...
首页> 外文期刊>Molecular biology and evolution >Obtaining maximal concatenated phylogenetic data sets from large sequence databases
【24h】

Obtaining maximal concatenated phylogenetic data sets from large sequence databases

机译:Obtaining maximal concatenated phylogenetic data sets from large sequence databases

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

To improve the accuracy of tree reconstruction, phylogeneticists are extracting increasingly large multigene data sets from sequence databases. Determining whether a database contains at least k genes sampled from at least m species is an NP-complete problem. However, the skewed distribution of sequences in these databases permits all such data sets to be obtained in reasonable computing times even for large numbers of sequences. We developed an exact algorithm for obtaining the largest multigene data sets from a collection of sequences. The algorithm was then tested on a set of 100,000 protein sequences of green plants and used to identify the largest multigene ortholog data sets having at least 3 genes and 6 species. The distribution of sizes of these data sets forms a hollow curve, and the largest are surprisingly small, ranging from 62 genes by 6 species, to 3 genes by 65 species, with more symmetrical data sets of around 15 taxa by 15 genes. These upper bounds to sequence concatenation have important implications for building the tree of life from large sequence databases.

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号