首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Reactions of glyoxals with hydrazones: a new route to 4-hydroxypyrazoles
【24h】

Reactions of glyoxals with hydrazones: a new route to 4-hydroxypyrazoles

机译:乙二醛与腙的反应:通往4-羟基吡唑的新途径

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM.SOC. PERKIN TRANS. I 1985 Reactions of Glyoxals with Hydrazones: A New Route to 4-Hydroxypyrazoles Mikael Begtrup" and Hans Peter NytoftDepartment of Organic Chemistry, Technical University of Denmark, OK-2800 Lyngby, Denmark N-Substituted hydrazones of aldehydes react with glyoxals under non-aqueous conditions to give N- substituted 4- hydroxypyrazoles; fourteen such products are described. In the presence of water, N-substituted 3-acyl-4- hydroxypyratoles are produced from 2-oxoaldehyde hydrazones and glyoxals. It is shown that glyoxals combine in a 1 :1 ratio with N-monosubstituted hydrazines to give 2-hydrazonoaldehydes as the kinetically controlled products. At room temperature or lower, these hydrazonoaldehydes rearrange to the more stable 2-oxoaldehyde hydrazones and react with glyoxals to give N-substituted 3-acyl-4- hydroxypyrazoles; sixteen such products are described.This synthesis, involving easily accessible starting materials, opens up a new, and for certain derivatives exclusive, route to 4-hydroxypyrazoles. The discovery of pyrazomycin (l), an antiviral, microbial compound,' has stimulated interest in 4-hydroxypyrazoles (2), a class of compound less well explored than their 3- and 5-hydroxy-substituted counterparts. Reported syntheses of 4- hydroxypyrazoles (2) fall into two categories, one characterised by the formation of C-N bonds ~nly,~-~ the other Pand involving C-C bond formation(s). The combinations of a-CHZOH diazoesters with alkyl malonates,*-" or of alkyl hydra- zinoacetates with a-oxoesters,' ' to give 4-hydroxypyrazoles, seem to be the only known examples of the C-C bond-forming type of synthesis.The inherent limitations in the substitution patterns attain- able through the known methodology motivated our search for alternative routes to the 4-hydroxypyrazoles (2), all involving C-C bond-forming reactions. We describe our results here. Results and Discussion A retrosynthetic inspection of structure (2) suggests the reaction of aldehyde hydrazones (3)and glyoxals (4) to be an obvious, though apparently neglected, synthetic possibility (Scheme 1). In fact, we found that the aldehyde hydrazones (3; R' = Me or Ph, R2= H, Me, Et, Pr, or Ph) and the glyoxals (4; R3= H, Me, or Ph), when heated together under anhydrous conditions in butyl acetate containing acetic acid, afforded moderate to excellent yields of the 4-hydroxypyrazoles (2); fourteen representatives of these are listed in Table 1 (entries 1-14).The structural assignment of these rests on (i) agreement in m.p.s mixed m.p. in the case of (2; R' = Ph, R2= H, R3 = Me) with eight previously described compounds of this series, and (ii) comparison of the 'H and 13C n.m.r. spectra with those recorded for the authentic specimens (entries 3,4,6-9, 13, and 14 in Table 1) The "C n.m.r. spectral results are given in Table 2. The 'H n.m.r. results are available as a supplementary Publication (SUP No. 56091,2 pp.).* The hydrazones of lower aldehydes, (3; R' = Me or Ph; R2= H, Me, Et, or Pr), are of limited In the experiments where they were generated in situ from the reaction of the aldehyde and N-substituted hydrazine followed by the addition of the glyoxal, the expected 4-hydroxypyrazoles (2R2 = Me, Et, or Pr) were invariably accompanied by the corresponding 3- unsubstituted analogues (2; R2 = H), suggesting the corn- petitive involvement of the formaldehyde hydrazones (3; R2= H).Conceivably, these could arise by 'transhydrazonation', followed by C-C bond fission, as indicated in Scheme 2 (path a). * For details of the Supplementary Publications Scheme see Instructions for Authors (1985) in J. Chem. SOC.,Perkin Trans. 1, 1985, Issue 1. (2) Scheme 1. H H IQJ Scheme 2. When conducted in the presence of water, the reaction between compounds (3) and (4) afforded 3-acyl-4-hydroxy- pyrazoles, obviously deriving from the reaction between the glyoxal hydrazones and the glyoxals (4), the former compounds arising from (3) and (4) by 'transhydrazonation' (Scheme 2, 82 J.CHEM. SOC. PERKIN TRANS. I 1985 Table 1. Preparation of the 4-hydroxypyrazoles (2) and (8) from the hydrazones (3) and (7), respectively Product (2), from starting materials (3)and (4) Analysis () Found Yield of M.p. of pure Reported (Required)Entry Reaction" Work-up crude product M.p. Recrystallization compoundC m.p. 7A7 no. R' R2 R3 conditions conditions (023 medium c.C> ("C) c H N(OC) 1 Me H Me 31 112-1 18 E 120-122 53.35 7.4 24.75 (53.55) (7.2) (25.0)2 Me H Ph 35 140-142 C 149-150 68.65 5.75 15.95 (68.95) (5.8) (16.1)3 Me Me Me 23 174-177 F 18 1-1 83 I 87-1 89' 4 Me Me Ph 15' 149-154 C 153-1 55 160' 70.0 6.5 14.75 (70.2) (6.45) (14.9)5 Me Ph Me 46 177-1 79 C 178-180 69.8 6.45 14.8 14 175-177 (70.2) (6.45) (14.9)6 Me Ph Ph 86 142-149 C 170-172 175-177' 7 Ph H Me 35 124-126 D 136 137-13gk31 124-126 8 Ph H Ph 66 157-161 C 180-182 179' 76.55 5.2 12.0 (76.25) (5.1) (1 1.85)9 Ph Me Me 23 Oi1 h 138-140' 10 Ph Et Me 27 1 22- 125 I 134-135 71.0 7.1 13.7 19' 122-125 (71.25) (7.0) ( 13.85)11 Ph Pr" Me 14/ 63-7 1 I 88-90 72.2 7.55 12.65 (72.2) (7.45) (1 2.95) 12 Ph Ph Me 35 119-133 C 144 76.75 5.65 11.0 (76.8) (5.65) (1 1.2)13 Ph Me Ph 459 153-1 58 C 170 175' 76.65 5.65 11.0 (76.8) (5.65) (11.2)14 Ph Ph Ph 70 148-149 G,J 148-149 252' 80.6 5.2 8.7 (80.8) (5.15) (8.95) Product (8), from starting materials (4) and (7) 15 Me Me H 90 85--90 A 92 51.1 5.75 19.85 (51.4) (5.75) 20.0) 16 Me Me Me 53 48-6 1 B 66-67 54.15 6.5 17.9 (54.55) (6.55) (18.15) 17 Me Me Ph 74 110-1 15 A 119-121 66.95 5.65 12.85 (66.65) (5.6) 1 (12.95) 18 Me Ph H 66 64-66 A 68-69 65.2 5.0 13.75 (65.35) (5.0) (13.85) 19 Me Ph Me 82 6 1-67 B,H 87-88 67.1 5.55 12.6 57 67-68 (66.65) (5.6) (12.95) 20 Me Ph Ph 52 92-98 B 107-108 73.55 5.05 10.15 0 (73.35) (5.05) ( 10.05) 21 Ph H H 42 132-136 C,H 143-145 63.5 4.2 14.8 (63.8) (4.3) (14.9) 22 Ph H Me 46 76-80 A 81-82 65.55 5.05 13.95 35 76-80 (65.35) (5.0) (13.85) 23 Ph H Ph 100 122-1 25 C,H 130 72.7 4.55 10.65 22 122-125 (72.7) (4.6) (10.6)24 Ph Me H 40 92-98 A 98-100 65.4 5.0 13.85 (65.35) (5.0) (13.85)25 Ph Me Me 61 79-80 A 79-8 1 66.8 5.65 12.9 38 76-80 (66.65) (5.6) (12.95)26 Ph Me Ph 91 121-122 H 121 73.25 5.05 10.0 (73.35) (5.05) (10.05) 27 Ph Ph H 84 101-105 B 106-107 72.85 4.55 10.6 (72.7) (4.6) (10.6)28 Ph Ph Me 46 98-99 B 101-103 73.75 5.15 9.95 26 101-I03 (73.35) (5.05) (10.05) See Experimental section for details.The hydrazones (3)and (7) were prepared in siru when reaction conditions (b), (e),or (f)were used. A, hexane; B, ligroin (b.p. 80-1 10 "C);C, ethyl acetate; D, ethyl acetate-hexane; E, propan-2-01; F, ethanol; G, chloroform; H, methanol; I, toluene; and J, toluene-hexane. Most of the 4-hydroxypyrazoles were colourless with a few exceptions which were slightly yellow.In addition, compound (2; R' = R3 = Me, R2 = H) (27) was present in the combined ether and ethyl acetate extracts (n.m.r.). In addition, compound (8;R' = Me, R2= R3 = Ph) (46) was isolated from the dichloromethane extract of the basic solution. The dichloromethane was removed and the residue worked up as in (e). f In addition, compound (2R' = Ph, R2 = H, R3 = Me) was formed. Yields are specified under the work-up conditions. In addition, compound (8; R' =R2 = R3 = Ph) (26) was isolated as described in work-up conditions (h). The product was converted into its crystalline 0-acetyl derivative as described under work-up conditions (t). Ref. 8. j Ref. 26. Ref. 6. J. CHEM.SOC. PERKIN TRANS. I 1985 83 Table 1 (conrinued) Product (2), from starting materials (3) and (4) Analysis () Found Yield of M.p. of pure Reported (Required)Entry Reaction Work-up crude product M.p. Recrystallization compound' m.p. /pA-, no. R' RZ R3 conditions conditions () ("C) medium ("C) ("C) C H N 29 Ph Ph Ph (c) (4) 87 154-1 59 C 159-160 77.55 4.7 8.05 (77.65) (4.75) (8.25) 30 Bn Me Me (.f) (1) 39 4651 B 45 67.6 6.05 12.15 (67.8) (6.15) (1 2.15) Table2. '3CN.m.r. shifts (in p.p.m. relative to the CDCI, centre peak at 6 76.90 p.p.m.) of the 4-hydroxypyrazoles (2) and (8)dissolved in OS~M-CDCI, Compound (2) G/p.p.m. 3-Me or 5-Me R' R2 R3 C--O c-3 C-4 c-5 c-1' c-2' c-3' C-4' NMe /-A-, COMe Me H Me 126.8 138.3 125.4 36.2 7.8 Me Me Me H Me" Phb 136.0 127.2 135.6 138.8 125.6 129.8 128.6 129.1 128.1 35.8 37.5 10.0 8.0 Me Me Ph Me Ph H Phb Me Me 135.6 133.9 129.7 136.8 136.7 139.5 130.9 126.4 125.8 135.9 139.4 128.5 125.3 124.3 129.0 128.1 129.0 128.0 126.2 127.4 36.9 36.6 9.9 8.2 9.1 Ph Me Me 136.9 139.4 125.3 139.4 123.9 128.6 126.7 9.7 9.1 Ph Ph Ph" 132.8 137.6 131.5 Compound (8) Me Me Me Me Me Me H Me Ph 197.9 197.8 198.0 136.3 135.2 135.5 146.6 142.9 143.2 115.7 123.3 127.5 128.0 128.6 128.6 128.3 40.1 37.3 7.6 25.3 25.2 Me Ph H 190.1 135.1 149.4 115.4 136.2 128.1 130.2 132.9 40.4 Me Ph Me 190.1 134.5 145.6 122.8 136.4 128.0 130.2 132.8 37.5 7.6 Me Ph Ph 190.0 135.0 146.4 127.7 39.1 Ph H H" 185.6 139.0 144.7 113.4 138.7 118.2 128.6 126.6 Ph Ph H H Me Ph 189.4 189.6 137.7 138.1 142.9 143.2 124.5 127.2 139.1 124.4 129.1 128.6 8.9 Ph Me H 198.5 137.8 147.0 112.4 139.6 119.2 129.3 127.3 25.5 Ph Me Me 198.5 136.9 143.5 123.8 139.4 124.6 129.1 128.4 9.0 25.5 Ph Me Ph 198.7 137.2 143.8 127.3 25.6 a Solvent: CDC13-(CD3)zS0 (12: 1).Saturated solution. path b). This casual observation prompted a more detailed H R2 study of the synthesis of z-oxoaldehyde hydrazones (7) as the starting materials for the production of the potentially useful 3-acyl-4-hydroxypyrazoles (8). At 0 "C or below, methylglyoxal combines with methyl- or phenyl-hydrazine (5;R' = Me or Ph) (Scheme 3) to give the hydrazonoaldehydes (6;R' = Me or Ph, R2 = Me) in a kinetically controlled reaction.In acidic solution, isomerisation to the more stable oxohydrazones (7; IR' = Me or Ph,R2 = Me) occurs at room temperature, making the last-named compounds easily accessible starting materials for the synthesis of the 3-acyl-4-hydroxypyrazoles (8). Six oxohydrazones (7;R1 = Me, Ph, or PhCH,, R2 = H, Me, or Ph) were thus prepared and converted into the sixteen new 3-acyl-4-hydroxypyrazoles (8) listed in Table 1 (entries 15-30); R2 they were characterised by comparisons of their 'H and 13C n.m.r. spectra with those of compound (8;R' = Ph, R2 = H, R3 = Me) (entry 22), the structure of which was established by Scheme 3.oxidation to the carboxylic acid, followed by decarboxylation to give a product identical with an authentic specimen of 4-In no case did the obviously rearrangement to the oxohydrazones (7) took placehydroxy-5-methyl- 1-phenylpyra~ole.~ hydrazonoaldehyde (6;R' = Me or Ph, R2 = Me) give rise to before the condensation reaction. the formation of N-substituted 5-acetyl-4-hydroxypyrazoles; Careful n.m.r. monitoring of a mixture of methylglyoxal and Me Me(10) (111 compound (5; R' = Me) (Scheme 3) as a function of time revealed the sequential appearance of (6 R' = R2 = Me), (7;R' = R2= Me), a diketone, isolated and identified as (9),and, finally, the 3-acyl-4-hydroxypyrazole(8; R' = R2 = R3= Me), accompanied by the formaldehyde aminal (10) which was identified by comparison with a specimen synthesized from compound (7; R' = R2 = Me) and formaldehyde by a known method.14 The diketone (9) is apparently not an intermediate in the pathway to compound (8; R' = R2 = R3= Me), as neither the expected 3-acetyl-5-hydroxy-l,4-dimethylpyrazole,nor the possible 5-acetyl-4-hydroxy- 1-methylpyrazole, were observed in the reaction mixture.The formation of compound (10) requires the intermediacy of formaldehyde, or its equivalent, conceivably arising from the reaction of compounds (7;R' = R2= Me) and (4 R3= Me) as outlined in Scheme 2. Interestingly, the hydrazonoaldehyde (6 R' = R2 = Me) reacted with formaldehyde in the ratio 1 :1 to give a product possessing the characteristics expected for the dihydro-1,3,4- oxadiazine derivative (11).In summary, aldehyde hydrazones and glyoxals, both easily accessible starting materials, serve well for the synthesis of 4- hydroxypyrazoles, including the 3-acyl derivatives. The choice between non-aqueous or aqueous conditions depends on the structure of the target molecules and can easily be made on the basis of the above discussion. ExperimentalSolvents were removed under reduced pressure. Flash chromatography was performed as described in ref. 15. The purity and identity of all compounds were confirmed using t.l.c., m.p.s, and i.r., 'H n.m.r., and mass spectra. 'H N.m.r. spectra were recorded on a Bruker HX-90 instrument. "C N.m.r. spectra were obtained on a Bruker WH-90 instrument and assigned as described previously.'6 Mass spectra were obtained on a V.G.Micromass 7070 F instrument. Benzylhydrazine,' ' formaldehyde phenylhydrazone,' gly-oxal phenylhydrazone, ' 1-phenylhydrazono-2-phenylethan-one,2o benzaldehyde methylhydrazone,2 ' and benzaldehyde phenylhydrazone,22 were prepared by literature methods. Anhydrous methylglyoxal was prepared by stirring a com- mercial50 aqueous solution (2.60 ml), n-butyl acetate (10 ml), and anhydrous sodium sulphate (2 g) for 15 min. The organic solution was decanted off, stirred for 15 min with anhydrous magnesium sulphate (2 g), and filtered. Anhydrous phenylgly- oxal was obtained by distilling its hydrate.23 Ether refers to diethyl ether. J. CHEM. SOC. PERKIN TRANS.I 1985 Preparation of 4-Hydroxypyrazoles.-Reaction conditions. (a) The hydrazone (3)or (7) (7.75 mmol) was mixed at 0 "Cwith the glyoxal (4) (15.7 mmol), dissolved in dry n-butyl acetate, magnesium sulphate (1.0 g), and acetic acid (1.0 ml). Stirring was continued at 20 "C for 10 min and then at 110 "Cfor 1h. (b) The hydrazone (3) was prepared in situ by adding the aldehyde (7.75 mmol) with stirring at 0 "Cto the hydrazine (7.75 mmol) in butyl acetate (3.0 ml). Stirring was continued at 0 "C for 10 min and then at 20 "Cfor 1 h. In the case of formaldehyde a 40 aqueous solution (0.58 ml) was used and anhydrous sodium sulphate (1.0 g) was added. This was decanted off and extracted with butyl acetate (2 x 1 ml). (c) The hydrazone (3) or (7) (7.75 mmol), the glyoxal (7.75 mmol) (glyoxal in 40, methyl glyoxal in 50 aqueous solution), and acetic acid (21 ml) were stirred at 110 "C for 1 h.(d) As in (c) but replacing acetic acid with water (40ml).(e)The hydrazine (5)(7.75 mmol), the glyoxal(4) (23.3 mmol) in aqueous solution, and water (40ml) were heated to reflux for 3 h. cf) As in (e) but replacing water with acetic acid (40 ml) and lwhydrochloric acid (40 ml). Work-up conditions. (a) The reaction mixture was filtered while still hot. Extraction with boiling butyl acetate (2 x 5 ml) and removal of the solvent gave a residue which was dissolved in lw-aqueous sodium hydroxide (20 ml). Washing with dichloromethane (2 x 20 ml), acidification to pH ca. 2 with conc.hydrochloric acid, extraction with dichloromethane (2 x 10 ml), washing with saturated aqueous hydrogen carbonate (2 x 5 ml) (this washing was necessary only when phenylglyoxal was used as the 2-oxo-aldehyde), drying (MgS04), and removal of the dichloromethane gave a residue which was extracted with boiling ethyl acetate (20 + 4 x 5 ml). The hot extracts were filtered through silica gel (2.5 g) and activated carbon (1 g). Removal of the ethyl acetate afforded the crude product. (6) In cases where the sodium salt of the hydroxypyrazole does separate it was isolated and washed with ethyl acetate (2 x 20 ml). The aqueous filtrate was washed with dichloromethane (2 x 20 ml) and combined with the washed salt. The mixture was acidified and work-up continued as in (a).(c) Alternatively, the sodium salt was dissolved by addition of water (20 ml). Washing with dichloromethane (2 x 20 ml), acidification to pH ca. 2 with conc. hydrochloric acid, extraction with dichloromethane (3 x 20 ml), drying (MgS04), filtration through silica gel (1 g) and activated carbon (0.5 g), and removal of the dichloromethane gave a residue which was extracted with boiling ligroin (b.p. 80-1 10 "C) (3 x 5 ml). The volume was reduced to ca. 2 ml and the mixture cooled to 0 "C. Filtration gave the crude product. (d) When the hydroxypyrazole is slightly soluble in di- chloromethane and separates in the crystalline state, work-up was performed as in (a). However, after the acidification the mixture was left overnight.Filtration, washing with water (2 x 2 ml), drying, extraction with boiling ethyl acetate (20 + 4 x 5 ml), filtration of the hot extract through silica gel (2.5 g) and activated carbon (1 g), and removal of the ethyl acetate gave a residue which was triturated with boiling hexane (3 x 5 ml) and with 20 "Cchloroform (2 + 3 x 1mi), and the residue collected on a filter. (e) In cases where the hydroxypyrazole is less acidic the reaction was followed by careful removal of the solvent at 0.1 kPa and 40°C. The residue was stirred for 10 min with IM- aqueous potassium hydroxide (40 ml) and ether (10 ml). Filtration, separation of the ether, and successive washing of the precipitate and the aqueous solution with ether (2 x 10 ml) was followed by acidification of the combined precipitate and aqueous solution, and work-up was continued as in (a).cf)When the potassium salt was slightly soluble, the solvent J.CHEM. SOC. PERKIN TRANS. I 1985 was removed as in (e), followed by stirring with boiling 2~- potassium hydroxide (10 ml) for 2-3 min. Cooling to 0 "C, filtration, stirring with ether (20 ml), filtration, and washing with dichloromethane (3 x 5 ml) gave a residue which was stirred with boiling conc. hydrochloric acid (5 ml) for 2-3 min. Cooling to O"C, filtration, and washing with water (5 ml) afforded the crude product. (g)Work-up was initiated as in (a),but since the hydroxy- pyrazole is relatively basic the acidification with conc. hydro- chloric acid was stopped at pH 6.Then the water was removed and the residue was extracted with ethanol (3 x 5 ml). Removal of the ethanol left a residue which was triturated with boiling acetone (5 x 10 ml). Removal of the acetone, dissolution of the residue in methanol (10 ml), filtration through silica gel and activated carbon as in (a), removal of the methanol, and washing of the residue with hexane (2 x 10 ml) and ether (2 x 2.5 ml) gave the crude product. (h) Work-up was initiated as in (a).The material which did not dissolve in sodium hydroxide was filtered off. Procedure (a) was continued for the filtrate which produced 4-hydroxy-3- methyl-1,5-diphenylpyrazole(2R' = R3= Ph, R2 = Me). The residue was stirred with ether and work-up continued as in cf)to give 3-benzoyl-4-hydroxy- 1,5-diphenylpyrazole (8;R = R2 = R3 = Ph).(i) As in (g), but the washing with ether was followed by washing with ethyl acetate (2 x 1 ml) which left the crude product. (j)The reaction mixture was extracted with dichloromethane (3 x 25 ml). Removal of the dichloromethane gave the crude product.(k)As in G), but the resulting material was worked up as in (a). (1) As in (k). The material obtained was dissolved in ethyl acetate-hexane (1 :4; 7.8 ml). The solution was filtered through silica gel (2 g) and the silica gel extracted twice with the eluant (2.5 ml). The filtrate was evaporated to dryness. (m)The reaction mixture was diluted with water (60ml) and 33 aqueous sodium hydroxide was added until the solution reached pH 6.The mixture was cooled to 0 "C and filtered. The residue was extracted with boiling ligroin (3 x 5 ml) and the product isolated as in (c). (n) As in (m),but filtration was replaced by extraction with dichloromethane (4 x 25 ml) followed by removal of the dichlorome thane. (0)33 Aqueous sodium hydroxide was added until pH 10 was reached, keeping the temperature below 30 "C. Filtration, washing with water (20 ml), acidification of the filtrate to pH ca. 2 (conc. hydrochloric acid), extraction with dichloromethane, and work-up as in (n) gave the crude product. (p) Work-up was performed as in (a)with acidification to pH 6. The crude product was then flash-chromatographed (ethyl acetate-hexane, 1 : 1). The third fraction (RF0.19) contained the 4-h ydrox ypyrazole.(4)Work-up was performed as in (a).Then flash chromato- graphy (ethyl acetate-hexane 1 :1) first gave 3-ethyl-4-hydroxy- 5-methyl-1-phenylpyrazole(2; R' = Ph, R2 = Et, R3 = Me), then 4-hydroxy-5-methyl-1-phenylpyrazole(2R' = Ph, R2 = H; R3 = Me). (r) Similarly, flash chromatography (ethyl acetate-hexane 1:1) was used for separating the products (2; R' = Ph, R2 = Et, It3 = Me) and (2; R' = Ph, R2 =H, R3 = Me). (s)Flash chromatography (ethyl acetate-hexane 1:2) served to separate 3-acetyl-4-hydroxy-5-methyl-l-phenylpyrazole(8; R' = Ph, R2 = R3 = Me), 4-hydroxy-5-methyl-3-propyl-1-phenylpyrazole (2; R' = Ph, R2 = Pr", R3 = Me), and compound (2; R' = Ph, R2 = H, R3 = Me). (t)Procedure (a)was followed, but as the hydroxypyrazole was relatively basic the acidification was stopped at pH 6. Extraction with dichloromethane (2 x 10 ml), drying (MgSO,), removal of the dichloromethane, and preparative t.1.c.on plates kept for 0.5 h over conc. aqueous ammonia and then immediately eluted with ethyl acetate-hexane (1 :l) gave 4- hydroxy-3,5-dimethyl-l-phenylpyrazole(2; R' = Ph, R2 = R3 = Me) (RF0.21) as a yellow oil. Hydrochloride, m.p. 165- 167 "C (propan-2-01). 0-Acetyf derivative, m.p. 55-56 "C (hexane) (Found: C, 68.0; H, 6.15; N, 12.15. Cl,H14N202 requires C, 67.8; H, 6.15; N, 12.15); 6 (CDC13) 7.45-7.2 (5 H, m, Ph), 2.29 (3 H, s, MeC02), 2.17 (3 H, s, 3- or 5-Me), 2.16 (3 H, s, 5- or 3-Me). The next fraction contained 4-hydroxy-1,5- diphenylpyrazole (2; R' = Ph, R2 = H, R3 = Ph).(u) The solvent was removed to give a residue which was flash-chromatographed (dichloromethane) to give 4-hydroxy- 1,3,5-triphenylpyrazole (2; R' = R2 = R3 = Ph) (RF0.47). Conversion of Compound (8; R' = Ph, R2 = H, R3 = Me) into Compound (2; R' = Ph, R2 = H, R3 = Me).-A solution of silver nitrate (5.2 g) in water (10 ml) was added to a solution of compound (8; R' = Ph, R2 = H, R3= Me) (2.33 g) in 33 sodium hydroxide (5 ml). Heating of the mixture to 80 "C for 10 min, filtration, and extraction of the residue with water (2 x 20 ml) gave a filtrate which was acidified (conc. hydrochloric acid) to pH 2 and extracted with dichloromethane (50 + 10 ml). The organic solution was extracted with 4 aqueous potassium hydrogen carbonate (2 x 50 ml) and the aqueous solution was washed with dichloromethane (3 x 25 ml), acidified as above, and extracted with dichloromethane (3 x 50 ml).Removal of the dichloromethane gave 4-hydroxy-5-methyl- 1-phenyl- pyrazole-3-carboxylic acid (2; R' = Ph, R2 = C02H, R3 =Me) (1.08 g, 43) 6 (CDCI,) 7.88br (2 H, s, exchangeable, C02H and OH), 7.46 (5H,s, Ph), and 2.26 (3 H, s, Me). The material was heated to 24G245 "C for 45 min, and the residue was extracted with dichloromethane (50 ml). The solution was extracted with 1M-sodium hydroxide (50 ml) and the aqueous extract was washed with dichloromethane (3 x 25 ml), acidified as above, and extracted with dichloromethane (2 x 50 ml). Removal of the dichloromethane gave a brown oil (0.30 g), which was flash chromatographed (ethyl acetate-hexane, 1:1) to give two unidentified compounds in minor amounts, followed by compound (2; R' = Ph, R2 = H, R3 =Me) (0.10 g, 1273, m.p.136"C (ethyl acetate) (lit.,6 137-138 "C).The mixed m.p. and the i.r., and 'H and 13C n.m.r. spectra were identical with those of an authentic sample. Preparation of Hydrazones of the a-Oxoaldehydes.-(a) A mixture of water (200 ml), methanol (50 ml), acetic acid (20 ml), and 40 aqueous methylglyoxal (14.6 ml) was cooled to -15 "C. Methylhydrazine (10 ml) was added with stirring and the temperature kept below -12 "C. Stirring was continued for 30 min at -12 to -15 "C. 33 Sodium hydroxide was added until pH 7 was reached keeping the temperature below -9 "C. Rapid extraction with dichloro- methane (200 + 2 x 75 ml) and removal of the dichloro- methane gave a semicrystalline mass which was kept at -25 "C for 2 h and filtered to give yellow 2-methylhydrazonopropanal (6; R' = R2 = Me) (4.26 g, 26), m.p.58-64 "C. Recrystallization (toluene-hexane, 1 :4) raised the m.p. to 68- 70 "C(Found: C, 47.15; H, 8.0; N, 27.35. C,H,N20 requires C, 48.0; H, 8.05; N, 28.0);6 (CDCI,) 9.29 (1 H, s, CHO), 6.18br (1 H, s; exchangeable, NH), 3.31 (3 H, d, J 3.8 Hz, collapses on irradiation at 6 6.18, NMe), and 1.78 (3 H, s, CMe); m/z 100 (loo, M+).(6) A solution of methylhydrazine (8.34 ml) and acetic acid (15 ml) in water (100 ml) was added with stirring during 15 min to a 1.0 aqueous solution of methylglyoxal (925 ml).The mixture was kept for 1 day at 20°C and extracted with dichloromethane (4 x 150 ml). The organic solution was washed with water (4 x 40 ml), and the dichloromethane was 86 removed to give l-methylhydrazonopropanone(7; R' = RZ = Me) (4.16 g, 33), as yellow crystals, m.p. 63-65 "C (toluene- ligroin, 1 :2). After sublimation the m.p. was 67-49 "C (Found C, 47.4; H, 8.05; N, 27.7. C4C8N20 requires C, 48.0; H, 8.05; N, 28.0); 6 (CDCl,) 6.86 (1 H, s, HC), 6.61br (1 H, s, exchangeable, NH), 2.96 (3 H, dd, JHNMc4.4 and 0.7 Hz, MeN), and 2.31 (3 H,s, MeC); m/z 100 (loo, M+).(c) Water (200 ml), methanol (50 ml), acetic acid (20 ml), and 40 aqueous methylglyoxal (14.6 ml) were cooled to 0 "C.Phenylhydrazine (9.8 ml) was added during 1 min with stirring and cooling in an ice-bath. After being stirred at 0 "C for 10 min the mixture was extracted at 0 "C with dichloromethane (200 ml). The organic solution was washed with saturated aqueous sodium hydrogen carbonate (30 ml) and evaporated to dryness. The residue was washed with boiling hexane (3 x 50 ml) and recrystallized from toluene (29 ml), with cooling to -25 "C, producing 2-phenylhydrazonopropanal(6;R' = Ph, R2 = Me) (7.62 g, 48), m.p. 123-124 "C (lit.,24 126 "C); 6(CDC1,) 9.45 (1 H, s, CHO), 8.0br (1 H, s, exchangeable, NH), 7.5-4.9 (5 H, m, Ph), and 1.98 (3 H, s, Me); m/z 169 (loo, M'). (d) 40 Aqueous methylglyoxal (7.7 ml) and then 1~-hydrochloric acid was added to a solution of phenylhydrazine (4.9 ml) in methanol (100 ml).The mixture was heated to reflux for 4 h and kept at 20 "C for 1 h. After filtration the residue was washed with 50 aqueous methanol (25 ml), 25 methanol (50ml), and water (50 ml) to give 1 -phenylhydrazonopropan-2-one (7; R' = Ph, R2 = Me) (5.3 g, 65), m.p. 134-142°C. Recrystallization (toluene) gave m.p. 149 "C (lit.,25 148- 149 "C). (e) Phenylglyoxal (1.00 ml), methanol (50 ml), acetic acid (6 ml), methylhydrazine (0.51 ml), and water (50 ml) were mixed and kept for 1 day. Extraction with dichloromethane (3 x 20 ml), removal of the dichloromethane, and drying at 0.13 kPa over P,O, produced light brown 1 -methylhydrazono-2-phenyl-ethanone (7; R' = Me, R2= Ph) (1.33 g, 93) as a 3: 1 mixture of the Z-and E-forms (Found: C, 66.45; H, 6.1; N, 16.35.C9HloN,0 requires C, 66.65; H, 6.2; N, 17.25); 6 (CDCl,) 8.0-7.7 and 7.55-7.2 (2 H, m, and 4 H, m; Ph and HGN), 3.33 and 3.02 3 H, two d (3: l), J 4.0 and 3.0 Hz, collapse upon exchange with D,O, Me in the Z-and E-form, respectively; m/z 162 (55, M'), 161 (30, M-l), 147 (45), 119 (73, 105 (60),91 (loo), and 77 (95). (f) Methylhydrazine (8.34 ml), acetic acid (15 ml), and water (100 ml) were added during 15 min with stirring to 50 aqueous methylglyoxal (37.4 ml) in water (900 ml). After 1 day the mixture was washed with toluene (4 x 150 ml). Removal of the water at 20 "C gave a residue (9.72 g) which contained 1- N-acetyl(hydroxy)methyl-N-methylhydrazonopropanone (9) (70 by 'H n.m.r.) l-methylhydrazonopropanone(7; R' = R2 Me) (lo), and 1,l'-methylenebis(l-methyl-2-(2-oxopropyl-idene)hydrazine (10) (20).Attempts to purify compound (9) were unsuccessful. The n.m.r. spectrum of an unpurified specimen of (9) exhibited the following signals; S (CDC1,) 6.97 (1 H, q, J 0.9 Hz, HC=N), 5.21 (1 H,s, HCO), 4.4br (1 H, exchangeable,OH), 2.93 (3 H, d, J0.9 Hz, NMe), 2.28 (3 H, s, MeCO), and 2.22 (3 H, s, OCMe); 6, (CDCl,) 202.5 (s, GO), 197.1 (s, conj. GO), 132.2 (d, J 167 Hz, HC=N), 89.9 (d, CO), 33.5 (9, NMe), 25.1 (9, Me), and 23.8 p.p.m. (4, Me). Reactions between the Hydrazones of the a-Oxoaldehydes and Formaldehyde.-(a) 40 Aqueous formaldehyde (0.075 ml) and acetic acid (1.0 ml) were added to a solution of 1-methylhydrazonopropanone (7; R' = R2 = Me) (0.10 g) in water (10 ml).After 2 h the mixture was extracted with dichloromethane (2 x 5 ml). Removal of the dichloromethane afforded me thylenebis 1 -methyl-2-( 2-oxopropy1idene)hydra- J. CHEM. soc. PERKIN TRANS. I 1985 zine (10) (0.098 g, 92), m.p. 106-107 "C. Recrystallization (toluene-ligroin, 1 :5) did not change the m.p. (Found C, 58.5; H, 8.8; N, 15.15. C9HI6N4O2 requires C, 58.65; H, 8.75; N, 15.2); 6 (CDCl,) 6.67 (2 H q, J 0.9 Hz, 2 CH=N), 5.03(2 H, S, CH2), 2.91 (6 H, d, J0.9 Hz, 2 MeN), and 2.31 (6 H, s, 2 Mew), 6, (CDC13) 197.1 (s,GO), 130.0 (d, CH=N), 80.7 (t, CH,), 34.4 (q, MeN), and 23.8 p.p.m. (9, Me-); m/z212 (2, M+),and 113 (100).(b) 2-Methylhydrazonopropanal(6;R' = R2 = Me) (1.00 g) and 4 aqueous formaldehyde (10 ml) were kept for 3.5 h. Extraction with dichloromethane (2 x 50 ml), drying (MgS04), and removal of the dichloromethane gave 6-hydroxy-3,5- dimethyl-3,6-dihydro-2H-1,3,4-oxadiazine (1 1) (0.74 g), m.p. 94-101 "C. Recrystallization at 20 "C (dichloromethane-hexane, without heating) gave the pure product (0.40 g, 31), m.p. 112-114°C (Found: C, 46.35; H, 7.85; N, 21.3. C,HloN202 requires C, 46.15, H, 7.75; N, 21.55); 6 (CDCl,) 4.92br(l H,s,HC),4.35(1 H,d,J7.8Hz)and4.03(1 H,d,J7.8 Hz) (CH,), 3.13br (1 H, s, exchangeable, OH), 2.79 (3 H, s, MeN), and 1.99 (1 H, s, MeC); 6, (CDC1,) 146.1 (s, GN), 85.6 (d, HC), 73.7 (t, CH,), 40.2 (4, MeN), and 19.5 p.p.m.(4, MeC); m/z 130 (78, M+) and 113 (7, M -OH). Acknowledgements Thanks are due to Dr. J. (Dgaard Madsen for the mass spectra and to Prof. A. Kjaer for help with the manuscript. The 13C n.m.r. spectrometer was provided by the Danish Natural Science Research Council and the mass spectrometer by the Danish Council for Scientific and Industrial Research. References 1 R.J. Suhadolnik, 'Nucleoside Antibiotics,' Wiley, New York, 1970, p. 390. 2 J. P. Freeman, J. J. Gannon, and D. L. Surbey, J. Org. Chem., 1969, 34, 187. 3 M. J. Nye and W. P.Tang, Can. J. Chem., 1970,48,3563. 4 M. Regitz and H. J. Geelhaar, Ber., 1968, 101, 1473. 5 B. P.785 185 1957 (Chem. Abstr. 1958, 52, 5478). 6 F. D. Chattaway and H. Irving, J. Chem. SOC.,1931, 786.7 F. D. Chattaway and D. R.Ashworth, J. Chem. SOC.,1933,475. 8 P. J. Fagan, E. E.Neidert, M. J. Nye, M. J. OHare, and W.-P. Tang, Can. J. Chem., 1979,57,904. 9 A. Bertho and H. Nussel, Liebigs Ann. Chem., 1927,457,278. 10 M. Begtrup, P. Skov Larsen, and C. Pedersen, Acta Chem. Scand., 1968, 22, 2476. 11 J. Farkas and Z. Flegelova, Tetrahedron Lett., 1971, 1591. 12 S. Hammerum, Tetrahedron Lett., 1972, 949. 13 R.H. Wiley and G. Irick, J. Org. Chem., 1959,24, 1925. 14 N. Rabjohn and K. B. Sloan, J. Heterocycf. Chem., 1969,6, 187. 15 W. C. Still, M. Chan, and A. Miltra, J. Org. Chem., 1978, 43, 2923. 16 M. Begtrup, Acta Chem. Scand. Ser. B, 1974, 28, 61. 17 J. H. Biel, A. E. Drukker, T.F. Mittchell, E. P. Sprengeler, P.A. Nuhfer, A. C. Conway, and A. Horita, J. Am. Chem. SOC.,1959,81, 2805. 18 C. H. Schmidt, Ber., 1970, 103, 986. 19 M. Begtrup and J. Holm, J. Chem. SOC.Perkin Trans. I, 1981, 503. 20 K.Bodendorfand W. Wossner, Liebigs Ann. Chem., 1959,623, 109. 21 D. Todd, J. Am. Chem. Soc., 1949,71, 1353. 22 M. Ramart-Lucas, J. Hoch, and M. Martynoff,Bull. SOC.Chim. Fr., 1937,481. 23 G. J. Mikol and G. A. Russel, Org. Synth. Coll. Vol. V, 1973,937. 24 V. I. Shveddov, L. B. Altukhova, and A. N. Grinev, J. Org. Chem., USSR, 1966, 2, 387. 25 V. v. Richter and H. Miinzer, Ber., 1884, 17, 1926. 26 M. AIbrand and S. Gelin, Synthesis, 1983, 1030. Received 10th April 1984; Paper 41598
机译:J. CHEM.SOC. PERKIN 译.I 1985 乙二醛与腙的反应:通往 4-羟基吡唑的新途径 Mikael Begtrup“ 和 Hans Peter Nytoft丹麦技术大学有机化学系,OK-2800 Lyngby,丹麦 醛的 N-取代腙在非水条件下与乙二醛反应,得到 N-取代的 4-羟基吡唑;描述了 14 种此类产品。在水存在下,由2-氧代醛腙和乙二醛生成N-取代的3-酰基-4-羟基吡喃啶。结果表明,乙二醛与N-单取代肼以1:1的比例结合,得到2-肼醛作为动力学控制产物。在室温或更低温度下,这些肼醛重新排列成更稳定的2-氧代醛腙,并与乙二醛反应得到N-取代的3-酰基-4-羟基吡唑;描述了 16 种此类产品。这种合成涉及易于获得的起始材料,开辟了一条新的、对于某些衍生物排有的 4-羟基吡唑的途径。吡唑霉素 (l) 是一种抗病毒微生物化合物,它的发现激发了人们对 4-羟基吡唑 (2) 的兴趣,这种化合物的探索程度低于 3-和 5-羟基取代的化合物。报道的 4-羟基吡唑 (2) 的合成分为两类,一类的特征是形成 C-N 键 ~nly,~-~ 另一类涉及 C-C 键形成的 Pand。a-CHZOH重氮酯与烷基丙二酸酯的组合,*-“或烷基腙-锗基乙酸酯与α-氧代乙酸酯的组合,'得到4-羟基吡唑,似乎是C-C键形成型合成的唯一已知例子。通过已知方法可实现的取代模式的固有局限性促使我们寻找 4-羟基吡唑 (2) 的替代途径,所有这些都涉及 C-C 键形成反应。我们在这里描述我们的结果。结果与讨论 对结构(2)的逆合成检查表明,醛腙(3)和乙二醛(4)的反应是一种明显的合成可能性,尽管显然被忽视了(方案1)。事实上,我们发现醛腙(3;R' = Me 或 Ph,R2= H、Me、Et、Pr 或 Ph)和乙二醛 (4;R3= H、Me 或 Ph),当在含乙酸的乙酸丁酯中在无水条件下一起加热时,4-羟基吡唑的收率中等至极好 (2);表1(第1-14项)列出了其中的14个代表。这些结构的分配取决于(i)在m.p.s中的协议[在(2;R' = Ph, R2= H, R3 = Me)] 与该系列先前描述的八种化合物,以及 (ii) 将 'H 和 13C n.m.r. 光谱与真实标本记录的光谱进行比较(表 1 中的条目 3、4、6-9、13 和 14)[“C n.m.r. 光谱结果见表 2.'H n.m.r.结果可作为补充出版物(SUP号)提供。56091,2 页)。*]低醛的腙,(3;R' = Me 或 Ph;R2= H、Me、Et 或 Pr),在实验中,它们是由醛和 N-取代的肼反应原位生成的,然后加入乙二醛,预期的 4-羟基吡唑(2R2 = Me、Et 或 Pr)总是伴随着相应的 3- 未取代类似物 (2;R2 = H),表明甲醛腙的玉米作用 (3;R2= H)。可以想象,这些可能是通过“跨水化作用”产生的,然后是C-C键裂变,如方案2(路径a)所示。* 有关补充出版物计划的详情,请参阅J. Chem. SOC.,Perkin Trans. 1, 1985, Issue 1中的Instructions for Authors (1985)。(2) 方案 1.H H IQJ 方案 2.当在水存在下进行时,化合物(3)和(4)之间的反应产生了3-酰基-4-羟基吡唑,显然来自乙二醛腙和乙二醛(4)之间的反应,前者化合物由(3)和(4)通过“转氢”产生(方案2,82 J.CHEM. SOC. PERKIN TRANS.I 1985 表 1.4-羟基吡唑(2)和(8)的制备分别由腙(3)和(7)制成,产物(2),起始原料(3)和(4)分析(%)发现纯(所需)进入反应的M.p.收率“后备粗产品M.p.再结晶化合物C.p.7A7号R'R2R3条件条件(023介质c.C> (“C) c H N(OC) 1 Me H Me 31 112-1 18 E 120-122 53.C (”C) c H N(OC) 1 Me H Me 31 112-1 18 E 120-122 53.C (“C) C H N(OC) 1 Me H Me 31 112-1 18 E 120-122 53.35 7.4 24.75 (53.55) (7.2) (25.0)2 我 H 电话 35 140-142 C 149-150 68.65 5.75 15.95 (68.95) (5.8) (16.1)3 我 我 23 174-177 F 18 1-1 83 I 87-1 89' 4 我 我 Ph 15' 149-154 C 153-1 55 160' 70.0 6.5 14.75 (70.2) (6.45) (14.9)5 我 Ph 我 46 177-1 79 C 178-180 69.8 6.4514.8 14 175-177 (70.2) (6.45) (14.9)6 我 Ph Ph 86 142-149 C 170-172 175-177' 7 Ph H Me 35 124-126 D 136 137-13gk31 124-126 8 Ph H Ph 66 157-161 C 180-182 179' 76.55 5.2 12.0 (76.25) (5.1) (1 1.85)9 Ph Me Me 23 Oi1 h 138-140' 10 Ph et Me 27 1 22- 125 I 134-135 71.0 7.1 13.7 19' 122-125 (71.25) (7.0) ( 13.85)11 Ph Pr“ Me 14/ 63-7 1 I88-90 72.2 7.55 12.65 (72.2) (7.45) (1 2.95) 12 Ph Ph Me 35 119-133 C 144 76.75 5.65 11.0 (76.8) (5.65) (1 1.2)13 Ph Me Ph 459 153-1 58 C 170 175' 76.65 5.65 11.0 (76.8) (5.65) (11.2)14 Ph Ph 70 148-149 G,J 148-149 252' 80.6 5.2 8.7 (80.8) (5.15) (8.95) 产品 (8), 从起始材料 (4) 和 (7) 15 Me Me H 90 85--90 A 92 51.从起始材料 (4) 和 (7) 15 Me Me H 90 85--90 A 92 51.从起始材料 (4) 和 (7) 15 Me Me H 90 85--90 A 92 51.从起始材料 (4) 和 (7) 15 Me Me H 90 85--90 A 92 51.1 5.75 19.85 (51.4) (5.75) 20.0) 16 我我我 53 48-6 1 B 66-67 54.15 6.5 17.9 (54.55) (6.55) (18.15) 17 我我 74 110-1 15 A 119-121 66.95 5.65 12.85 (66.65) (5.6) 1 (12.95) 18 我 Ph H 66 64-66 A 68-69 65.2 5.0 13.75 (65.35) (5.0) (13.85) 19 我 Ph Me 82 6 1-67 B,H 87-88 67.1 5.55 12.6 57 67-68 (66.65) (5.6) (12.95) 20 Me Ph Ph 52 92-98 B 107-108 73.55 5.05 10.15 0 (73.35) (5.05) ( 10.05) 21 Ph H H 42 132-136 C,H 143-145 63.5 4.2 14.8 (63.8) (4.3) (14.9) 22 Ph H Me 46 76-80 A 81-82 65.55 5.05 13.95 35 76-80 (65.35) (5.0) (13.85) 23 Ph H Ph 100 122-1 25 C,H 130 72.7 4.55 10.65 22 122-125 (72.7) (4.6) (10.6)24 Ph Me H 40 92-98 A 98-100 65.4 5.0 13.85 (65.35) (5.0) (13.85)25 Ph Me Me 61 79-80 A 79-8 1 66.8 5.65 12.9 38 76-80 (66.65) (5.6) (12.95)26 Ph Me Ph 91 121-122 H 121 73.25 5.05 10.0 (73.35) (5.05) (10.05) 27 Ph Ph H 84 101-105B 106-107 72.85 4.55 10.6 (72.7) (4.6) (10.6)28 Ph Ph Me 46 98-99 B 101-103 73.75 5.15 9.95 26 101-I03 (73.35) (5.05) (10.05) 有关详细信息,请参阅实验部分。当使用反应条件(b)、(e)或(f)时,在siru中制备腙(3)和(7)。A, 己烷;B, 木原素(b.p. 80-1 10 “C);C, 乙酸乙酯;D, 乙酸乙酯-己烷;E, 丙-2-01;F: 乙醇;G, 氯仿;H: 甲醇;I, 甲苯;J,甲苯己烷。大多数4-羟基吡唑是无色的,只有少数例外是略带黄色的。此外,化合物(2;R' = R3 = Me, R2 = H) (27%) 存在于乙醚和乙酸乙酯提取物 (n.m.r.) 中。此外,化合物(8;从碱性溶液的二氯甲烷提取物中分离出R'=Me,R2=R3=Ph)(46%)。除去二氯甲烷,并按(e)中处理残留物。f 此外,还形成了化合物(2R' = Ph,R2 = H,R3 = Me)。产量是在处理条件下指定的。此外,化合物(8;R' =R2 = R3 = Ph) (26%) 如检查条件 (h) 中所述分离。将产物转化为其结晶的0-乙酰基衍生物,如在处理条件(t)下所述。参考文献 8.j 参考文献26。参考文献 6.J. CHEM.SOC. PERKIN 译.I 1985 83 表 1 (conrinued) 产物 (2)、原料 (3) 和 (4) 分析 (%) 发现纯 M.p. 的收率 报告 (必需的)进入反应 后备粗产品 M.p. 重结晶化合物 M.p. /pA-, No.R' RZ R3 条件 条件 (%) (“C) 中 (”C) (“C) C H N 29 Ph Ph Ph (c) (4) 87 154-1 59 C 159-160 77.55 4.7 8.05 (77.65) (4.75) (8.25) 30 0 亿 Me Me (.f) (1) 39 4651 B 45 67.6 6.05 12.15 (67.8) (6.15) (1 2.15) 表 2.溶解在OS~M-CDCI中的4-羟基吡唑(2)和(8)的3CN.m.r.位移(相对于CDCI,中心峰值为6 76.90 p.p.m),化合物(2)G/p.p.m. 3-Me或5-Me R' R2 R3 C--O c-3 C-4 c-5 c-1' c-2' c-3' C-4' NMe /-A-, COMe Me H Me 126.8 138.3 125.4 36.2 7.8 Me Me Me H Me“ Phb 136.0 127.2 135.6 138.8 125.6 129.8 128.6 129.1 128.1 35.8 37.5 10.0 8.0我 我 9 139.4 128.5 125.3 124.3 129.0 128.1 129.0 128.0 126.2 127.4 36.9 36.6 9.9 8.2 9.1 我我 136.9 139.4 125.3 139.4 123.9 128.6 126.7 9.7 9.1 Ph Ph Ph“ 132.8 137.6 131.5 化合物 (8) 我128.0 128.6 128.6 128.3 40.1 37.3 7.6 25.3 25.2 我 190.1 135.1 149.4 115.4 136.2 128.1 130.2 132.9 40.4 我 190.1 134.5 145.6 122.8 136.4 128.0 130.2 132.8 37.5 7.6 我 Ph 190.0 135.0 146.4 127.7 39.1 Ph H H“ 185.6 139.0 144.7 113.4 138.13.0 7 118.2 128.6 126.6 Ph Ph H H Me Ph 189.4 189.6 137.7 138.1 142.9 143.2 124.5 127.2 139.1 124.4 129.1 128.6 8.9 Ph Me H 198.5 137.8 147.0 112.4 139.6 119.2 129.3 127.3 25.5 Ph Me Me 198.5 136.9 143.5 123.8 139.4 124.6 129.1 128.4 9.0 25.5 Ph Me Ph 198.7 137.2 143.8 127.325.6 a溶剂:CDC13-(CD3)zS0(12:1)。饱和溶液。路径 b)。这种偶然的观察结果促使对 z-氧代醛腙 (7) 的合成进行了更详细的 H R2 研究,作为生产潜在有用的 3-酰基-4-羟基吡唑 (8) 的起始材料。在0“C或以下,甲基乙二醛与甲基或苯肼结合(5;R' = Me 或 Ph) (方案 3) 得到肼醛 (6;R' = Me 或 Ph,R2 = Me)在动力学控制反应中。在酸性溶液中,异构化成更稳定的氧腙(7;IR' = Me 或 Ph,R2 = Me) 在室温下发生,使得最后命名的化合物易于获得合成 3-酰基-4-羟基吡唑的起始材料 (8)。六次氧腙(7;R1 = Me, Ph, or PhCH,, R2 = H, Me, or Ph)被制备并转化为表1中列出的16种新的3-酰基-4-羟基吡唑(8)(条目15-30);R2 通过比较它们的 'H 和 13C n.m.r. 光谱与化合物的光谱 (8;R' = Ph, R2 = H, R3 = Me) (条目 22),其结构由方案 3 建立。氧化为羧酸,然后进行脱羧反应,得到与4-真实标本相同的产物在任何情况下都没有发生对氧肼(7)的明显重排羟基-5-甲基-1-苯基吡喃~ole.~肼醛(6;R' = Me 或 Ph, R2 = Me) 在缩合反应之前产生。N-取代的5-乙酰基-4-羟基吡唑的形成;仔细监测甲基乙二醛和 Me Me(10)(111 化合物 (5;R' = Me) (方案 3) 作为时间的函数揭示了 (6 R' = R2 = Me) 的顺序出现,(7;R' = R2= Me),一种二酮,分离并鉴定为(9),最后是3-酰基-4-羟基吡唑(8;R' = R2 = R3= Me),并伴有甲醛氨基醛 (10),通过与化合物合成的样品 (7;R' = R2 = Me)和甲醛(14)显然不是化合物(8;R' = R2 = R3= Me),因为在反应混合物中既没有观察到预期的3-乙酰基-5-羟基-l,4-二甲基吡唑,也没有观察到可能的5-乙酰基-4-羟基-1-甲基吡唑。化合物(10)的形成需要甲醛或其等价物的中间体,可以想象,甲醛是由化合物的反应产生的(7;R' = R2= Me) 和 (4 R3= Me) 如方案 2 所述。有趣的是,肼醛 (6 R' = R2 = Me) 以 1 ∶1 的比例与甲醛反应,得到具有二氢-1,3,4-恶二嗪衍生物预期特性的产物 (11)。综上所述,醛腙和乙二醛都是容易获得的起始原料,非常适合合成4-羟基吡唑,包括3-酰基衍生物。非水性或水性条件之间的选择取决于目标分子的结构,可以很容易地根据上述讨论进行选择。在减压下除去实验溶剂。如参考文献 15 所述进行快速色谱。使用t.l.c.、m.p.s、i.r.、'H n.m.r.和质谱法确认所有化合物的纯度和特性。'H N.m.r.光谱是在布鲁克HX-90仪器上记录的。“C N.m.r.谱图是在布鲁克WH-90仪器上获得的,并如前所述进行分配.'6质谱是在V.G.Micromass 7070 F仪器上获得的。采用文献方法制备了苄基肼、甲醛苯腙、乙二草苯腙、1-苯基肼-2-苯乙酮、2o苯甲醛甲基腙2、苯甲醛苯腙22。通过搅拌商用50%水溶液(2.60ml),乙酸正丁酯(10ml)和无水硫酸钠(2g)15分钟来制备无水甲基乙二醛。将有机溶液倒出,用无水硫酸镁(2g)搅拌15分钟,过滤。无水苯基乙醛是通过蒸馏其水合物而得的.23 醚是指乙醚。J. CHEM. SOC. PERKIN 译.I 1985 4-羟基吡唑的制备-反应条件。(a)将腙(3)或(7)(7.75mmol)与乙二醛(4)(15.7mmol)在0“C下混合,溶于干燥的乙酸正丁酯,硫酸镁(1.0g)和乙酸(1.0ml)中。在20“C下继续搅拌10分钟,然后在110°C下搅拌1h。 (b)通过在0”C下搅拌将乙酸丁酯(3.0ml)中的醛(7.75mmol)与0“C的肼原位制备。在0“C下继续搅拌10分钟,然后在20”C下搅拌1小时。在甲醛的情况下,使用40%水溶液(0.58ml),并加入无水硫酸钠(1.0g)。将其倒出并用乙酸丁酯(2 x 1 ml)提取。(c)将腙(3)或(7)(7.75毫摩尔)、乙二醛(7.75毫摩尔)(乙二醛在40%中,甲基乙二醛在50%水溶液中)和乙酸(21毫升)在110“C下搅拌1小时。(e)将水溶液中的肼(5)(7.75mmol),乙二醛(4)(23.3mmol)和水(40ml)加热回流3小时。检查条件。(a) 反应混合物在仍然热的情况下过滤。用沸腾的乙酸丁酯(2×5ml)萃取并除去溶剂,得到残留物,将其溶解在lw-氢氧化钠水溶液(20ml)中。用二氯甲烷(2×20ml)洗涤,用盐酸酸化至pH约2,用二氯甲烷(2×10ml)萃取,用饱和碳酸氢水溶液(2×5ml)洗涤(仅当苯基乙二醛用作2-氧代醛时才需要洗涤),干燥(MgS04)并除去二氯甲烷,产生残留物,用沸腾的乙酸乙酯(20 + 4×5ml)提取。通过硅胶(2.5 g)和活性炭(1 g)过滤热提取物。除去乙酸乙酯得到粗品。(6)在羟基吡唑的钠盐确实分离的情况下,将其分离并用乙酸乙酯(2×20ml)洗涤。将水性滤液用二氯甲烷(2×20ml)洗涤,并与洗涤的盐混合。将混合物酸化,并继续进行(a)中的检查。(c) 或者,通过加入水(20毫升)使钠盐溶解。用二氯甲烷(2×20ml)洗涤,用盐酸酸化至pH约2,用二氯甲烷(3×20ml)萃取,干燥(MgS04),通过硅胶(1g)和活性炭(0.5g)过滤,并除去二氯甲烷,得到残留物,用沸腾的木质素(b.p.80-1 10“C)(3×5ml)提取。将体积减小至约2ml,并将混合物冷却至0“C。过滤得到粗品。(d)当羟基吡唑微溶于二氯甲烷并以结晶态分离时,如(a)所示进行检查。然而,在酸化后,将混合物放置过夜。过滤,用水(2×2ml)洗涤,干燥,用沸腾的乙酸乙酯(20 + 4 x 5ml)萃取,通过硅胶(2.5g)和活性炭(1g)过滤热提取物,并除去乙酸乙酯,得到残留物,用沸腾的己烷(3×5ml)和20“氯仿(2 + 3 x 1mi)研磨, 以及收集在过滤器上的残留物。(e) 在羟基吡唑酸性较低的情况下,反应后在0.1 kPa和40°C下小心地除去溶剂。 将残留物用IM-氢氧化钾(40ml)和乙醚(10ml)搅拌10分钟。过滤,分离乙醚,并用乙醚(2×10ml)连续洗涤沉淀物和水溶液,然后对组合沉淀物和水溶液进行酸化,并继续进行检查,如(a).cf)当钾盐微溶时,溶剂J.CHEM. SOC. PERKIN TRANS.I 1985如(e)中除去,然后用沸腾的2~-氢氧化钾(10ml)搅拌2-3分钟。冷却至0“C,过滤,用乙醚(20ml)搅拌,过滤,用二氯甲烷(3×5ml)洗涤,得到残留物,用沸腾的盐酸(5ml)搅拌2-3分钟。冷却至O“C,过滤,并用水(5毫升)洗涤得到粗产品。(七)如(a)所示开始检查,但由于羟基吡唑是相对碱性的,因此在pH 6时停止与盐酸的酸化,然后除去水并用乙醇(3 x 5 ml)提取残留物。除去乙醇留下残留物,用沸腾的丙酮(5×10ml)研磨。除去丙酮,将残留物溶解在甲醇(10ml)中,如(a)所示通过硅胶和活性炭过滤,除去甲醇,并用己烷(2×10ml)和乙醚(2×2.5ml)洗涤残留物,得到粗品。(h) 如(a)项所述启动了检查工作。过滤掉不溶于氢氧化钠的物质。程序(a)继续产生4-羟基-3-甲基-1,5-二苯基吡唑(2R' = R3= Ph,R2 = Me)的滤液。将残留物与乙醚搅拌,继续按cf进行处理,得到3-苯甲酰基-4-羟基-1,5-二苯基吡唑(8;R = R2 = R3 = Ph)。(i) 与(g)相同,但用乙醚洗涤后,用乙酸乙酯(2×1毫升)洗涤,留下粗产品。(j)用二氯甲烷(3 x 25 ml)萃取反应混合物。除去二氯甲烷得到粗品。(k)如G),但所得材料如(a)所示。(1) 同(k)项。将得到的材料溶解在乙酸乙酯-己烷(1:4;7.8ml)中。通过硅胶(2g)过滤溶液,并用洗脱液(2.5ml)提取两次硅胶。滤液蒸发至干。(米)将反应混合物用水(60ml)稀释,加入33%氢氧化钠水溶液,直至溶液pH达到6,将混合物冷却至0“C,过滤。用沸腾的木质素(3×5ml)提取残留物,并按(c)分离产物。(n) 与(m)相同,但过滤用二氯甲烷(4 x 25 ml)萃取代替,然后除去二氯乙烷。(0)加入33%氢氧化钠水溶液,直到pH达到10,保持温度低于30“C.过滤,用水(20ml)洗涤,滤液酸化至pH约2(盐酸),用二氯甲烷萃取,并按(n)中处理,得到粗品。(p) 如(a)所示进行检查,酸化至pH 6。然后对粗产物进行快速色谱(乙酸乙酯-己烷,1:1)。第三部分(RF0.19)含有4-h ydrox吡唑。(4)检查按(a)进行。然后快速色谱法(乙酸乙酯己烷1:1)先得到3-乙基-4-羟基-5-甲基-1-苯基吡唑(2;R' = Ph, R2 = Et, R3 = Me),然后 4-羟基-5-甲基-1-苯基吡唑(2R' = Ph,R2 = H;R3 = 我)。(r) 同样,使用快速色谱法(乙酸乙酯-己烷 1:1)分离产物(2;r' = ph,r2 = et,it3 = me) 和 (2;R' = Ph,R2 =H,R3 = Me)。(秒)快速色谱法(乙酸乙酯-己烷 1:2)用于分离 3-乙酰基-4-羟基-5-甲基-L-苯基吡唑(8;R' = Ph, R2 = R3 = Me), 4-羟基-5-甲基-3-丙基-1-苯基吡唑 (2;R' = Ph,R2 = Pr“,R3 = Me)和化合物 (2;R' = Ph,R2 = H,R3 = Me)。(吨)遵循程序(a),但由于羟基吡唑相对碱性,酸化在pH 6时停止。用二氯甲烷(2×10ml)萃取,干燥(MgSO),除去二氯甲烷,制备t.1.c。[在平板上用浓缩氨水保持0.5小时,然后立即用乙酸乙酯-己烷(1:l)洗脱]得到4-羟基-3,5-二甲基-L-苯基吡唑(2;R' = Ph, R2 = R3 = Me) (RF0.21) 为黄色油。盐酸盐,m.p. 165-167“C(丙烷-2-01)。0-乙酰基衍生物,熔点55-56“C(己烷)(发现:C,68.0;H,6.15;N,12.15。Cl,H14N202 需要 C, 67.8;H,6.15;N, 12.15%);6 (CDC13) 7.45-7.2 (5 H, m, Ph), 2.29 (3 H, s, MeC02), 2.17 (3 H, s, 3- 或 5-Me), 2.16 (3 H, s, 5- 或 3-Me)。下一部分含有4-羟基-1,5-二苯基吡唑(2;R' = Ph,R2 = H,R3 = Ph)。(u) 除去溶剂,得到残留物,快速色谱(二氯甲烷),得到4-羟基-1,3,5-三苯基吡唑(2;R' = R2 = R3 = Ph) (RF0.47)。化合物的转化 (8;R' = Ph, R2 = H, R3 = Me) 变成化合物 (2;R' = Ph, R2 = H, R3 = Me).-将硝酸银(5.2g)在水(10ml)中的溶液加入到化合物(8;R' = Ph, R2 = H, R3= Me) (2.33g)在33%氢氧化钠(5ml)中。将混合物加热至80“C10分钟,过滤,用水(2×20ml)提取残留物,得到酸化(盐酸)至pH 2的滤液并用二氯甲烷(50+10ml)萃取。用4%碳酸氢钾水溶液(2×50ml)萃取有机溶液,用二氯甲烷(3×25ml)洗涤水溶液,如上所述酸化,并用二氯甲烷(3×50ml)萃取。除去二氯甲烷得到4-羟基-5-甲基-1-苯基吡唑-3-羧酸(2;R' = Ph,R2 = C02H,R3 =Me) (1.08 g,43%) 6 (CDCI,) 7.88br(2 H,s,可交换,C02H 和 OH),7.46 (5H,s,Ph) 和 2.26 (3 H,s,Me)。将物料加热至24G245“C45分钟,残余物用二氯甲烷(50ml)萃取。用1M-氢氧化钠(50ml)萃取溶液,用二氯甲烷(3×25ml)洗涤水提取物,如上所述酸化,并用二氯甲烷(2×50ml)萃取。除去二氯甲烷得到棕色油(0.30 g),快速色谱(乙酸乙酯-己烷,1:1),得到少量的两种未鉴定化合物,然后是化合物(2;R' = Ph,R2 = H,R3 =Me) (0.10 g, 1273, m.p.136“C (乙酸乙酯) (lit.,6 137-138 ”C)。混合的m.p.和i.r.,'H和13C n.m.r.光谱与真实样品的光谱相同。a-氧代醛腙的制备。-(a)将水(200ml),甲醇(50ml),乙酸(20ml)和40%甲基乙二醛水(14.6ml)的混合物冷却至-15“C.搅拌加入甲基肼(10ml),温度保持在-12”C.在-12至-15“C.下继续搅拌30分钟,-12至-15”C.加入33%氢氧化钠,直到达到pH&7,保持温度低于-9“C。 用二氯甲烷(200 + 2 x 75ml)并除去二氯甲烷,得到半结晶物质,在-25“C下保持2小时,过滤得到黄色的2-甲基肼丙醛(6;R' = R2 = Me) (4.26 g, 26%), m.p.58-64 “C. 重结晶 (甲苯-己烷, 1 :4) 将 m.p. 提高到 68- 70 ”C(发现: C, 47.15;H,8.0;N,27.35。C,H,N20 需要 C, 48.0;H, 8.05;N, 28.0%);6 (CDCI,) 9.29 (1 H, s, CHO), 6.18br (1 H, s; 可交换, NH), 3.31 (3 H, d, J 3.8 Hz, 在 6 6.18, NMe 和 1.78 (3 H, s, CMe) 的照射下坍塌;m/z 100 (loo%, M+).(6)将甲基肼(8.34ml)和乙酸(15ml)的水溶液(100ml)在搅拌下加入到1.0%甲基乙二醛(925ml)水溶液中,搅拌15分钟。将混合物在 20°C 下保存 1 天,并用二氯甲烷 (4 x 150 ml) 萃取。用水(4×40ml)洗涤有机溶液,除去二氯甲烷86,得到l-甲基肼丙酮(7;R' = RZ = Me) (4.16 g, 33%),为黄色晶体,熔点 63-65“C(甲苯-木质素,1 :2)。升华后,熔点为67-49“C(发现C,47.4;H, 8.05;N,27.7。C4C8N20 需要 C,48.0;H, 8.05;N, 28.0%);6 (CDCl,) 6.86 (1 H, s, HC), 6.61br (1 H, s, 可交换, NH), 2.96 (3 H, dd, JHNMc4.4 和 0.7 Hz, MeN) 和 2.31 (3 H,s, MeC);m/z 100 (loo%, M+).(c)将水(200ml)、甲醇(50ml)、乙酸(20ml)和40%甲基乙二醛水溶液(14.6ml)冷却至0“C.在1min内加入苯肼(9.8ml),搅拌并在冰浴中冷却。在0“C下搅拌10分钟后,用二氯甲烷(200ml)在0”C下提取混合物。有机溶液用饱和碳酸氢钠水溶液(30ml)洗涤并蒸干。残留物用沸腾的己烷(3×50ml)洗涤,并用甲苯(29ml)重结晶,冷却至-25“C,生成2-苯基肼丙醛(6;R' = Ph, R2 = Me) (7.62 g, 48%), 熔点 123-124 “C (lit.,24 126 ”C);6(CDC1,) 9.45 (1 H, s, CHO), 8.0br (1 H, s, 可交换, NH), 7.5-4.9 (5 H, m, Ph) 和 1.98 (3 H, s, Me);m/z 169 (loo%, M')。(d)将40%甲基乙二醛水溶液(7.7ml)和1~-盐酸加入苯肼(4.9ml)的甲醇溶液(100ml)中。将混合物加热回流4小时,并在20“C下保持1小时。过滤后,用50%甲醇水溶液(25ml)、25%甲醇(50ml)和水(50ml)洗涤残渣,得到1-苯基肼基丙烷-2-酮(7;R' = Ph, R2 = Me) (5.3 g, 65%), 熔点 134-142°C. 重结晶(甲苯)得到熔点149“C(lit.,25 148-149”C)。(e) 苯基乙二醛(1.00ml)、甲醇(50ml)、乙酸(6ml)、甲基肼(0.51ml)和水(50ml)混合并保存1天。用二氯甲烷(3×20ml)萃取,除去二氯甲烷,并在0.13kPa下对P,O干燥,得到浅棕色1-甲基肼-2-苯基乙酮(7;R' = Me, R2= Ph) (1.33 g, 93%) 作为 Z 型和 E 型的 3:1 混合物(发现:C,66.45;H,6.1;N, 16.35.C9HloN,0 需要 C, 66.65;H,6.2;N, 17.25%);6 (CDCl,) 8.0-7.7 和 7.55-7.2 (2 H, m 和 4 H, m;Ph 和 HGN),3.33 和 3.02 [3 H,2 d (3:l),J 4.0 和 3.0 Hz,分别以 Z 和 E 形式与 D、O、Me 交换时坍塌];m/z 162 (55%, M')、161 (30, M-l)、147 (45)、119 (73、105 (60)、91 (loo) 和 77 (95)。(f)在15分钟内加入甲基肼(8.34ml),乙酸(15ml)和水(100ml),搅拌至50%甲基乙二醛水溶液(37.4ml)的水溶液(900ml)。1天后,用甲苯(4×150ml)洗涤混合物。在20“C下除去水,得到含有1-[N-乙酰基(羟基)甲基-N-甲基肼基]丙酮(9)(70%由'H n.m.r.)l-甲基肼丙酮(7;R' = R2 Me) (lo%) 和 1,l'-亚甲基双(l-甲基-2-(2-氧代丙基亚甲基)肼] (10) (20%)。纯化化合物(9)的尝试未成功。(9)未纯化标本的n.m.r.谱图显示以下信号;S (CDC1,) 6.97 (1 H, q, J 0.9 Hz, HC=N), 5.21 (1 H,s, HCO), 4.4br (1 H, 可交换,OH), 2.93 (3 H, d, J0.9 Hz, NMe), 2.28 (3 H, s, MeCO) 和 2.22 (3 H, s, OCMe);6, (CDCl,) 202.5 (s, GO), 197.1 (s, conj. GO), 132.2 (d, J 167 Hz, HC=N), 89.9 (d, CO), 33.5 (9, NMe), 25.1 (9, Me) 和 23.8 p.p.m. (4, Me).将α-氧代醛和甲醛的腙类反应-(a)40%甲醛水溶液(0.075ml)和乙酸(1.0ml)加入到1-甲基肼丙酮(7;R' = R2 = Me) (0.10 g) 在水 (10 ml) 中。2小时后,用二氯甲烷(2×5ml)萃取混合物。去除二氯甲烷为我提供了thylenebis[1-甲基-2-(2-氧代丙基1亚基)hydra- J. CHEM. soc. PERKIN TRANS.I 1985 zine] (10) (0.098 g, 92%), m.p. 106-107 “C. 重结晶 (甲苯-木脂素, 1 :5) 没有改变 m.p. (发现 C, 58.5;H,8.8;N,15.15。C9HI6N4O2要求 C,58.65;H,8.75;N,15.2%);6 (CDCl,) 6.67 (2 H q, J 0.9 Hz, 2 CH=N), 5.03 (2 H, S, CH2), 2.91 (6 H, d, J0.9 Hz, 2 MeN) 和 2.31 (6 H, s, 2 Mew), 6, (CDC13) 197.1 (s,GO), 130.0 (d, CH=N), 80.7 (t, CH,), 34.4 (q, MeN) 和 23.8 p.p.m. (9, Me-);m/z212 (2%, M+) 和 113 (100)。(b) 2-甲基肼丙醛(6;将R'=R2=Me)(1.00g)和4%甲醛水溶液(10ml)保持3.5小时。用二氯甲烷(2×50ml),干燥(MgS04),除去二氯甲烷,得到6-羟基-3,5-二甲基-3,6-二氢-2H-1,3,4-恶二嗪(1,1)(0.74g),熔点94-101“C.在20”C(二氯甲烷-己烷,不加热)下重结晶,得到纯产物(0.40克,31%),熔点112-114°C(发现:C,46。35;H,7.85;N,21.3。C,HloN202要求C,46.15,H,7.75;N, 21.55%);6 (CDCl,) 4.92br(l H,s,HC),4.35(1 H,d,J7.8Hz)和 4.03(1 H,d,J7.8 Hz) (CH,), 3.13br (1 H, s, 可交换, OH), 2.79 (3 H, s, MeN) 和 1.99 (1 H, s, MeC);6, (CDC1,) 146.1 (s, GN), 85.6 (d, HC), 73.7 (t, CH,), 40.2 (4, MeN) 和 19.5 p.p.m.(4, MeC);m/z 130 (78%, M+) 和 113 (7%, M -OH)。致谢 感谢 J. (Dgaard Madsen 博士提供质谱图,感谢 A. Kjaer 教授对手稿的帮助。13C n.m.r.光谱仪由丹麦自然科学研究委员会提供,质谱仪由丹麦科学和工业研究委员会提供。参考文献 1 R.J. Suhadolnik,“核苷类抗生素”,Wiley,纽约,1970年,第390页。2 J. P. Freeman, J. J. Gannon, and D. L. Surbey, J. Org. Chem., 1969, 34, 187.3 M. J. Nye 和 W. P.Tang, Can. J. Chem., 1970,48,3563.4 M. Regitz 和 H. J. Geelhaar, Ber., 1968, 101, 1473.5 B. P.785 185 1957 (Chem. Abstr. 1958, 52, 5478)。6 F. D. Chattaway 和 H. Irving, J. Chem. SOC.,1931, 786.7 F. D. Chattaway and D. R.Ashworth, J. Chem. SOC.,1933,475.8 P.J.费根、E.E.内德特、M.J.奈、M.J.奥哈尔和W.-P.唐化学学报, 1979,57,904.9 A. Bertho 和 H. Nussel,Liebigs Ann. Chem.,1927,457,278。10 M. Begtrup, P. Skov Larsen, and C. Pedersen, 化学学报, 1968, 22, 2476.11 J. Farkas 和 Z. Flegelova,Tetrahedron Lett.,1971 年,1591 年。12 S. Hammerum,Tetrahedron Lett.,1972年,第949页。13 R.H.威利和G.伊里克,J.Org。化学, 1959,24, 1925.14 N. Rabjohn 和 K. B. Sloan, J. Heterocycf.化学, 1969,6, 187.15 W. C. Still, M. Chan, and A. Miltra, J. Org. Chem., 1978, 43, 2923.16 M. Begtrup, Acta Chem. Scand. Ser. B, 1974, 28, 61.17 J. H. Biel, A. E. Drukker, T.F. Mittchell, E. P. Sprengeler, P.A. Nuhfer, A. C. Conway, and A. Horita, J. Am. Chem. SOC.,1959,81, 2805.18 C. H. Schmidt, Ber., 1970, 103, 986.19 M. Begtrup 和 J. Holm, J. Chem. SOC.珀金译。我,1981 年,503。20 K.Bodendorfand W. Wossner, Liebigs Ann. Chem., 1959,623, 109.21 D. Todd, J. Am. Chem. Soc., 1949,71, 1353.22 M. Ramart-Lucas、J. Hoch 和 M. Martynoff,Bull。SOC。噗噗。神父,1937,481。23 G. J. Mikol 和 G. A. Russel,Org. Synth。第五卷,1973,937。24 V. I. Shveddov, L. B. Altukhova, and A. N. Grinev, J. Org. Chem., 苏联, 1966, 2, 387.25 V.诉Richter 和 H. Miinzer,Ber.,1884 年,17 年,1926 年。26 M. AIbrand 和 S. Gelin,综合,1983 年,第 1030 页。收稿日期:1984年4月10日;描述 41598

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号