首页> 外文期刊>Planta: An International Journal of Plant Biology >Identification and expression analysis of ethylene biosynthesis and signaling genes provides insights into the early and late coffee cultivars ripening pathway
【24h】

Identification and expression analysis of ethylene biosynthesis and signaling genes provides insights into the early and late coffee cultivars ripening pathway

机译:Identification and expression analysis of ethylene biosynthesis and signaling genes provides insights into the early and late coffee cultivars ripening pathway

获取原文
获取原文并翻译 | 示例
           

摘要

T he plant hormone ethylene is involved in the regulation of a multitude of plant processes, ranging from seed germination to organ senescence. Ethylene induces fruit ripening in climacteric fruits, such as coffee, being directly involved in fruit ripening time and synchronization. Coffee early cultivars usually show a more uniform ripening process although little is known about the genetic factors that promote the earliness of ripening. Thus, this work aimed to characterize the putative members of the coffee (Coffea arabica) ethylene biosynthesis and signaling pathways, as well as to analyze the expression patterns of these members during fruit ripening of early (Catucaí 785-15) and late (Acau?) coffee cultivars. Reverse TranscriptionqPCR analysis of the four biosynthesis genes (CaACS1- like; CaACO1-like; CaACO4-like e CaACO5-like) analyzed in this study showed that CaACO1-like and CaACO4- like displayed an expression pattern typically observed in climacteric fruits, being up-regulated during ripening. CaACS1-like gene expression was also up-regulated during fruit ripening of both cultivars, although in a much lesser extent when compared to the changes in CaACO1-like and CaACO4-like gene expression. CaACO5-like was only induced in raisin fruit and may be related to senescence processes. On the other hand, members of the ethylene signaling pathway (CaETR1-like, CaETR4-like, CaCTR2- like, CaEIN_2-like, CaEIN3-like, CaERF1) showed slightly higher expression levels during the initial stages of development (green and yellow-green fruits), except for the ethylene receptors CaETR1-like and CaETR4-like, which were constitutively expressed and induced in cherry fruits, respectively. The higher ethylene production levels in Catucaí 785-15 fruits, indicated by the expression analysis of CaACO1-like and CaACO4-like, suggest that it promotes an enhanced CaETR4-like degradation, leading to an increase in ethylene sensitivity and consequently to an earliness in the ripening process of this cultivar. Ethylene production in Acau? fruits may not be sufficient to inactivate the CaETR4-like levels and thus ripening changes occur in a slower pace. Thus, the expression analysis of the ethylene biosynthesis and signaling genes suggests that ethylene is directly involved in the determination of the ripening time of coffee fruits, and CaACO1-like, CaACO4-like and CaETR4-like may display essential roles during coffee fruit ripening.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号