首页> 外文期刊>journal of chemical physics >Herzbergndash;Teller Vibronic Coupling and the Duschinsky Effect
【24h】

Herzbergndash;Teller Vibronic Coupling and the Duschinsky Effect

机译:Herzbergndash;Teller Vibronic Coupling and the Duschinsky Effect

获取原文
           

摘要

The assumption that the difference in composition, in terms of symmetry coordinates, between the normal vibrational motions of the ground and first excited state (Duschinsky effect) can be neglected in the Herzbergndash;Teller theory of absorption and fluorescence vibronic intensities is critically examined. A theory of the Duschinsky effect is described which involves expansion of the potential energy of the fluorescent state in terms of theground statenormal coordinate displacements. Offhyphen;diagonal quadratic contributions arise in the expansion whenever there is a coupling between the crude Bornndash;Oppenheimer electronic wavefunctions of the fluorescent and other excited states through two or more ground state normal motions of the same symmetry. The importance of the Duschinsky effect depends on the magnitudes of the Herzbergndash;Teller vibronic matrix elements and the frequency differences between the fundamentals which effect vibronic perturbations. Inclusion of the Duschinsky effect in the Herzbergndash;Teller theory for two or more nontotally symmetric perturbing vibrations introduces a constructivendash;destructive interference problem, involving the ldquo;forbiddenrdquo; transition moments similar to the one that arises in the theory of Craig and Small on totally symmetric vibrational perturbations. The interferences can lead to a breakdown in mirror symmetry between the absorption and fluorescence spectra. The theory presented for a two vibrational model enables the relative signs of the two forbidden moments to be determined by comparison of the relative intensities of the two vibronic bands in absorption and fluorescence. In the case of naphthalene the forbidden moments associated with the 509 and 938 cmminus;1b3gmodes are shown to be antiparallel. Calculations for phenanthrene suggest that, although the Duschinsky effect should be included in any attempt at accurate vibronic intensity calculations, the constructivendash;destructive interference effects described by Craig and Small are primarily responsible for the gross deviations from mirror symmetry experimentally observed. Illustrative calculations show that the Duschinsky effect should not be neglected in the Herzbergndash;Teller theory of both fluorescence and absorption vibronic intensities.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号