首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Terpenoids. Part II. Some ringDderivatives of 13β-kaurane
【24h】

Terpenoids. Part II. Some ringDderivatives of 13β-kaurane

机译:萜类化合物。第二部分.13β-贝壳菜烷的一些环D衍生物

获取原文
获取外文期刊封面目录资料

摘要

1972 981Terpenoids. Part 11.l Some Ring D Derivatives of 13P-KauraneBy J. MacMillan and E. R. H. Walker, School of Chemistry, The University, Bristol BS8 1TSMetal hydride reduction of 13P-kaur-I 6-en-l s-one afforded the 1 ,.l-reduction product, (1 6R)-13P-kauran-l5p-olbut none of the expected 1,2-reduction product, 13P-kaur-l6-en-15~-01; in concentrated solution, a dimer (1 9)was a minor product. Treatment of 13~-kaur-l6-en-15a-ol with aqueous acid in methanol yielded a dimeric ether(20) in addition-to 17-hydroxy- and 17-methoxy-13p-kaur-15-ene. The four isomers of 13P-kauran-15-01 wereprepared ; their m.p.s and optical rotations differed from those reported previously.A previously noted division of Crypromeria japonica into producers of ent-kaurene or 1 3P-kaurene has beenconfirmed for fifteen additional varieties.IN Part I 1 a twist envelope conformation for ring D in theent-kaur-16-en-15-01s (1) and (2) was suggested on thebasis of the J values for the allylic coupling between the15- and 17-protons* A16-carbonium ion, obtained by protonation of these 1967, 361.alcohols, was also proposed to explain the difference inthe rate of 15,16-hydride shift in the acid-catalysed re-arrangement of the two alcohols.The isomer (1) andconformation in the Part I, M. F. Barnes and J. MacMillan, J . Chew. SOC. (C)982 J.C.S. Perkin Iits 16-deuterio-analogue (3) readily yielded the (16R)-ketones (4) and (5), respectively; under the same condi-tions, the isomer (2) was stable. The present worksought to extend this study to the 13p-kaurane (phyll-ocladane) series.(1) R' = OH, R2 = H(2) R' = H, R2 = OH(3) R' = OH, R2 = 2H(4) R = H(6) R = 2HA source of 13p-kaurene (6) was required.Appletonet aL2 have examined ten varieties of Cry$tomeria ja$onicaand found that two contained 13p-kaurene. The othereight varieties contained ent-kaurene but none containedboth diterpene hydrocarbons. In an independentstudy we examined the leaves of fifteen varieties ofC. japonica and obtained similar results. G.1.c. analysesof light petroleum extracts showed that three varietiescontained 13p-kaurene but no ent-kaurene. The re-maining twelve varieties contained ent-kaurene but no13p-kaurene. The identity of the diterpene hydro-carbons was confirmed by isolation. C.juponica clearlyexists in two distinct chemotaxonomic groups which mustcontain independent cyclase systems for geranylgeranylpyrophosphate. Since ent-kaurene is an establishedbiosynthetic intermediate for the gibberellin group ofplant hormones, the acids from the ent-kaurene and 13p-kaurene varieties of C. japonica were examined forgibberellin-like biological activity. Both showed weakbut equal activity in the lettuce hypocotyl bio-assay.However in an extensive g.1.c.-mass spectral examinationof derivatives of the acids, no gibberellins could beidentified.3 Nor could the growth habit of the fifteenvarieties of C. japonica be correlated with the presenceor absence of ent-kaurene.Soxhlet extraction of C. japonica var. pendula on alarge scale gave a mixture of 13p-kaur-16-ene (6) and(6) R' = R2 = H(7) R' = H, R2 = OH(8) R1R2 = 0(9) R' = OH, Re = H(10) R = H(11) R = OH(12) R = OMe13P-kaur-15-ene (10) in yields of 0.5 and 0*2y0, respec-tively.The isomer (10) was absent in light petroleumextracts made at room temperature. Isomerisation ofR. A. .4ppleton, R. McCrindle, and K. H. Overton, Phylo-chemistry, 1968, 7 , 136.P. N. Strong, B.Sc. Thesis, University of Bristol, 1969.4 R. McCrindle, personal communication.5 S. Nagahama, Bull. Chem. SOC. Japan, 1963, 36, 763.the 16-ene (6) to the 15-ene (10) by heating the crudecold extract of C. japonica has been previously noted4and may be caused by the presence of abietic acid, whichis known to induce the analogous isomerisation ofent-kaur- 16-ene to ent-kaur- 15-ene.13p-Kaur-16-ene (6) was isomerised by iodine in boil-ing benzene to an equilibrium mixture containing 98of 13P-kaur-15-ene (10).Similar equilibration of -kaur-15-ene and -16-ene yielded a mixture contaiifi@75 of the endocyclic double bond isomer. The higherproportion of the 16ene in the 13p-kaurenes shows thegreater preference for sfi2-hybridisation at C-15 due tothe relief of steric compression with the 10-methyl group.Sensitised photo-oxygenation of 13p-kaur-16-ene (6) gavethe known6 15-en-17-01 (11) in 40 yield. Similarly13P-kaur-15-ene (10) was converted in over 85 yieldinto the known 6 p 7 16-en-15a-01 (7). The stereochemistryof the 15a-01 (7) was deduced from the reasonablepreference for reaction on the less hindered a-face andwas confirmed by n.m.r.studies (to be described in alater paper). Barnes et aL8 have suggested that the(13) 9PH R1 R2 R3 R4(14) 9aH (16) OH H Me HOH Me HEH H H Me(18) H OH H Mefailure to photo-oxygenate methyl epiallogibberate (13),in contrast to the 9aH-epimer (14), might indicatedifferent conformations of ring D in the two epimers as aresult of the differing C-9 stereochemistries. Howeverthe yield (40) of 13p-kaur-15-en-17-01 (11) from thephoto-oxygenation of 13p-kaur-16-ene (6) is onlyslightly lower than that (55) of ent-kaur-15-en-17-01from ent-kaur-16-ene and indicates little if any effect ofthe stereochemistry at C-9 on the ease of photo-oxygen-ation of these diterpenes.Reduction of 13p-kaur-16-en-15-one (8), obtained byoxidation of the 16-en-15a-01 (7), with sodium boro-hydride or lithium aluminium hydride failed to yield13p-kaur-16-en-15p-01 (9).The fully saturated alcohol,the (16R)-15p-ol (15), was obtained even under very mildconditions. This result contrasts with the smoothreduction of ent-kaur-16-en-15-one to the corresponding16-en-15p-o1.l This difference between the two seriesis probably due to the steric compression in the transi-tion state for 1,2-hydride addition between the develop-ing 15p-hydroxy-group and the lop-methyl function,L. H. Briggs, B. F. Cain, R. C. Cambie, and B. R. Davis,J . Chem. SOC., 1962, 1840.L. H. Briggs, R. C. Cambie, and P. S . Rutledge, J . Chem.SOC., 1963, 5374.8 M.F. Barnes, R. C. Durley, and J. MacMillan, J. Chem. SOC.( C ) , 1970, 13411972 983allowing 1,4-addition to predominate. 1 ,.Q-Reductionof enones with sodium borohydride is rare.g Reductionof the enone (8) with lithium aluminium hydride inconcentrated solution gave small amounts of the dimer(19), whose structure was deduced from the mass (M+574), i.r. (vDo 1730 cm-l, five-membered ring ketone),and n.m.r. spectra. The last showed five methylsinglets and a one-proton multiplet (T 6.45) which wasassigned to the 16'-proton since the signal collapsed onirradiation at T 8-43, the expected chemical shift for thel7'-protons. This low chemical shift for the 16'-protonmay be caused by deshielding from both carbonylgroups.Fragmentation in the mass spectrum is also inaccord with structure (19). McLaff erty rearrangementof the parent ion see arrows in (19) gives the base peak atm/e 288. The formation of the dimer (19) can berationalised in terms of hydride attack at C-17, followedby a Michael-type addition of the resulting anion to theenone (8).UThe failure to prepare 13p-kaur-16-en-15p-01 (9) pre-cluded a comparison of the rates of acid-catalysed 15,16-hydride shift in the two 15-epimeric allylic alcohols.The available 15a-01 (7) was much less stable to acidthan its counterpart in the ent-kaurane series.l Howeverthere was no evidence for 15J6-hydride shift since neither(16R)- nor (16S)-13p-kauran-15-one (21) and (22) wasdetected. The products depended upon the reactionconditions.At 0" in methanol containing concentratedhydrochloric acid, the major product was a non-polardimer which was decomposed by chromatography ormolecular distillation to a mixture of starting material(7) and 13p-kaur-15-en-17-01 (11). From this evidenceand the spectroscopic properties of a sample containing20 of the alcohols (7) and (11) as the only impurities,the structure (20) was assigned to the dimer. The n.m.r.spectrum contained a vinylic proton signal at T 4.31,showing allylic coupling to methyleneoxy-protons a t T5.94 and the presence of a 15,16-double bond was indi-cated by the shielded 10-methyl singlet at z 9~29.l~ At60°, the major product of the reaction of the 15~-01 (7)and methanolic hydrochloric acid was 17-methoxy-13p-kaur-15-ene (12) whose structure was assigned onH.0. House, ' Modern Synthetic Methods,' Benjamin, Newl o Y. Kitahara and A. Yoshikoshi, Bull. Chem. SOC. Japan,York, 1965, p. 40.1964, 37, 890.the basis of spectroscopic data, listed in the Experi-mental section. All three products ( l l ) , (12), and (20)are clearly derived by reactions of the intermediateallylic cation, with water, methanol, and the 16-en-15~01(7), respectively.The four isomers of 13p-kauran-15-01 were prepared inthe following way for n.m.r. studies (to be reported in asubsequent paper). The (16R)- and (16S)-kauran-l6a-01s (l6) and (18), respectively were obtained as aseparable mixture by hydrogenation of the 16-en-15~01(7), the 16R-isomer predominating as expected forpreferential a-hydrogenation.The isomers were charac-terised by their separate oxidation to the known7J1J2(16R)- and (lGS)-13p-kauran-15-ones (21) and (22),respectively. Thus prepared, these ketones were shownto contain less than 1 of each other by g.1.c. The(16R)- and (16S)-13p-kauran-lS~-ols ( E ) and (17),respectively were prepared from 13 p-kaur-16-en-15a-01(7) by the following route. Oxidation gave the 16-en-one (8), which underwent hydrogenation from thea-f ace exclusively to provide the ( 16R) -1 one (2 1).Epimerisation of the (16R)-ketone (21) with aqueousalkali gave an equilibrium mixture of the (16R)- and(16s)-ketones (21) and (22), respectively containing60 of the 16S-epimer (22).This xture could not beseparated by crystallisation or aasorption chromato-graphy and was directly reduced with lithium aluminiumhydride to a mixture of (16R)- and (lGS)-13P-kauran-lSp-01s (15) and (17), respectively, which were readilyseparated by preparative t.1.c. and characterised by theirseparate oxidation to the (16R)- and (16s)-ketones (21)and (22).The four epimeric alcohols (15)-(18) have been de-scribed by Turner et uZ.l2 and three of them (16)-(18)by Briggs et UZ.' The m.p. and optical rotation valuesobtained in the present work differ from the mil quotedby the previous workers (see Table). Our al~kd-~ls wereshown to be greater than 99 pure by g.1.c. and theassigned stereochemistries were confirmed by n.m.r.studies (to be reported).Reported m.p.s and optical rotations (chloroformsolutions) for the isomers of 13P-kauran-15-01sPresent(16) M.p.("C) 104-105Isomer workalD (") -9a D + 11@-ID +21(16) M.p. 105--109(17) M.p. 103-104(18) M.p. Oila DTurner et aLf2104-106 + 13- 6.6Briggs et aZ.7114-6-1 16.3 Oil94-95 157.6-168-3- 36 - 1281-82 11 1-1 15.6EXPERIMENTALM.p.s were determined on a Kofler hot-stage apparatusSilica gel M.F.C. (Hopkin and Williams)l1 R. Henderson and R. Hodges, Tetrahedron, 1960, 11, 226.12 R. B. Turner, K. H. Ganshirt, P. E. Shaw, and J. D. Tauber,and are corrected.J . Amer. Chem. SOC., 1966, 88, 1776J.C.S. Perkin Iand Mallinkrodt SilicAR T.L.C.-7G were used for columnand thin-layer chromatography respectively. 1.r.spectrawere obtained on a Perkin-Elmer 257 spectrophotometer forNujol mulls except where stated otherwise. Optical rota-tions were recorded on a Perkin-Elmer 141 polarimeter formethanolic solutions unless otherwise stated. N.m.r.spectra were obtained with a Varian HA100 spectrometerfor deuteriochloroform solutions with tetramethylsilane asinternal standard. Mass spectrometry was carried out withan A.E.I. MS9 spectrometer and the data were processedby an on-line Linc 8 ~0mputer.l~ G.1.c. was carried out on aPye 104 dual column gas chromatograph fitted with flameionisation detectors. Silanised glass columns (5 f t x inint. diam.) were packed with 2 QF-1 or 2 SE-33 ondemineralised and silanised Gaschrom A.Retentionindices were determined by use of n-alkane standards.Light petroleum boiled at 60-80".Extraction and Identijication of Diterpene Hydrocarbons.-The foliage, together with light terminal shoots of varietiesof Gryptorneria japonica, was dried at 25' for 3 weeks andextracted with refluxing light petroleum. After evapora-tion in vacuo, the residue was taken up in light petroleumand subjected to column chromatography over grade 1neutral alumina. The diterpene hydrocarbons were identi-fied by comparison with authentic samples of ent-kaureneand 13P-kaurene, by g.l.c., m.p., and optical rotation. Thefollowing varieties gave ent-kaurene : Elegans ; Compacta ;Viminalis; Hong Kong No. 31 (101-88) ; Jirdai-Sugi;Hong Kong No. 23 (101-88) ; Selaginiodes 365-04 Rovelli;Yenko-Sugi 252-08 ; Kusari Sugi 252-08 Yokohama No.15; No.29 25-93 Japan China; Vitellina 666-04 Rovelli No.12; and 101-88 Hong Kong No. 27. The following varietiesgave 13p-kaurene: Hong Kong No. 13 (101-88); Pendula528-13 Veitch 4007 No. 16; and Lobbii No. 11.Isolation of 13P-Kaurene .-C. japonica pendula cuttings(2.35 kg) were dried for 3 weeks a t 26' in air. The leaves(1-04 kg) were then removed, and Soxhlet-extracted withlight petroleum (15 1) for 7 days. Evaporation gave a darkgreen oil, which was dried (P,O,) to constant weight (76.1 g)and chromatographed on grade 1 neutral alumina (700 g).Elution with light petroleum gave a mixture (7-3 g) of13B-kaur-16-ene (6) and 13P-kaur-15-ene (10) , which wasseparated by preparative t.1.c. on silica gel impregnated withsilver nitrate (10) to give 13P-kaur-16-ene (6) (5.1 g)as plates, m.p.97-98" (from methanol); aID2a +15.6";vmax. 3070, 1658, and 873 cm-l; 7 9.21, 9-17, and 9.10 (each3H, s) and 5-03br (2H, s); and 13P-kaur-15-ene (10) (2.1 g )as needles, m.p. 113-113-5" (from ethanol-light petroleum) ;za +24' (c 0.2); vmX. 3055, 1638, and 828 cm-1; T 9.29,9.22, and 9.18 (each 3H, s), 8.37 (3H, d, J15,17 2 Hz), and4.75br (lH, s).13P-Kaur-15-erze (10).-13P-Kaur-l6-ene (6) (15 mg) andiodine (20 mg) in benzene (15 ml) were heated under refluxfor 9 h. The cooled mixture was washed with sodiumthiosulphate solution (2 x 10 ml) and (2 x 10 ml),dried, and evaporated to give 13P-kaur-l,.--_ ,e (10) (15 mg),containing only 2 13P-kaur-16-ene (6) (by g.l.c.), whichcrystallised from ethanol-light petroleum as needles, m.p.113-1 13.5', physical data identical with those of theproduct (1 0) already described.13P-Kaur-15-erz-17-oZ (11).-13P-Kaur-16-ene (6) (20mg) and haematoporphorin ( 5 mg) were dissolved in pyridine(5 ml) in a vertical glass tube (int.diam. 2-0 cm). Thesolution was irradiated for 96 h in a stream of dry oxygenby four fluorescent tubes (Phillips TLQW/33) mounted 2-3cm away. The solution was evaporated below 40" and theresultant crude hydroperoxide was reduced overnight inethanol (10 ml) containing acetic acid (2 drops) and sodiumiodide (500 mg) . The dark residue obtained by evaporationwas recovered in ether and washed with sodium thiosul-phate.Preparative t.1.c. on silica gel gave 13P-kaur-15-en-17-01 (11) (8 mg) as needles, m.p. 115-119" (from lightpetroleum); aIDaz +7" (c 0.46); vmax. 3590, 3300, and 839cm-l; T 9.28, 9.21, and 9.18 (each 3H, s ) , 5.90br (2H, s),and 4-45br (lH, s).13p-Kaur-16-en-15cc-oZ (7) .-13p-Kaur-l5-ene (10) (250mg) and haematoporphyrin (20 mg) in pyridine (20 ml)were oxygenated and irradiated as just described for 72 h.Work-up in the usual way gave an oil (290 mg), which waschromatographed on silica gel (30 g). Elution with lightpetroleum gave a mixture of 13P-kaur-16-ene and 13p-kaur-15-ene (80 mg) ; elution with 10 acetone-benzenegave 13P-kaur-16-en-15a-01 (7) (150 mg) as needles, m.p.112-113" (from methanol); +40" (c 0.24); vmL 3600,3470, 3080, 1660, 900, and 839 cm-l; t 9.21, 9.16, and 9.09(each 3H, s), 5.65br (lH, s), 5.06 (lH, s ) , and 4-90 (ZH, s ) .13@-Kaur-16-en-15-one (8) .-13P-Kaur-16-en-l5~-ol (7)(125 mg) in pyridine ( 5 ml) was added to a stirred suspen-sion of chromium trioxide (200 mg) in pyridine (5 ml) at 0".After 3.5 h at room temperature, the mixture u-as poured intoether (20 ml), washed with brine and water, dried, andevaporated to give 13P-kaur- 16-en- 1 one (1 2 1 mg) , whichcrystallised from acetone as needles, m.p.112-1 14" ;+71.3"; 0.r.d. 0, +I2,, +445o, +I2,,, -6260;Atzr5 - 1-97, AcZ18 +3.62, +3.16; A,, 235 nm (E6740); v,, 1725, 1645, and 928 cm-l; 7 9.25, 9.19, and9.17 (each 3H, s), and 4-98 and 4.20 (each lH, s).Reduction of 13P-Kaur-16-en-15-one ( 8 ) .-(a) Lithiumaluminium hydride.13P-Kaur- 16-en- 15-one (8) (25 mg) wasadded to a suspension of lithium aluminium hydride insodium-dried ether (25 ml). The mixture was boiled for9 h. Water (10 ml) was added and the solution stirred for afurther 5 min. The solution was extracted with brine andwater, dried, and evaporated to give an oil (24.2 mg).Preparative t.1.c. on three silica plates (0-3 mm x 20 x 20cm) benzene-petroleum (3 : 2) as eluant gave (16R)-13P-kauran-15P-01 (15) (18 mg) as needles, m.p. 104-105" (fromlight petroleum), identical with the product formed bylithium aluminium hydride reduction of (16R)-kauran- 15-one; and the dimer (19) (5 mg), m.p. 286-288"; vmx.1730, 1100, and 950 cm-1; T 9.22 and 9-18 (each 6H, s),9.08 and 9-05 (each 3H, s), and 6-45 (lH, m).Lithiumaluminium hydride reduction of 13P-kaur- 16-en- 15-one (8)in dilute ethereal solution (0.1 mg per ml) produced (16R)-13P-kauran-15P-01 (15) in quantitative yield.Sodium borohydride reductionof 13P-kaur-16-en-15-one gave (16R)-13p-lrauran-15P-ol asthe only isolable product.Acid Treatment of 13P-Kaur-16-en-15a-01 (7).-(a) A t 0'.13p-Kaur-16-en- 150(-01(7) (25 mg) was dissolved in methanol( 5 ml) and ether (2.5 ml) at 0", and hydrochloric acid (1 ml)was added. Theorganic solvents were removed at room temperature and theresidue extracted with ether (3 x 2 ml); the extract waswashed, dried, and evaporated to give an oil (25 mg), shownby t.1.c. to be a ca.1 : 1 mixture of starting material and acompound of high RF value. Preparative t.1.c. was carried13 R. Binks, R. L. Cleaver, J. S. Littler, and J. MacMillan,Chem. in Brit., 1971, 7, 8.c.d. A~410 0, A E ~ , ~ -0.95, A ~ 3 5 4 -1.09, A0300 0, 0,(b) Sodium borohydride.The solution was stirred for 4.5 h at 0"1972 985out on two silica gel plates (0.3 mm x 20 x 20 cm), withbenzene-light petroleum (3 : 2). Elution of the band ofhigh RF value with benzene gave a mixture of three com-pounds, the original compound of high RF value and twopolar materials identified as 13p-kaur-16-en-15a-01 (7) and13P-kaur- 15-en-17-01 (1 1) by comparison with authenticsamples. The following spectroscopic data were obtainedfor an 80 pure sample of the compound of high 11F valuewhich was assigned structure (20) the 20 impurity was amixture of the alcohols (7) and ( l l ) : v,,, 3590, 3350,1035, 900, and 840 cm-l; T 9.29, 9.22, and 9.18 (each 6H, s),5.94br (4H, s ) , and 4-31br (2H, s ) .When the foregoing reaction was carried outa t 60°, although dimer (20) was formed, the major product,partially purified by t.1.c.on silica gel plates, was identifiedas 17-methoxy-13p-kaur-15-ene (12) , vmX. 1100 and 840cm-1; T 9.28, 9.22, 9.18, and 6-74br (each 3H, s), and 4-44brHydrogenation of 13P-Kaur- 16-en-15a-02 (7) .-13p-Kaur-16-en-15~-01 (20 mg) in ethanol (10 ml) was hydrogenatedover 2 palladium-barium carbonate (20 mg) a t roomtemperature and pressure for 3 h. After removal of thecatalyst by filtration through sodium sulphate, evaporationgave a white crystalline solid (20 mg).Preparative t.1.c.on three silica plates (0.4 mm x 20 X 20 cm) with 5acetone-light petroleum yielded (16R)-13P-kauran-15a-ol(16) (16.5 mg), RF 0-4, m.p. 105-109" (from light petroleum)(Found: M+, 290.260. Calc. for C20H340: M , 290.261); ~ l ~ ~ ~ +11"; vmx 3580 and 3480 cm-l; T 9.22, 9-18, and9.10 (each 3H, s ) , 8-96 (3H, d, J16.17 6.5 Hz), 6.27 (lH, d,J15,16 4 Hz); and (16S)-13P-kauran-15a-ol (18) (3 mg),RF 0-5, a clear oil (Found: M+, 290.260. Calc. forC,,H,,O:M , 290.261) ; vmx. (film) 3600 and 3450 cm-l, T 9.22, 9.18,and 9-10 (each 3H, s), 9-10 (3H, d, J16.17 7-5 Hz), and 5-84(2 1) .-13P-Kaur-l6-en-15-one(8) (27 mg) in ethanol (10 ml) was hydrogenated over 5palladium-charcoal (30 mg) for 5.5 h.After removal of thecatalyst by filtration, evaporation yielded (16R)-13p-kauran-15-one (21) (25 mg) as plates, m.p. 103-104"(from methanol) ; - 64"; 0.r.d. $I,,, - 730,(b) A t 60".(1H, s ) .(lH* d* J l 5 . 1 6 Hz).(1 6R)- 13P-Kaurun- 15-one-7110, j62,g +6390, +2210, +Izo6 +4180; cad.A~350 0, As311 -2.82, A ~ 2 5 0 0, A~230 0, A E ~ O ~ -0.67; Am=. 300nm (c 81); vmx. 1730 cm-l; T 9-21 (3H, s), 9.18 (6H, s), and8.97 (3H, d, J16,I7 7.0 Hz).( 1622) - 13P-Kauran-l5~-ol(15) .-( 16R)-13P-Kauran-l5-one(10 mg) , in sodium-dried ether (2 ml), was added to a stirredsuspension of lithium aluminium hydride (10 mg) in sodium-dried ether (2 ml) . After 3 h a t room temperature, work-upin the usual way gave (1611)-13P-kauran-15~-01 (9 mg)as needles, m.p.104105" (from light petroleum) (Found:M+, 290.260. Calc. for C20H340: M , 290-261); aD22- 9"; v,,,. 3610 and 3480 cm-l; T 9.21 and 9.18 (each 3H, s) ,9.06 (3H, d, J z O , ? < 1 Hz), 9.12 (3H, d, J16,17 7.2 Hz), andEpipnerisation of (16R)-13P-Kauran-15-one (21) .-(16R)-13P-Kauran-15-one (21) (50 mg) was refluxed in 1 sodiumhydroxide in methanol (10 ml). The reaction was moni-tored by g.1.c. After 3 h under reflux the mixture was(lHJ dd, J15.16 l1, J15,OH Hz).cooled and evaporated and the residue was partitionedbetween water and ether. Work-up in the usual wayyielded a mixture (4: 6) of epimeric (16R)- and (16S)-13p-kauran- 15-ones (20 mg) .Further treatment with base did not alter the ratio of1622- to 16s-epimers.(16S)-13~-Kauran-15~-02 (17).-A mixture of (16S)-13P-kauran-15-one (22) (62) and (1622)-13P-kauran-l5-one (21)(38) (50 mg) in sodium-dried ether (10 mg) was added toa stirred suspension of lithium aluminium hydride (50 mg)in sodium-dried ether (30 ml) a t room temperature. After3 h, water was added and the mixture was stirred for afurther 5 min. Work-up in the usual way gave an oil (51mg).Preparative t.1.c. on three silica plates (0.4 mm x20 x 20 cm) developed with benzene-light petroleum (3 : 2)yielded (1622)-13P-kauran-15P-ol (15) (19 mg), needles, m.p.104-105" (from methanol) and the (16S)-13P-01 (17) (28mg), needles, m.p. 103-104" (from methanol) (Found :M+, 290.258.Calc. for C2,H,,0: M , 290-261); aID22+21"; vmX. 3580 and 3440 cm-l; T 9.23, 9.19, and 9.03(each 3H, s ) , 8.98 (3H, d, J16.17 7.0 Hz), and 6.76 (lH, d,Oxidation of (1 6R)-13P-Kauran- l5P-01 (15) .-( 16R)-13p-Kauran-l5P-o1(15) (15 mg) in dry pyridine (5 ml) was addedto a stirred suspension of chromium trioxide (20 mg) in drypyridine (5 ml) a t 0". The mixture was allowed to warm toroom temperature and stirred for 3 h. Recovery of theproduct in ether in the usual way gave (1612)-13P-kauran-15-one (21) (14 mg), crystallised from acetone as plates, m.p.203-104". G.1.c. showed the complete absence of (16s)-13P-kauran-15-one (22).( 16S)-13~-Kauran-l5-one (22) .-( 16s) - 13P-Kauran- 15p-01(17) (25 mg) in dry pyridine (5 ml) was oxidised withchromium trioxide (35 mg) in dry pyridine (5 ml) a t 0" asin the previous experiment. Recovery of the product inether gave (16!5)-13p-kauran-15-one (22) (25 mg) as plates,m.p. 128.5-129.5" (from acetone) ; aD22 - 64" (c 0.42) ;J15.16 5'5 Hz)'o.r*d* #'I400 - $I330 -6850J $I289 $- 2860, $1228,-4850, 4Iaos 0; c.d. 0, A~311 -2.05, 0,-2.43; A,, 303 nm (E 66) ; v, 1725 cm-l; T 9.22, 9.17,and 9.15 (each 3H, s), and 8.94 (3H, d, J16.17 7.5 Hz).Oxidation of (1 6R) -13P-Kauran- 15a-ol ( 16) .-( 1611) -1 3p-Kauran-l5a-01 (16) (15 mg) in dry pyridine (5 ml) wasoxidised by chromium trioxide (20 mg) in dry pyridine(5 ml) a t 0" as before. The usual work-up gave (1622)-13p-kauran-15-one (21) (14 mg), m.p. 103-104"1 identical withthat formed by hydrogenation of 13P-kaur- 16-en- 15-one (8).Oxidation of (1 6s) - 13P-Kauran- 15~-oZ ( 18) .-( 16S)-13p-Kauran-l5a-01 (18) (7 mg) was similarly oxidised to give(16S)-13p-kauran-l5-one (22) (5-5 mg) , identical with thatobtained by oxidation of (16S)-13P-kauran-15P-o1 (17).We thank the Worshipful Company of Salters for a Re-search Scholarship (to E. R. H. W.). We also thank theCurator, Royal Botanic Gardens, Kew, for his co-operationin supplying the terminal shoots of fifteen varieties ofC. japonica and Dr. P. M. Scopes, Westfield College, forthe 0.r.d. and c.d. data.1/2265 Received, 29th November, 1971
机译:1972 981萜类化合物。第 11 部分 l 13P-kaurane 的一些环 D 衍生物作者:J. MacMillan 和 E. R. H. Walker,布里斯托尔大学化学学院 BS8 1TS氢化物还原 13P-kaur-I 6-en-l s-one 得到 1,.l-还原产物,(1 6R)-13P-贝壳兰-l5p-醇,但没有预期的 1,2-还原产物,13P-kaur-l6-en-15~-01;在浓缩溶液中,二聚体(1 9)是次要产物。用甲醇水溶液处理13~-kaur-l6-en-15a-ol,除17-羟基和17-甲氧基-13p-kaur-15-ene外,还得到二聚体醚(20)。制备了13P-贝壳菜环-15-01的4种异构体;它们的 MPS 和旋光度与之前报道的有所不同。先前提到的 Crypromeria japonica 分为 ent-kaurene 或 1 3P-kaurene 的生产商,已被确认用于另外 15 个品种。在第 I 部分 1 中,根据 15 和 17 质子* A16-碳离子之间的烯丙基偶联的 J 值,提出了环 D 的扭曲包络构象,通过质子化获得 1967 年,361.醇,还提出了解释两种醇在酸催化重排中 15,16-氢化物位移速率的差异。第一部分中的异构体 (1) 和构象,MF Barnes 和 J. MacMillan, J .嚼。(C)982 J.C.S. Perkin Iits 16-氘代类似物 (3) 分别容易产生 (16R)-酮 (4) 和 (5);在相同的条件下,异构体(2)是稳定的。本工作试图将这项研究扩展到13p-贝壳菜烷(phyll-ocladane)系列。(1) R' = OH, R2 = H(2) R' = H, R2 = OH(3) R' = OH, R2 = 2H(4) R = H(6) R = 2HA 需要 13p-贝壳杉烯 (6) 的来源。Appletonet aL2 检查了 10 个品种的 Cry$tomeria ja$onica,发现其中 2 个含有 13p-贝壳杉烯。其他8个品种均含有ent-贝壳杉烯,但没有一个品种同时含有二萜烃。在一项独立研究中,我们检查了 15 个品种的叶子。粳稻并得到了类似的结果。G.1.c.对轻质石油提取物的分析表明,3个品种含有13p-贝壳杉烯,但不含ent-贝壳杉烯。重新定位的12个品种含有ent-kaurene,但no13p-kaurene。通过分离证实了二萜烃的身份。C.juponica明显存在于两个不同的化学分类组中,它们必须包含独立的香叶基香叶基焦磷酸环化酶系统。由于ent-kaurene是植物激素赤霉素组的生物合成中间体,因此研究了来自ent-kaurene和13p-kaurene品种的酸,以检测赤霉素样生物活性。两者在生菜下胚轴生物测定中均显示出微弱但相同的活性。然而,在对酸的衍生物进行广泛的g.1.c.质谱检查中,没有发现赤霉素.3 15个品种的生长习性也不能与ent-kaurene的存在与否相关。C的索氏提取法粳稻变种 pendula 在大尺度上给出了 13P-kaur-16-ene (6) 和 (6) R' = R2 = H(7) R' = H, R2 = OH(8) R1R2 = 0(9) R' = OH, Re = H(10) R = H(11) R = OH(12) R = OMe13P-kaur-15-ene (10) 的混合物,产率分别为 0.5 和 0*2y0。异构体(10)在室温下制备的轻质石油提取物中不存在。R的异构化。一个。。4ppleton, R. McCrindle, and K. H. Overton, Phylo-chemistry, 1968, 7 , 136.P. N. Strong, B.Sc. Thesis, University of Bristol, 1969.4 R. McCrindle, personal communication.5 S. Nagahama, Bull.Chem. SOC. Japan, 1963, 36, 763.16-ene(6)到15-ene(10)通过加热C. japonica的粗冷提取物,先前已经注意到4,并且可能是由枞酸的存在引起的,已知它诱导了ent-kaur-16-ene到ent-kaur-15-ene的类似异构化.13p-Kaur-16-ene(6)在沸腾中通过碘异构化成含有98%的13P-kaur-15-ene的平衡混合物(10)。-kaur-15-ene和-16-ene的类似平衡产生了contaiifi@75%的内环双键异构体的混合物。13p-贝壳杉烯中16烯的比例越高,表明由于10-甲基的空间压缩减轻,在C-15位点对sfi2-杂化有更大的偏好。13p-kaur-16-ene(6)的敏化光氧化得到已知的6 15-烯-17-01(11),收率为40%。类似地,13P-kaur-15-ene(10)以超过85%的收率转化为已知的6 p 7 16-en-15a-01(7)。15a-01 (7) 的立体化学是从受阻较少的 a 面上反应的合理偏好中推导出来的,并得到了 n.m.r.研究的证实(将在后面的论文中描述)。Barnes 等人认为,与 9aH-差向异构体 (14) 相比,(13) 9PH R1 R2 R3 R4(14) 9aH (16) OH H Me HOH Me HEH H Me(18) H OH H Me,与 9aH-差向异构体 (14) 相比,光氧化甲基表单异构体 (13) 失败可能表明由于不同的 C-9 立体化学性质,两种差向异构体中环 D 的构象不同。然而,13p-kaur-15-en-17-01 (11) 的光氧化产率 (40%) 仅略低于 ent-kaur-16-ene 的 ent-kaur-15-en-17-01 的产率 (55%),并且表明 C-9 的立体化学对这些二萜的光氧化难易程度几乎没有影响。还原13p-kaur-16-en-15-one(8),通过氧化得到的16-en-15a-01(7),与硼氢化钠或锂铝氢化物未能得到13p-kaur-16-en-15p-01(9)。完全饱和醇,(16R)-15p-醇(15),即使在非常温和的条件下也能得到。这一结果与ent-kaur-16-en-15-one平滑还原为相应的16-en-15p-o1形成鲜明对比。化学 SOC., 1962, 1840.L. H. Briggs, R. C.Cambie 和 P. S .拉特利奇,J .Chem.SOC., 1963, 5374.8 M.F. Barnes, R. C. Durley, and J. MacMillan, J. Chem. SOC.( C ) , 1970, 13411972 983允许1,4-加成占主导地位。1 ,.用硼氢化钠还原烯酮的Q-还原很少见.g 用氢化铝锂浓缩溶液还原烯酮 (8) 得到少量的二聚体 (19),其结构由质量 (M+574)、i.r.(vDo 1730 cm-l,五元环酮)和 n.m.r. 光谱推断。最后一个显示了五个甲基单子和一个单质子倍数(T 6.45),由于信号在T 8-43处坍缩,因此被分配给16'-质子,这是t7'-质子的预期化学位移。16'-质子的这种低化学位移可能是由两个羰基的脱屏蔽引起的。质谱中的碎片化也与结构不符 (19)。母离子的McLaff erty重排[见(19)中的箭头]给出了基峰atm/e 288。二聚体 (19) 的形成可以合理化为 C-17 位点的氢化物攻击,然后将所得阴离子的 Michael 型添加到茶烯酮中 (8)。由于未能制备 13p-kaur-16-en-15p-01 (9),无法比较两种 15-差向异构烯丙醇中酸催化的 15,16-氢化物位移速率。可用的 15a-01 (7) 对酸的稳定性远不如 ent-kaurane 系列中的对应物。l 然而,由于(16R)-和(16S)-13p-贝壳兰-15-酮[(21)和(22)]均未检测到15J6-氢化物位移的证据。产物取决于反应条件。在含浓盐酸的甲醇中,在0“处,主要产物是非极性二聚体,通过色谱法或分子蒸馏分解为起始原料(7)和13p-kaur-15-en-17-01的混合物(11)。根据这一证据和含有20%的醇(7)和(11)作为唯一杂质的样品的光谱性质,将结构(20)分配给二聚体。n.m.r.谱图在T 4.31处含有乙烯基质子信号,在t T5.94处与亚甲基氧基质子偶联,在z 9~29.l~ At60°处,屏蔽的10-甲基单线态表明存在15,16双键,15~-01(7)和甲醇盐酸反应的主要产物是17-甲氧基-13p-贝壳杉-15-烯(12),其结构被指定为H.0。House,“现代合成方法”,Benjamin,Newl o Y. Kitahara和A. Yoshikoshi,Bull。Chem. SOC. Japan,York, 1965, p. 40.1964, 37, 890.光谱数据的基础,列在“经验”部分。所有三种产物(l l)、(12)和(20)分别由中间烯丙阳离子与水、甲醇和16-烯-15~01(7)反应而得。13p-贝壳菜聚糖-15-01的四种异构体按以下方式制备,用于n.m.r.研究(将在后续论文中报告)。将(16R)-和(16S)-贝壳兰-l6a-01s[分别为(l6)和(18)]作为可分离混合物,由16-烯-15~01(7)加氢得到,16R-异构体在a-氢化反应中占主导地位。异构体通过单独氧化为已知的7J1J2(16R)-和(lGS)-13p-贝壳兰-15-酮[分别为(21)和(22)]进行特征化。这样制备,这些酮在g.1.c中显示彼此含有不到1%的物质。由13 p-kaur-16-en-15a-01(7)分别采用以下路线制备了(16R)-和(16S)-13p-kauran-lS~-ols [(E)和(17)]。氧化得到16-烯-&一(8),它从α-f ace专门进行氢化,以提供(16R)-1和一(2 1)。(16R)-酮(21)与水碱的差向异构化得到(16R)-和(16s)-酮[分别为(21)和(22)]的平衡混合物,其中含有60%的16S-差向异构体(22)。该xture不能通过结晶或吸收色谱法分离,而是用氢化铝锂直接还原为(16R)-和(lGS)-13P-贝壳兰-lSp-01s[分别为(15)和(17)]的混合物,它们很容易通过制备t.1.c分离。其特征在于它们分别氧化为(16R)-和(16s)-酮(21)和(22)。Turner et uZ.l2 描述了四种差向异构醇 (15)-(18),其中三种 (16)-(18) 由 Briggs et UZ 描述。国会议员并且本工作中获得的旋光度值与前人引用的密耳不同(见表)。我们的 al~kd-~ls 被 g.1.c 证明纯度大于 99%。指定的立体化学已通过 N.M.R.研究(待报告)证实。13P-贝壳烷-15-01s异构体的载玻色度和旋光度(氯仿溶液)存在(16) M.p.(“C) 104-105异构体功[alD (”) -9[a] D + 11[@-ID +21(16) M.p. 105--109(17) M.p. 103-104(18) M.p. Oil[a] DTurner et aLf2104-106 + 13- 6.6Briggs et aZ.7114-6-1 16.3 Oil94-95 157.6-168-3- 36 - 1281-82 11 1-1 15.6EXPERIMENTALM.p.s 是在 Kofler 热阶段装置上测定的硅胶 M.F.C. (Hopkin 和 Williams)l1 R. Henderson 和 R. Hodges, Tetrahedron, 1960, 11, 226.12 R. B. Turner, K. H. Ganshirt, P. E. Shaw, and J. D. Tauber,并得到纠正。J .Amer. Chem. SOC., 1966, 88, 1776J.C.S. Perkin I和Mallinkrodt SilicAR T.L.C.-7G分别用于柱析和薄层色谱。1.r.光谱是在 Perkin-Elmer 257 分光光度计上获得的,用于 Nujol mulls,除非另有说明。除非另有说明,否则在Perkin-Elmer 141旋光仪甲乙醇溶液上记录光学旋转。使用瓦里安 HA100 光谱仪获得以四甲基硅烷为内标的氘代氯仿溶液的 N.m.r.光谱。采用A.E.I. MS9光谱仪进行质谱分析,并采用在线Linc 8~0mputer.l~ G.1.c对数据进行处理。在装有火焰离子化检测器的 aPye 104 双柱气相色谱仪上进行。硅烷化玻璃柱(5 f t x & inint. diam.)填充有2%QF-1或2%SE-33本体脱矿和硅烷化的Gaschrom A.通过使用正烷烃标准品测定保留指数。轻质石油沸腾在 60-80 英寸。二萜烃的提取和鉴定-将叶子连同各种Gryptorneria japonica的轻质末端芽一起在25'干燥3周,并用回流轻质石油提取。真空蒸发后,将残余物在轻质石油中吸收,并在1级中性氧化铝上进行柱层析。通过g.l.c.、m.p.和旋光度与ent-贝壳杉烯和13P-贝壳杉烯的真实样品进行比较,鉴定了二萜烃。以下品种给出了 ent-kaurene:线虫 ;紧凑型 ;维米纳利斯;香港 No. 31 (101-88) ;Jirdai-Sugi(吉尔大杉);香港 No. 23 (101-88) ;Selaginiodes 365-04 罗维利;Yenko-Sugi 252-08 ;杉里 252-08 横滨 No.15;No.29, 25-93 日本, 中国;维特利纳 666-04 罗维利 12号;和 101-88 香港 27 号。以下品种为13p-贝壳杉烯:香港13号(101-88);Pendula528-13 Veitch 4007 编号 16;11号Lobbii.分离13P-Kaurene.-C. japonica pendula插条(2.35 kg)在空气中干燥3周,每吨26'。然后去除叶子(1-04 kg),用轻质石油(15 1)提取索氏物7天。蒸发得到深绿色油,将其干燥(P,O,)至恒重(76.1g),并在1级中性氧化铝(700g)上色谱。用轻质石油洗脱得到13B-kaur-16-ene(6)和13P-kaur-15-ene(10)的混合物(7-3 g),通过制备t.1.c分离。在硅胶上浸渍硝酸银(10%),得到13P-贝壳杉-16-烯(6)(5.1克)作为板,M.P.97-98“(来自甲醇);[aID2a +15.6“;vmax。3070、1658 和 873 cm-l;7 9.21、9-17 和 9.10(各 3H、s)和 5-03br(2H、s);和 13P-kaur-15-ene (10) (2.1 g )作为针,熔点:113-113-5“(来自乙醇轻质石油);[&za +24' (c 0.2); vmX. 3055, 1638, and 828 cm-1;将T 9.29、9.22和9.18(各3H,s)、8.37(3H,d,J15,17 2 Hz)和4.75br(lH,s).13P-Kaur-15-erze(10).-13P-Kaur-l6-ene(6)(15 mg)和碘(20 mg)在苯(15 ml)中回流加热9 h。将冷却的混合物用硫代硫酸钠溶液(2×10ml)和(2×10ml)洗涤,干燥,蒸发,得到仅含2%的13P-kaur-l,.--_,e(10)(15mg),仅含2%的13P-kaur-16-ene(6)(g.l.c.),其由乙醇轻质石油结晶为针状,m.p.113-1 13.5',物理数据与已经描述的产物(1 0)相同.13P-Kaur-15-erz-17-oZ(11).-13P-Kaur-16-ene(6)(20mg)和haematoporphorin(5mg)溶于垂直玻璃管中的吡啶(5ml)中(国际直径 2-0 cm)。将溶液在安装在2-3cm外的四个荧光管(Phillips TLQW / 33)的干氧流中照射96小时。将溶液蒸发至40“以下,并在过夜后将含有乙酸(2滴)和碘化钠(500mg)的粗过氧化氢(10ml)还原。蒸发得到的暗色残留物在乙醚中回收,用硫代硫酸钠洗涤。制备t.1.c.在硅胶上给予13P-kaur-15-en-17-01(11)(8mg)作为针头,熔点115-119“(来自LightPetroleum);[aIDaz +7“ (c 0.46); vmax. 3590, 3300, and 839cm-l;T 9.28、9.21 和 9.18(各 3H、s)、5.90br (2H, s) 和 4-45br (lH, s).13p-Kaur-16-en-15cc-oZ (7) .-13p-Kaur-l5-ene (10) (250mg) 和血卟啉 (20 mg) 在吡啶 (20 ml) 中氧化并照射 72 小时。用轻质石油洗脱得到13P-kaur-16-ene和13p-kaur-15-ene(80mg)的混合物;用10%丙酮-苯洗脱,给予13P-贝壳杉-16-烯-15a-01(7)(150mg)作为针头,m.p.112-113“(来自甲醇);+40英寸(c 0.24);vmL 3600、3470、3080、1660、900 和 839 cm-l;t 9.21、9.16 和 9.09(各 3H, s)、5.65br (lH, s)、5.06 (lH, s ) 和 4-90 (ZH, s ) .13@-Kaur-16-en-15-one (8) .-13P-Kaur-16-en-l5~-ol (7)(125 mg) 的吡啶 ( 5 ml) 溶液以 0“ 加入到三氧化铬 (200 mg) 的吡啶 (5 ml) 溶液中搅拌悬浮中。之后 3.室温下5小时,将混合物U-As倒入乙醚(20毫升)中,用盐水和水洗涤,干燥,蒸发,得到13P-贝壳杉-16-烯-1和一(1 2 1毫克),其由丙酮结晶为针状,熔点112-1 14“ ;+71.3”;0.r.d. 0, [+I2,, +445o, [+I2,,, -6260;Atzr5 - 1-97, AcZ18 +3.62, +3.16;A,, 235 nm (E6740);v,, 1725, 1645, 和 928 cm-l;7 9.25、9.19 和 9.17(各 3H,s)和 4-98 和 4.20(各 lH,s)。将13P-Kaur-16-烯-15-酮(8).-(a)氢化铝锂.13P-Kaur-16-烯-15-酮(8)(25mg)的还原加入到氢化铝锂钠干燥醚(25ml)的悬浮液中。将混合物煮沸9小时。加入水(10ml),将溶液再搅拌5分钟。用盐水和水提取溶液,干燥,蒸发,得到油(24.2mg)。制备t.1.c.在三块二氧化硅板(0-3 mm x 20 x 20cm)[苯-石油(3:2)作为洗脱剂]上,以(16R)-13P-贝壳藻-15P-01(15)(18mg)为针,熔点104-105“(来自轻石油),与氢化铝锂还原(16R)-贝壳兰-15-酮形成的产物相同;和二聚体 (19) (5 mg),熔点 286-288“;VMX.1730、1100 和 950 cm-1;T 9.22 和 9-18(各 6H,s),9.08 和 9-05(各 3H,s)和 6-45(lH,m)。氢化铝锂还原13P-kaur-16-en-15-one(8)在稀空灵溶液(0.1mg/ml)中产生(16R)-13P-kauran-15P-01(15)的定量收率。硼氢化钠还原13P-kaur-16-en-15-one得到(16R)-13p-lrauran-15P-ol作为唯一可分离产物。将13P-Kaur-16-en-15a-01(7).-(a) A t 0'.13p-Kaur-16-en-150(-01(7)(25 mg)溶于甲醇(5 ml)和乙醚(2.5 ml)中,以0“,并加入盐酸(1 ml)进行酸处理。在室温下除去有机溶剂,并用乙醚(3 x 2 ml)萃取特蕾西;将提取物洗涤、干燥并蒸发,得到油(25mg),如T.1.C所示。是大约1:1的起始材料和高射频值化合物的混合物。制备t.1.c.13 R. Binks, R. L. Cleaver, J. S. Littler, and J. MacMillan,Chem. in Brit., 1971, 7, 8.c.d.A~410 0, A E ~ , ~ -0.95, A ~ 3 5 4 -1.09, A0300 0, 0,(b) 硼氢化钠。将溶液在两个硅胶板(0.3 mm x 20 x 20 cm)上以0“1972 985out搅拌4.5小时,并加入轻苯石油(3:2)。用苯洗脱高射频值的波段,得到3 com-pounds的混合物,高射频值和两极材料的原始化合物,通过与真实样品的比较,鉴定为13p-kaur-16-en-15a-01 (7)和13P-kaur-15-en-17-01 (1 1)。对于80%纯度为高11F值的化合物样品,获得了以下光谱数据,该样品被赋予了结构(20)[20%杂质是醇(7)和(l l)的混合物]:v,,,3590、3350、1035、900和840 cm-l;T 9.29、9.22 和 9.18(各 6H、s)、5.94br (4H, s) 和 4-31br (2H, s)。当上述反应在60°t下进行时,虽然形成了二聚体(20),但通过t.1.c.在硅胶板上部分纯化的主要产物被鉴定为17-甲氧基-13p-贝壳杉-15-烯(12),vmX。1100 和 840cm-1;将13P-Kaur-16-en-15a-02(7).-13p-Kaur-16-en-15a-02(7)在乙醇(10ml)中氢化13P-Kaur-16-en-15~-01(20mg)在室温和压力下氢化3 h。通过硫酸钠过滤除去催化剂后,蒸发得到白色结晶固体(20mg)。制备t.1.c.在三块硅胶板(0.4 mm x 20 X 20 cm)上,含5%丙酮-轻质石油,产得(16R)-13P-贝壳兰-15a-醇(16)(16.5 mg),RF 0-4,熔点105-109“(来自轻质石油)(Found: M+, 290.260. 计算值C20H340: M , 290.261);[ ~ l ] ~ ~ ~ +11“;VMX 3580 和 3480 cm-L;T 9.22、9-18 和 9.10(各 3H、s)、8-96(3H、d、J16.17 6.5 Hz)、6.27(lH、d、J15、16 4 Hz);(16S)-13P-贝壳兰-15a-醇 (18) (3 mg),RF 0-5,清油 (Found: M+, 290.260. 计算值 forC,,H,,O:M , 290.261) ;(薄膜)3600 和 3450 cm-l、T 9.22、9.18 和 9-10(各 3H、s)、9-10(3H、d、J16.17 7-5 Hz)和 5-84(2 1) .-13P-Kaur-l6-烯-15-酮(8)(27 mg)在乙醇(10 ml)中用5%钯木炭(30 mg)加氢5.5小时。 熔模 103-104“(来自甲醇) ;- 64";0.r.d. [$I,,, - 730,(b) A t 60”。(1H,s)。(lH* d* J l 5 . 1 6 Hz)。(1 6R)- 13P-Kaurun- 15-one-7110, [j6]2,g +6390, +2210, [+Izo6 +4180; cad.A~350 0, As311 -2.82, A ~ 2 5 0 0, A~230 0, A E ~ O ~ -0.67;Am=。300纳米(c 81);vmx. 1730 厘米-长;T 9-21 (3H, s)、9.18 (6H, s) 和 8.97 (3H, d, J16,I7 7.0 Hz)。(1622) -13P-Kauran-l5~-ol(15) .-( 16R)-13P-Kauran-l5-酮(10mg),在钠干醚(2ml)中,加入到氢化铝锂(10mg)在钠干醚(2ml)中的搅拌悬浮液中。室温3 h后,以通常的方式处理得到(1611)-13P-kauran-15~-01(9 mg)作为针头,m.p.104105“(来自轻石油)(Found:M+, 290.260. 计算值C20H340: M , 290-261);[一]D22-9英寸;v,,,.3610 和 3480 cm-l;T 9.21 和 9.18 (各 3H, s) 、9.06 (3H, d, J z O 、 < 1 Hz)、9.12 (3H, d, J16,17 7.2 Hz) 和 (16R)-13P-Kauran-15-酮 (21) .-(16R)-13P-Kauran-15-酮 (21) (50 mg) 的外延化在 1% 氢氧化钠的甲醇溶液 (10 ml) 中回流。该反应由g.1.c进行。回流3 h后,将混合物(lHJ dd, J15.16 l1, J15,OH Hz)冷却蒸发,残渣在水和乙醚之间分配。以通常的方式进行检查产生了差向异构体(16R)-和(16S)-13p-贝壳兰-15-酮(20mg)的混合物(4:6)。用碱进一步处理没有改变1622-与16s-差向异构体的比例。(16S)-13~-Kauran-15~-02 (17).-将(16S)-13P-贝壳兰-15-酮(22)(62%)和(1622)-13P-贝壳兰-l5-酮(21)(38%)(50mg)在钠干醚(10mg)中的混合物加入到氢化铝锂(50mg)在钠干醚(30ml)中的搅拌悬浮液中,室温为t。3小时后,加入水,将混合物再搅拌5分钟。以通常的方式进行检查,给予油(51mg)。制备t.1.c.在用苯轻石油(3:2)开发的三个硅胶板(0.4 mm x20 x 20 cm)上,得到(1622)-13P-贝壳兰-15P-醇(15)(19 mg),针头,m.p.104-105“(来自甲醇)]和(16S)-13P-01(17)(28mg),针头,m.p.103-104”(来自甲醇)(发现:M+,290.258.计算值 for C2,H,,0: M , 290-261);[aID22+21“; vmX. 3580 和 3440 cm-l;将T 9.23、9.19和9.03(各3H,s)、8.98(3H,d,J16.17 7.0Hz)和6.76(lH,d,氧化(1 6R)-13P-Kauran-l5P-01(15).-(16R)-13p-Kauran-l5P-o1(15)(15mg)在干吡啶(5ml)中加入到三氧化铬(20mg)在干吡啶(5ml)中的搅拌悬浮液中。将混合物加热至室温并搅拌3小时。以通常的方式在乙醚中回收产物,得到(1612)-13P-贝壳兰-15-酮(21)(14mg),由丙酮结晶为板,m.p.203-104”。G.1.c. 显示 (16s)-13P-贝壳兰-15-酮完全缺失 (22)。(16S)-13~-Kauran-l5-one (22) .-( 16S) - 13P-Kauran- 15p-01(17) (25 mg) 在干燥吡啶 (5 ml) 中与三氧化铬 (35 mg) 在干燥吡啶 (5 ml) 中氧化 a t 0“ 如先前的实验。回收产物醚得到(16!5)-13p-贝壳烷-15-酮(22)(25mg)作为板,熔点128.5-129.5“(来自丙酮);[一]D22 - 64“ (c 0.42) ;J15.16 5'5 Hz)'o.r*d* [#'I400 - [$I 330 -6850J [$I 289 $- 2860, [$1228,-4850, [4Iaos 0; c.d. 0, A~311 -2.05, 0,-2.43;A,, 303 nm (E 66) ;v, 1725 厘米-长;T 9.22、9.17 和 9.15(各 3H、s)和 8.94(3H、d、J16.17 7.5 Hz)。(1 6R)-13P-Kauran-15a-ol(16).-(1611)-1,3p-Kauran-l5a-01(16)(15mg)在干燥吡啶(5ml)中的氧化被三氧化铬(20mg)在干燥吡啶(5ml)中氧化,如前所述。通常的检查结果得到 (1622)-13p-kauran-15-one (21) (14 mg),熔点 103-104“1 与 13P-kaur-16-烯-15-酮氢化形成的相同 (8)。(1 6s) - 13P-Kauran- 15~-oZ ( 18) .-( 16S)-13p-Kauran-l5a-01 (18) (7 mg) 的氧化同样氧化得到 (16S)-13p-贝壳兰-l5-酮 (22) (5-5 mg),与氧化得到的 (16S)-13P-贝壳兰-15P-o1 相同 (17).我们感谢 Worshipful Company of Salters 提供的重新搜索奖学金(给 E. R. H. W.)。我们还要感谢邱园皇家植物园馆长的合作,他提供了15个品种的顶枝。japonica 和 Westfield College 的 P. M. Scopes 博士,用于 0.r.d. 和 c.d. 数据。[1/2265 收稿日期: 1971-11-29

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号