首页> 外文期刊>Astronomy and astrophysics >Parametric survey of longitudinal prominence oscillation simulations
【24h】

Parametric survey of longitudinal prominence oscillation simulations

机译:Parametric survey of longitudinal prominence oscillation simulations

获取原文
获取原文并翻译 | 示例
           

摘要

Context. Longitudinal filament oscillations recently attracted increasing attention, while the restoring force and the damping mechanisms are still elusive. Aims. We intend to investigate the underlying physics for coherent longitudinal oscillations of the entire filament body, including their triggering mechanism, dominant restoring force, and damping mechanisms. Methods. With the MPI-AMRVAC code, we carried out radiative hydrodynamic numerical simulations of the longitudinal prominence oscillations. We modeled two types of perturbations of the prominence, impulsive heating at one leg of the loop and an impulsive momentum deposition, which cause the prominence to oscillate. We studied the resulting oscillations for a large parameter scan, including the chromospheric heating duration, initial velocity of the prominence, and field line geometry. Results. We found that both microflare-sized impulsive heating at one leg of the loop and a suddenly imposed velocity perturbation can propel the prominence to oscillate along the magnetic dip. Our extensive parameter survey resulted in a scaling law that shows that the period of the oscillation, which weakly depends on the length and height of the prominence and on the amplitude of the perturbations, scales with √R/gR/g, where R represents the curvature radius of the dip, and g is the gravitational acceleration of the Sun. This is consistent with the linear theory of a pendulum, which implies that the field-aligned component of gravity is the main restoring force for the prominence longitudinal oscillations, as confirmed by the force analysis. However, the gas pressure gradient becomes significant for short prominences. The oscillation damps with time in the presence of non-adiabatic processes. Radiative cooling is the dominant factor leading to damping. A scaling law for the damping timescale is derived, i.e., τ~ l~(1.63) D ~(0.66)w~(-1.21)v_0 ~(-0.30)τl1.63D0.66w-1. 21v0-0.30, showing strong dependence on the prominence length l, the geometry of the magnetic dip (characterized by the depth D and the width w), and the velocity perturbation amplitude v0. The larger the amplitude, the faster the oscillation damps. We also found that mass drainage significantly reduces the damping timescale when the perturbation is too strong.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号