12)的差向异构混合物的氧化-差向异构体醛(11)和(12)(约1:l)的混合物,根据上述方法通过乙二醇(10)(290mg)的偏高碘氧化制备,但未经碳酸钠处理,如上所述用三氧化铬氧化。粗品按p.1.c分离在硅胶上得到9a-羟基-8P-酯(15)(33mg,11%)和(3P,Sa,9a)-l-苯甲酰1-2,3-二氢-9-羟基-6-甲基麦角啉-8-羧酸甲酯(16)(40mg,14%),m.p.195-197“C(来自乙酸乙酯);v,,,.1710 (C0,Me) 和 1 630cm-' (NCO);6 7.90( 1 H, br d, J8 Hz, 12-H), 7.64-6.90(7 H, m,ArH),4.24(1 H,m,2-H,), 3.86(1 H, brdd, Jl1 and4Hz,9-H), 3.80(3 H, s, OMe), 3.64 (1 H, t, J 12 Hz, 2-Ha), 3.48 (1 H, dd, J 12 and 3Hz,7-HC,), 3.35(1H,m,3-H),3.17(1H,t,JlOHz, 10-H), 3.01 (1 H, m, 8-H), 2.47 (1 H, dd, J 12 and 3 Hz, 7-Ha,), 2.40 与Ramage er a1.&&和Rebek等人d4'报告的真实样品相同 从平衡混合物(17)和(18)(3:l)的n.m.r.谱图中,甲基(3P)-l-苯甲酰基-2,3-二氢异裂醚(18):6 3.74 (s, OMe), 2.89 (br d, J 12 Hz, 5-H), 2.48 (s,NMe), and 1.41 (4, J 12 Hz, 4-Ha,)]。发现这些峰与Rebek等人报道的化合物(18)的n.m.r.谱图中存在的峰一致4'每种异构体在甲醇中具有相同的平衡混合物[(17):(18)3:1]。9a-羟基-8a-酯(16)的脱水-9a-羟基-8a-酯(16)(40mg),无水吡啶(1ml),85%磷酸(0.01ml)和磷酰氯(0.2ml)的混合物以与化合物(15)脱水相同的方式进行,以相同的比例(3: 1)如所述的9a-羟基-Sp-酯(15)的脱水。将(3P)-2,3-二氢裂解醚(19)和甲基(38)-2,3-二氢异鐘醛(20)依次加入到酯(17)和(18)(3:l;20mg)在二氯甲烷(4ml)中的差向异向异构混合物的溶液中依次加入碳酸钠(10mg)和过量的四氟硼酸三乙基氧铵在室温下氮气流下。搅拌18小时后,将反应混合物用5%盐酸(20ml)处理15分钟,用饱和碳酸氢钠水溶液中和,用二氯甲烷萃取。将提取物干燥并蒸发,得到残留物,通过p.1.c纯化。在硅胶上以5:2,v的比例提供脱苯甲酰化酯(19)和(20)(8mg,55%)的固体混合物,,,.3 400 (NH) 和 1 730 cm-l (C0,Me)。i.r. 和 n.m.r.两种异构体(19)和(20)的光谱和比例与Ramage等人报告的真实样品相同。甲基(+)-麦角醛(21)和甲基(f)-异麦角醛(22).-酯(19)和(20)(5:2;5mg)和苯亚硒酸酐(3mg)在THF(1ml)中的差向异构混合物的溶液在40“Cunder nitro stream下搅拌2小时。通常的检查方式为化合物(14)提供甲基(f)-裂解醚(21)和甲基(&)-异裂解醚(22)(3mg,60%)的混合物,比例为3:2(发现M+,282.1389。C, ,H *N202需要M, 282.1368)。该混合物通过h.p.1.c分离。[SO0 p.s.i.;3%MeOH-CHCl,(0.8ml min-')I:甲基(+)-裂解物:Rt 35.2 min,甲基(&)-异裂解物:R,32.8 min。 (21)和(22)的n.m.r.谱图分别与天然甲基裂麟和甲基异裂醛的可叠加。每种异构体在甲醇中得到相同的平衡混合物[(21) :(22) 3 :21。平衡实验-两种溶液,一种是甲基(&)-裂酶醛(21)(1mg),另一种是甲基(+)-异裂麟醛(22)(1mg)在甲醇(各1ml)中,在氮气流下回流。3 小时后,发现反应混合物以相同的比例 (3:2) 异构化为这两种酯的平衡混合物,主要产物是甲基 (&)-麦角醛 (21)。即使在长时间回流后,该比率也没有改变。分离的 8P-酯 (17) 也以与上述类似的方式异构化,以得到 8P-酯 (17) 和 8a-酯 (18) 的平衡混合物,比例为 3: 1.致谢 我们感谢文部科学文化省(日本)的研究资助,感谢UMIST的R. Ramage教授赠送的真实样品的光谱, 以及筑波大学的 M. Ohmomo 教授和 Sandoz Ltd. 的 P. A. Stadler 博士,感谢他们捐赠的天然生物碱。我们也感谢德里克·巴顿爵士(I.C.S.N.)的建议和鼓励。参考文献 1 Part 23, T. Naito, Y.Tada, Y.Nishiguchi, and I. Ninomiya, J. Chem. SOC.,Perkin Trans. 1, 1985, in the press.2 初步通讯,T. Kiguchi、C. Hashimoto、T. Naito 和 I. Ninomiya,Heterocycles,1982,19,2279。J. CHEM. soc. PERKIN 译.I 1985 3 I. Ninomiya, C. Hashimoto, T. Kiguchi, and T. Naito, J. Chem. SOC., Perkin Trans.I, 1984, 291 1.4 (a) E. C. Kornfeld, E.J. Kornefeld, G. B. Kline, M. J. Mann, D. E. Morrison, R. G. Jones, and R. B. Woodward, J. Am. Chem. Soc., 1956,78,3087;(二)M.Julia、F. Le Goffic、J. Igolen 和 M.Baillarge,Tetrahedron Lett.,1969 年,1569 年;(c)R. Ramage, V. W.Armstrong, and S. Coulton, Tetrahedron, 1981, 37, 增刊1, 157;(d) W.Oppolzer、E.Francotte和K.Battig,Helu。噗噗。学报, 1981, 64, 478;(e)J. Rebek, Jr., D. F. Tai, and Y.K. Shue, J. Am. Chem. Soc., 1984, 106, 1813.5 M. Natsume 和 H. Muratake,Heterocycles,1981,16,1481;W.奥波尔泽,J.I.格雷森,H.Wegmann 和 M. Urrea,四面体,1983,39,3695。6 D. E. Nichols, J. M. Robinson, G. S. Li, J. M.Cassady, and H. G. Floss, Org. Prep. Proced.国际, 1977, 9, 277.7 P. A. Stadler, A. J. Frey, F. Troxler, 和 A. Hofmann, Helu.噗噗。学报, 1964, 47, 756.8 R. Ray 和 D. S. Matteson,Tetrahedron Lett.,1980,21,449。9 (a) S. Ohmomo, Bokin Bobai, 1982, 10, 253;(b) B. Arnoux, M.A. Merrien, C. Pascard, J. Polonsky, and P. M. Scott, J. Chem. Res. (S), 1978, 210.10D. H. R. Barton, X.Lusinchi, and P. Millet, Tetrahedron Lett., 1982, 23, 4949.11 Z. Horii, T. Watanabe, T. Kurihara, and Y.Tamura, Chem. Pharm. Bull., 1965, 13, 420.12 S. Smith 和 G. M. Timmis, J. Chem. SOC.,1936, 1440.13 T. Kiguchi, C. Hashimoto, T. Naito, and I. Ninomiya, Heterocycles, 1984,22, 1719.14 K. Bailey 和 A. A. Grey, Can. J. Chem., 1972,50, 3876.15 T. A. Crabb, R. F. Newton, and D. Jackson, Chem. Rev., 1971,71,109.16 A.斯托尔、T.彼得齐尔卡、J.鲁奇曼、A.霍夫曼和H.H.金特哈德,赫尔夫。噗噗。学报, 1954, 37, 2039.收稿日期: 1984年8月6日;纸411392

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号