首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Azepinones. Part 3. Reactions of simple 1H-azepin-3(2H)-ones with electrophiles
【24h】

Azepinones. Part 3. Reactions of simple 1H-azepin-3(2H)-ones with electrophiles

机译:Azepinones。第 3 部分。简单的1H-氮杂卓-3(2H)-酮与亲电试剂的反应

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM.SOC. PERKIN TRANS. 1 1990 Azepinones. Part 3.'r2 Reactions of Simple 1H-Azepin-3(2H)-ones with Elect rop hiIes Hamish McNab," Lilian C. Monahan and, in part, Alexander J. Blake Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ The dienaminone conjugated system of 1H-azepin-3(2H)-ones (1) and (2) is active towards electrophiles at either oxygen or carbon centres. Analysis of 'H and 13C NMR spectra shows that 0-protonation (trif luoroacetic acid) and 0-alkylation (triet hyloxonium tetraf Iuoro borate) take place. Sequential deuterium exchange at the 4-, 6-and 2-positions of (1) occurs via the free base. Treatment of (1) or (2) with N-halogenosuccinimides gives 4-halogeno and 4,6-dihalogeno products. The X-ray crystal structure of the 4-chloro derivative (11) shows that the halogen substituent has little effect on the geometry of the ring.The lH-azepin-3(2H)-one system e.g. (1) contains a planar electron-rich dienaminone system, which is potentially active towards electrophiles at carbon and oxygen centres (Fig. 1). The (1) R=Me (3) (4) X = H (2) R = Ph (5) x = CI CE+ A R A Fig. 1. former reactions are well known for the related pyridin-2-ones (3),5*6which give 3- and/or 5-substituted products by nitrati~n,~ diazo-coupling,* halogenation or deuteriation under acid conditions." Similarly, the lH-azepin-2(3H)-one (4) gives the 6-chloro compound (5) on treatment with N-chlorosuccin- imide.g Our recent studies of the lH-pyrrol-3(2H)-one system (6) have included 0-protonation and alkylation,' ' and electrophilic substitution; l2 in this paper we report the behaviour of their vinylogues: azepinones viz.(1) and (2) under corresponding conditions. The 1-methylazepinone (1) is smoothly protonated in trifluoroacetic acid to give a solution which is stable at room temperature for several weeks. Because of the unexpected l1 spectroscopic changes which accompany protonation (see below), an authentic 0-substituted azepinium derivative was synthesised by treatment of a methylene dichloride solution of compound (1) with triethyloxonium tetrafluoroborate. When this reaction was carried out in the presence of anhydrous potassium carbonate, the salt (7) was obtained as an un-contaminated oil which nevertheless could not be crystallised.It showed closely similar NMR spectra to those of the azepinone (1) in acid solution, which we therefore conclude has undergone 0-protonation to give compound (8). Assignment of the 'H NMR spectra of the salts (7) and (8) (Table 1) is possible by inspection. The electron-rich sites (4-H and 6-H) occur in relatively shielded positions as a doublet and doublet of doublets, respectively, whereas the electron-deficient sites (C-7and C-5) occur as a deshielded doublet and doublet of doublets, respectively (cf. ref. 1). Unambiguous identification of the 13C NMR peaks of the protonated azepinone (8) (Table 2) was made by specific decoupling of each of the above proton signals; assignment of the corresponding spectrum of (7) clearly follows by analogy.The major effects of protonation on the NMR spectra of model enaminones I3-which are also found in the lhl-pyrrol- 3(2H)-one system ''-include: (a), equalisation of vicinal coupling constants (3JHH) across the conjugated system due to bond order effects; (b), increase in the magnitude of '.ICH associated with the positive charge; l3 (c), a similarly induced high frequency shift of all signals in the 'H NMR spectrum and of the signal due to the carbon atom a to the nitrogen in the '3C NMR spectra though the position of the P-carbon atom signal is relatively unaffected; and (d)a low frequency shift of the signal due to the carbonyl carbon atom, owing to reduction of the anisotropic effect of the carbonyl group.In general terms, effects (b)-(d) are also followed in the lH-azepin-3(2H)-one series (Tables 1 and 2) though the deshielding effect on the carbon a to the nitrogen (C-7) is also felt at the other electron deficient site (C-5),and the shielding of the carbonyl signal (C-3; 26.5 ppm shift) is massive by comparison with that of the enaminones '*I3 (ca. 10 ppm). However, the dramatic effects on 3JHH (Table 1) and the divergence of the 13CNMR shifts of the electronically similar sites C-4 and C-6 (Table 2) are clearly abnormal. It is possible that these may be explained by varying contributions from the canonical forms (8A-E) (Fig. 2). In particular the large size of 3J5,6indicates a large bond order across these positions, as found in the resonance structures (8D) and (8E), and the observed trends in chemical shifts are consistent with this picture.An indication of the relative reactivity of the electrophilic sites of the lH-azepin-3(2H)-one system was obtained by the observation of the rate of deuterium incorporation in 2Htrifluoroacetic acid solution. 'H NMR spectroscopy showed immediate changes in the signal of the 5-position and less rapid change of the signal corresponding to the 7-position, Table 1. 'H NMR parameters of the cations (7)and (8). Compound Parameter 2-H 4-H J. CHEM. SOC. PERKIN TRANS. 1 1990 6-H 7-H 3J4,5 3J5.6 3J6.7 6.63 8.04 7.7 11.5 5.0 +1.46 +1.32 -3.3 +2.4 -2.2 6.69 8.41 7.7 11.3 4.7 + 1.52 +1.69 -3.3 +2.2 -2.5 c-4 c-5 C-6 c-7 109.07 151.21 1 15.67 159.63 -14.26 +9.20 +16.26 + 12.44 164.1 161.8 170.8 175.2 +4.5 + 10.1 +9.1 +5.4 104.49 148.93 115.91 160.31 -18.84 +6.92 + 16.50 + 13.12 @a) 6n.JnnAC (7) 6n.Jnn AC a TFA solution.'H,acetone. 5-H 4.12 6.50 7.67 +0.55 +0.33 +0.83 4.17 6.38 7.70 +0.60 +0.21 +0.86 6 or 3J of cation minus 6 or 3Jof free base. Table 2. 13CNMR parameters of the cations (7)and (8). Compound Parameter C-2 c-3 (8)= 6, 56.47 153.70 A6, -6.18 -26.51 'J 147.8 -A' Jd +6.4 -(7) 6, 56.40 b A, -6.25 b a TFA solution. 'H,acetone, DEPT. 6 (7) or (8) -6 (1). 'J (8) -'J(1). Me the Scheme 1. thus clearly indicating loss ofcoupling to the 4- and 6-positions. Since the signals for the 4- and 6-positions were superimposed it was difficult to monitor accurately the rate of deuterium incorporation at each site, but the change in the coupling pattern of the 5-and 7-signals over an hour showed clearly that exchange was considerably more rapid at the 4-position.By assuming exchange at this position was complete after 20 min, an approximate half-life for reaction at the 6-position was found and used as a correction factor in the calculation of the half-life for reaction at the 4-position. Exchange at the 2-position could be readily monitored and was found to be considerably slower than at either position on the conjugated system. The trend shown by the half-lives 14 (2.5 min) e X6 (10) Me CI H (11) Ph CI H (12) Ph CI C1 (13) Me Br Br (14) Me Br H carbonate solution and dry flash chromatography. The compounds could be purified by recrystallisation from methanol at -20 OC, and in the solid state they were stable for many months at room temperature.The site of reaction follows from the 'H NMR spectra (which show 5-H and 7-H as doublets and 6-H as a doublet of doublets) and from the X-ray crystal structure of compound (11) (see below). When two equivalents of N-chlorosuccinimide were used (or if the monochloro derivative was treated with one equivalent of N-chlorosuccinimide) the 4,6-dichloro compound (12) (44) could be isolated. In all cases, other significant components were present, but these could not be obtained cleanly owing to decomposition. As found for the deuterium exchange reactions, it is clear that position 4 remains the most reactive to electrophiles (cf. Scheme 1) and that a 4-chloro substituent does not significantly deter subsequent reaction at the 6-position. Treatment of the l-methylazepinone (1)with either one or two equivalents of N-bromosuccinimide resulted in the isolation only of the dibrominated species (13)in 8 and 60 yield, respectively.Two equivalents of the succinimide yielded the product as a crystalline compound without chromatography on one occasion, but this purity could not be attained reproducibly, and generally chromatography and recrystal- lisation from a methanol solution at -20 "Cwas necessary. The compound decomposed in chloroform solution over a period of hours to give a black, insoluble precipitate, and therefore a 3C NMR spectrum was not obtained. The NMR spectrum of the crude mixture of products obtained by reaction with one equivalent of N-bromosuccinimide suggested that the major components were the unchanged azepinone (1) and the monobromo compound (14), together with some of the dibromo compound (13).However, only compound (13)(8) could be isolated in pure form after chromatography; identification of compound (14)followed by comparison of the 'H NMR spectrum of a (contaminated) minor component with that of the monochloro derivative (10) (see Experimental section).The NMR parameters of the fully characterised halogeno- azepinones (10H13)are given in Tables 3 and 4. In the 'H NMR spectra (Table 3) the expected deshielding on substitution by halogen is particularly marked for the dihalogeno compounds (12)and (13)(cf: ref.1). For the monosubstituted examples, the effect of the halogen is to reduce 3J5,6and increase 3J6,7(from ca. 9 to 7 and from 7.5 to 10 Hz, respectively) though the reason for this trend is unclear at this stage. The C-5 and C-7 resonances in the 13C NMR spectra have very similar chemical shifts, as is found in those azepinones with no halogen substituents.' However, it was noted earlier that the C-7 resonance of lH-azepin-3(2H)-ones gave rise to a doublet of complex signals due to long-range coupling whereas the C-5 resonance was a simple doublet of doublets, and since the same pattern was found in the chloro-substituted derivatives (11)and (12)(Table 4) these resonances could be unambiguously distinguished. In addition, the one-bond coupling for the signal of the carbon atom at the position next to nitrogen is expected to be larger and, in agreement with the assignment made above, 1JC-7,7-H is ca.160 Hz in both is ca. 180 Hz while 1JC..5,5-H examples. The marked shielding of the carbonyl carbon atom on substitution of the adjacent atom (6.8 ppm) is similar to that observed in lH-pyrrol-3(2H)-ones l2 and it seems probable that this is due to an electronic effect, as is observed across single bonds in a number of a-chloro ketone^.'^ This is postulated as being a result of the electronegativity of the chlorine atom countering the effect of the carbonyl oxygen atom. The substituent effects in the remainder of the conjugated system might have been anticipated to be comparable with those observed in benzene and the conjugated systems of heteroaromatics, but with the exception of a consistent high frequency shift at the site of substitution no such trends are observed.The X-ray crystal structure of the monochloro derivative (1 I) was obtained to confirm the above NMR interpretations and to find the effect of the substituent on the geometry of the ring. Bond lengths, angles and torsion angles are given in Tables 5-7 and fractional co-ordinates in Table 8; ORTEP diagrams are shown in Fig. 3, and selected data for compounds (2) and (1 1) are displayed in Fig. 4. The C-CI bond length 1.743(3) A is Table 5. Bond lengths with standard deviations. Bond Length (A) Bond Length (A) ~ ~~ N( 1)-C(2) 1.452(4) C(3)-C(4) 1.444(4) N(l)-C(7) 1.356(4) C(4)-C1(4) 1.743(3) N(l)-C(8) 1.415(3) C(4)-C(5) 1.352(4) C(2)-C( 3) 1.518(4) C(5)-C(6) 1.420(5) C(3)-0(3) 1.222(4) C(6)-C(7) 1.356(5) Table 6.Angles with standard deviations. Atoms Angle (") Angle (") 118.46(24) 126.7(3)121.09(21) 118.35(23) 120.38(22) 129.1(3) 1O9.68(23) 127.1(3) 120.9(3) 12433) 114.69(25) 120.89(17) 124.4(3) 119.11(17) 114.74(21) Table 7. Torsion angles with standard deviations. Torsion Atoms angle (") C(7)-N( 1)-C(2)-C(3) 82.0(3) C(8)-N(1 )-C(2)-C(3) -100.9(3) C(2)-N( 1)-C(7)-C(6) -26.8(4) CWN(1)-C(7)-CW 156.1(3) C(2)-N(1 )-C@kC(9) -38.9(3) C(2)-N(1)-C(8)-C(13) 141.80(22) C(7)-N( 1)-CW-C(9) 138.1l(24) C(7)-N( l)-C(S)-C(l3) -4 1.2(3) N( 1)-C(2)-C(3)-0(3) 112.8(3) N(1)-C(2)-C(3)-C(4) -68.7(3) C(2)-C(3)-C(4)-CK4) -163.31(21) C(2t-C(3)-C(4tC(5) 1144) 0(3)-C(3)-C(4t-C1(4) 15.1(4) C1(4)-C(4)-C(5)-C(6) 165.9(3)0(3tC(3)-C(4tC(5) - 170.5(3)C(3)-C(4kC(5)-C(6) 19.9(5) C(4)-C(5)-C(6)-C(7) 5.9(6) C(5)-C(6)-C(7)-N( 1) -20.4(5) N(l)-C(S)-C(9)-C(lO) -179.33(18)N(l)-C(8)-C(l3)-C(12) 179.35(17) Table 8.Atomic co-ordinates with e.s.d.s. Atom X Y Z uiso 0.109 5(3) 0.313 Ol(12) 0.316 8(3) 0.052 2( 15) 0.210 O(4) 0.249 06(15) 0.398 7(3) 0.054 9( 19) 0.205 6(4) 0.185 47(15) 0.285 7(3) 0.051 6(19) 0.358 4(3) 0.163 16(12) 0.253 8(3) 0.072 9(16) 0.01 1 l(4) 0.I53 95(16) 0.225 4(3) 0.050 6( 18) 0.012 32(13) 0.066 95(4) 0.139 92(10) 0.070 4(6) -0.164 8(4) 0.182 23(17) 0.240 O(3) 0.062 l(22) -0.212 l(5) 0.255 94(18) 0.274 9(4) 0.073 7(24) -0.091 6(4) 0.31609(17) 0.288 9(4) 0.065 4(22) 0.218 37(25) 0.372 58(8) 0.273 19(21) 0.049 5( 18) 0.394 20(25) 0.397 17(8) 0.371 48(21) 0.057 7( 19) 0.498 24(25) 0.456 48(8) 0.327 06(21) 0.067 3(23) 0.426 48(25) 0.491 20(8) 0.184 33(21) 0.071 3(24) 0.250 65(25) 0.466 61(8) 0.086 04(21) 0.068 2(22) 0.146 59(25) 0.407 30(8) 0.130 47(21) 0.056 7( 19) J.CHEM. SOC. PERKIN TRANS. i 1990 Fig. 3. (a), ORTEP diagram of the azepinone (11) showing crystallographic numbering system; (b), side view of the azepinone (11). CI 1.428 130.1 126.5 1'439 I.356 1.356 125.8 112.6 124.5 109.68 119.0 118.46 591 1.356 4N ~. 1.452 5i"451 1 Ph Ph Fig. 4. Selected bond lengths and bond angles for the azepinones (2) and (11).typical of that in aromatic chloro compounds 1.739(10) Abut surprisingly there is no significant change in the bond lengths of the seven-membered ring as a result of the substituent (Fig. 4). The bulk of the chlorine atom is apparently accommodated by a reduction in the ring bond angles at C-2 and C-3 (Fig. 4);the dihedral angle Cl-C(4)-C(3)-0(3) is just 15O. Clearly the geometry remains controlled by the dienaminone conjugated system and the substitution causes a relatively small perturbation. Experimental 'H and I3C NMR spectra were recorded at 200 and 50 MHz respectively for solutions in 2Hchloroform, unless otherwise stated. J. CHEM. SOC. PERKIN TRANS. I 1990 Protonation of 1 H- Azepin-3(2H)-ones with TriJIuoroacetic Acid.-The appropriate azepinone was dissolved in trifluoro- acetic acid, and spectra were recorded using an external 'H,water lock.Deuterium exchange reactions were observed using neat 'HI trifluoroacetic acid. Results are shown in Tables 1 and 2. 3- Ethoxy- 1 -methyl- 1,2-dihydroazepinium Tetrafuorobor-ate.-1-Methyl-1 H-azepin-3-(2H)-one (60 mg, 0.50 mmol) was dissolved in methylene dichloride and a solution of freshly prepared triethyloxonium tetrafluoroborate in methylene dichloride (0.67~; 0.53 mmol) was added. Solid potassium carbonate (75 mg, 0.55 mmol) was also added and the solution was stirred at room temperature overnight. The reaction mixture was then filtered and the solvent was evaporated from the filtrate under reduced pressure to give the alkylated salt as an orange oil which could not be obtained in crystalline form but was characterised by its NMR spectra.In the absence of potassium carbonate, a small amount of the protonated salt was also observed. Thus, 3-ethoxy- l-methyl-1,2-dihydroazepinium tetrafluoroborate was prepared (100 mg, 79); 6,('H,- acetone) 8.41 (1 H, d, 3J, 4.7 Hz), 7.70 (1 H, dd, 3J, 11.3 and 7.7 Hz), 6.69 (1 H, dd, 3J, 11.3 and 4.8 Hz), 6.38 (1 H, d, 3J7.7 Hz), 4.19 (2 H, q, 3J7.0 Hz), 4.17 (2 H, s), 3.86 (3 H, s) and 1.37 (3 H, t, 3J7.0 Hz); Gc(DEPT) 160.31, 148.93, 115.91, 104.49, 66.81, 56.40, 46.41 and 12.64; no reasonable electron impact mass spectrum could be obtained. Reaction of 1 H-Azepin-3(2H)-ones with N-Halogenosuccin- imides.-A number of reactions were carried out with N-halogenosuccinimides (NXS).All reactions were carried out by addition of a solution of the appropriate NXS in methanol (8 ml) to a solution of the azepinone (1 mmol) in methanol (10 ml) cooled on an ice bath. The reaction mixtures were stirred at 0 "C in all cases and further reaction conditions are listed with individual examples. The reaction mixture was then poured into methylene dichloride (20 ml) and washed with sodium hydrogen carbonate solutions (20; 3 x 20 ml). The organic layer was then dried (MgSO,) and the solvent was removed under reduced pressure at room temperature. Chlorinated products were then purified by dry-flash column chromato- graphy using methylene dichloride as eluant.The dibromo compound was similarly purified or was obtained as a crystalline solid when two equivalents of NBS were used. All products were very sensitive to heat, and solvent was therefore removed at room temperature; the products could not be purified by distillation or conventional recrystallisation. However, if the solids were dissolved in the minimum possible quantity of methanol and kept at -20 "C overnight, crystalline, analytically pure materials could be obtained. The dibromo compound was particularly sensitive and decomposed to a black insoluble material even when left in solution at ca. 30 "C. The following halogeno- 1 H-azepin-3(2H)-ones were obtained: 4,6-dichloro- 1 -phenyl (from the 1 -phenyl azepinone and 2.1 equiv.NCS, room temperature for 45 min) (1 10 mg, 44), m.p. 105-108 "C (decomp.) (from methanol) (Found: C, 55.7; H, 3.5; H, 5.45. C,2H,C1zNO*0.25H20 requires C, 55.7; H, 3.65; N, 5.4); 6, 7.46 (1 H, d, 4J0.9 Hz), 7.25 (1 H, q, 4Jand 5J0.9 Hz), 7.1-7.45 (5 H, m) and 4.29 (2 H, d, 5J0.9 Hz); 6, 175.44 (q), 142.60 (q), 139.55, 139.08, 130.08 (q), 129.66, 126.06, 120.13, 109.49 (q), and 58.55; mfz257, 255,253 (M+,10, 33, and SO), 226 (17), 224 (25) and 105 (100); 4-chloro-l-phenyl (from the 1-phenyl azepinone and 1 equiv. NCS, 0 "C for 45 min (90 mg, 41), m.p. 6667 "C (from methanol) (Found: C, 64.6; H, 4.6; N, 6.25. C,zH,oC1NO~0.25Hz0requires C, 64.3; H, 4.7; N, 6.25); 6" 7.1-7.4 (6 H, m) (olefinic proton superimposed on aromatics) 7.10(1 H,d,3J7.5Hz),5.52(l H,dd,3J7.5and9.8Hz)and4.27 (2 H, s); 6, 176.06 (q), 143.74 (q), 141.90, 138.88, 129.80 (q), 129.57, 125.71, 120.36, 103.07 and 58.68; m/z 221, 219 (M', 29 and 70), 192 (18), 190 (47), 156 (39, 105 (100) and 77 (47); 4-chloro- 1-methyl (from 1-methylazepinone and 1 equiv.NCS, 0°C for 45 min) (80 mg, 51) (Found: M', 157.0288. C7H835C1N0 requires M', 157.0294);6, 7.21 (1 H, d, 3J10.0 Hz), 6.83 (1 H, d, 3J6.9 Hz), 5.20 (1 H, dd, 3J6.9 and 10.0 Hz), 3.63 (2 H, s) and 3.20 (3 H, s); 6, 173.42 (q), 147.37, 140.62, 125.85 (q), 98.15, 61.31 and 43.88; m/z 159, 157 (M', 26 and 7973, 130 (30), 128 (100) and 94 (72); 4,6-dibromo-l-methyl from 1-methylazepinone and 2.1 equiv. NBS, 5 rnin at 0 "C (also from 1-methylazepinone and 1 equiv.NBS, 5 min at 0 "C), 168 mg, 60 (23 mg, 8), m.p. 140-141 "C (decomp.) (from methanol) (Found C, 30.4; H, 2.7; N, 5.15. C7H7Br2N0 requires C, 29.9; H, 2.5; N, 5.0); 6, 7.72 (1 H, s), 7.12 (1 H, s), 3.71 (2 H, s) and 3.19 (3 H, s);(13C NMR spectrum could not be obtained due to the facile decomposition of the compound in solution); m/z 283,281,279 (M', 36,71 and 36",), 254 (16), 252 (32), 250 (16), 202 (50), 200 (50), 174 (18), 172 (18), 159 (20), 157 (20) and 40 (100). From the reaction with one equiv. of NBS and the l-methyl- azepinone, a fraction was collected (1 1 mg) which consisted of the 4-bromo derivative S, 7.46 (1 H, d, 3J 10.0 Hz), 6.87 (1 H, d, 3J6.9 Hz), 5.19 (1 H, dd, 3J10.0 and 6.9 Hz), 3.71 (2 H, s) and 3.22 (3 H, s), together with an equal amount of an unidentified impurity. Crystal Data.-C,,H,,ClNO, M = 219.67.Monoclinic, a = 6.909 6(3), b = 18.046 4(7), c = 0.845 O(4) A, p = 103.210(4)", V = 1073.7 A3 from 20 values of 32 reflections measured at fo (20 = 40-45", x = 1.541 84 A), T = 298 K, space group P2Jc (No. 14), Z = 4, D, = 1.359 g ~m-~, F(OO0) = 456, yellow-brown plate 0.12 x 0.27 x 0.52 mm, p(Cu-K,) = 2.94 mm-'. Data Collection and Processing.-Stoe STADI-4 four-circle diffractometer, T = 298 K, graphite-monochromated Cu-K, X-radiation (1= 1.541 84 A), 0-20 mode with o scan width (0.66 + 0.347tan0)", 1656 unique reflections (20,,, 1 20", +h,k,l), of which 1211 with F 2 60(F) were used in all calculations, absorption correction by means of w scans (min.and max. transmission factors 0.177 and 0.293, respectively), no significant crystal decay or movement. Structure Analysis and Refinement.-Automatic direct methodslg located all non-H atoms and the structure was refined by full-matrix least-squares on F,20 with anisotropic thermal parameters for all non-H atoms; the phenyl ring was refined as an idealised hexagon and H atoms were included in fixed, calculated positions. At final convergence, R = 0.0383, wR = 0.0441, S = 1.239 for 125 parameters, with the weighting scheme w' = 02(F)+ 0.000053F2 giving satisfactory agree- ment analyses. The final AF synthesis showed no feature above 0.15 or below -0.16 e k3and in the final least-squares cycle (A/O)~~~was 0.02.Molecular geometry calculations utilised CALC2' and the Figures were produced using ORTEPII.22 Supplementary material deposited with the Cambridge Crystallographic Data Centre comprises H-atoms positions and thermal parameters. Acknowledgements We are most grateful to the SERC for a Research Studentship (to L. C. M.) and to Lonza Ltd. for a generous gift of the Meldrum's acid used to make the azepinones. References 1 Part 2, H. McNab and L. C. Monahan, preceding paper. 2 Preliminary communication, H. McNab and L. C. Monahan, J. Chem. SOC., Chem. Commun., 1987,141, 3 H. McNab and L. C. Monahan, J. Chem. SOC.,Chem. Commun., 1987,140. 4 A. J. Blake, H.McNab and L. C. Monahan, J.Chem. SOC., Perkin Trans. I, 1989,425. 5 H. Tieckelmann, in ‘Pyridine and its Derivatives, Supplement Part 3,’ ed. R. A. Abramovitch, Wiley-Interscience, New York, 1974, p. 597. 6 R. A. Abramovitch and J. G. Saha, Adv. Heterocycl. Chem., 1966,6, 229. 7 A. H. Berrie, G. T. Newbold and F. S. Spring, J. Chem. SOC.,1951, 2590. 8 W. H. Wills and S. T. Widdows, J. Chem. SOC., 1908, 1372. 9 For example, L. A. Paquette and W. C. Farley, J. Org. Chem., 1967, 32,2725. 10 Y. Kawazoe and Y. Yoshioka, Chem. Pharm. Bull., 1968,16,715. 11 A. J. Blake, H. McNab and L. C. Monahan, J. Chem. SOC.,Perkin Trans. 2,1988,1463. 12 H. McNab and L. C. Monahan, J. Chem. Sac., Perkin Trans. 1,1989, 419. 13 H. McNab, J. Chem. SOC.,Perkin Trans. 2,1981,1287. J. CHEM. SOC. PERKIN TRANS. 1 1990 14 R. Radeglia, M. Wahnert, S. Dahne and H. Bogel, J. Prakt. Chem., 1978,320,539. 15 A. El-Anani, J. Bauger, G. Bianchi, S. Clementi, C. D. Johnson and A. R. Katritzky, J. Chem. SOC.,Perkin Trans. 2, 1973, 1065. 16 H. McNab and L. C. Monahan, J. Chem. Res. (S), 1990,336. 17 J. E. Stothers and P. C. Lauterbur, Can. J. Chem., 1964,42,1563. 18 F. H. Allen, 0.Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. SOC., Perkin Trans. 2, 1987, S1. 19 SHELX86, program for crystal structure solution, G. M. Sheldrick, Univ. of Gottingen, F.R.G., 1986. 20 SHELX76, program for crystal structure refinement, G. M. Sheldrick, Univ. of Cambridge, England, 1976. 21 CALC, program for molecular geometry calculations, FORTRAN77 version, R. 0.Gould and P. Taylor, Univ. of Edinburgh, Scotland, 1985. 22 ORTEPII, interactive version, P. D. Mallinson and K. W. Muir, J. Appl. Cryst., 1985, 18, 51. Paper 0/02353A Received 25th May 1990 Accepted 16th July 1990
机译:J. CHEM.SOC. PERKIN TRANS. 1 1990 Azepinones.第 3 部分。r2 Reactions of Simple 1H-Azepin-3(2H)-ones with Elect rop hiIes Hamish McNab,“ Lilian C. Monahan and in part of Alexander J. Blake Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ 1H-氮杂卓-3(2H)-酮的二胺酮共轭系统 (1) 和 (2) 对氧或碳中心的亲电试剂具有活性。对 H 和 13C NMR 波谱的分析表明,发生了 0-质子化(trif luoroacetic acid)和 0-烷基化(triet hyloxonium tetraf Iuoro borate)。在 (1) 的 4、6 和 2 位处通过游离碱发生连续氘交换。用N-卤代琥珀酰亚胺处理(1)或(2)得到4-卤代琥珀酰亚胺和4,6-二卤代琥珀酰亚胺产物。4-氯衍生物(11)的X射线晶体结构表明,卤素取代基对环的几何形状影响不大。lH-氮杂环庚-3(2H)-酮体系,例如(1)包含一个平面富电子二胺酮体系,该体系对碳和氧中心的亲电试剂具有潜在的活性(图1)。(1) R=Me (3) (4) X = H (2) R = Ph (5) x = CI CE+ A R A 图 1.前一个反应以相关的吡啶-2-酮(3),5*6而闻名,它们在酸性条件下通过硝化~N,~重氮偶联,*卤化或氘化得到3-和/或5-取代产物。类似地,lH-氮杂卓-2(3H)-酮(4)在用N-氯琥珀酰亚胺处理时得到6-氯化合物(5)。g 我们最近对 lH-吡咯-3(2H)-酮体系的研究 (6) 包括 0-质子化和烷基化,' ' 和亲电取代;L2 在本文中,我们报告了它们的乙烯基化合物的行为:氮杂酮,即(1)和(2)在相应条件下的行为。将 1-甲基氮杂卓酮 (1) 在三氟乙酸中平滑质子化,得到在室温下稳定数周的溶液。由于伴随质子化而来的意想不到的 l1 光谱变化(见下文),通过用四氟硼酸三乙氧铵处理化合物 (1) 的二氯甲烷溶液合成了真正的 0-取代氮杂环铵衍生物。当该反应在无水碳酸钾存在下进行时,盐(7)作为未受污染的油获得,但不能结晶。它显示出与酸溶液中氮卓酮 (1) 非常相似的 NMR 谱图,因此我们得出结论,氮杂卓酮经过 0-质子化得到化合物 (8)。盐(7)和(8)的'H NMR波谱(表1)可以通过检查进行分配。富电子位点(4-H 和 6-H)分别作为双峰的双峰和双峰出现在相对屏蔽的位置,而缺电子位点(C-7 和 C-5)分别作为双峰的去屏蔽双峰和双峰的双峰出现(参见参考文献 1)。通过对上述每个质子信号进行特异性解耦,可以明确鉴定质子化氮杂酮 (8) 的 13C NMR 峰(表 2);(7)的相应频谱的分配显然是类比的。质子化对模型烯胺I3-(也存在于lhl-吡咯-3(2H)-酮体系中)的NMR波谱的主要影响包括:(a),由于键序效应,共轭系统中的邻近耦合常数(3JHH)的均衡;(b)、幅度增加'。与正电荷相关的 ICH;l3 (c),尽管 P 碳原子信号的位置相对不受影响,但 'H NMR 波谱中所有信号和由于碳原子 a 引起的信号到氮的信号的类似诱导高频移;(d)由于羰基各向异性效应的降低,羰基碳原子导致信号的低频移。一般而言,在lH-氮杂卓-3(2H)-酮系列(表1和表2)中也遵循(b)-(d)效应,尽管在另一个缺电子位点(C-5)也感受到了碳a对氮(C-7)的去屏蔽作用,并且羰基信号的屏蔽(C-3;26.5 ppm位移)与烯胺'*I3(约10 ppm)相比是巨大的。然而,对3JHH的戏剧性影响(表1)以及电子相似位点C-4和C-6(表2)的13CNMR位移的差异显然是异常的。这些可能可以通过规范形式(8A-E)的不同贡献来解释(图2)。特别是,3J5,6的大尺寸表明这些位置的键序很大,如共振结构(8D)和(8E)所示,并且观察到的化学位移趋势与该图一致。通过观察[2H]三氟乙酸溶液中氘的掺入速率,获得了lH-氮杂卓-3(2H)-酮体系亲电位点相对反应性的指示。'H NMR波谱显示5位信号的即时变化,而对应于7位的信号变化较慢,如表1所示。阳离子的'H NMR参数(7)和(8)。化合物参数 2-H 4-H J. CHEM. SOC. PERKIN TRANS. 1 1990 6-H 7-H 3J4,5 3J5.6 3J6.7 6.63 8.04 7.7 11.5 5.0 +1.46 +1.1.5 32 -3.3 +2.4 -2.2 6.69 8.41 7.7 11.3 4.7 + 1.52 +1.69 -3.3 +2.2 -2.5 c-4 c-5 c-6 c-7 109.07 151.21 1 15.67 159.63 -14.26 +9.20 +16.26 + 12.44 164.1 161.8 170.8 175.2 +4.5 + 10.1 +9.1 +5.4 104.49 148.93 115.91 160.31 -18.84 +6.92 + 16.50 + 13.12 @a) 6n.JnnAC (7) 6n.Jnn AC 一种 TFA 溶液。['H,]丙酮。5-H 4.12 6.50 7.67 +0.55 +0.33 +0.83 4.17 6.38 7.70 +0.60 +0.21 +0.86 6 或 3J 阳离子减去 6 或 3J 游离碱。表 2.阳离子(7)和(8)的13CNMR参数。化合物参数 C-2 c-3 (8)= 6, 56.47 153.70 A6, -6.18 -26.51 'J 147.8 -A' Jd +6.4 -(7) 6, 56.40 b A&, -6.25 b a 反式脂肪酸溶液。['H,]丙酮,第 6 (7) 或 (8) -6 (1) 部。'J (8) -'J(1).我是计划 1.因此,清楚地表明了与 4 位和 6 位的耦合损耗。由于 4 位和 6 位的信号是叠加的,因此很难准确监测每个位点的氘掺入速率,但 5 位和 7 位在一小时内的耦合模式的变化清楚地表明,4 位的交换要快得多。通过假设该位置的交换在20分钟后完成,发现了6位反应的近似半衰期,并用作计算4位反应半衰期的校正因子。可以很容易地监测 2 位的交换,并且发现在共轭系统上比任一位置的交换都慢得多。半衰期 14 (2.5 min) e X6 (10) Me CI H (11) Ph CI H (12) Ph CI C (13) Me Br Br (14) Me Br H 碳酸酯溶液和干快速色谱洗涤后,用一种当量的 N-氯琥珀酰亚胺 (1) 和 L-苯基氮杂环酮 (1) 和 (2) 处理 45 分钟,得到 4-氯化合物 (10) 和 (11) 的收率分别为 51% 和 41%。这些化合物可以通过-20 OC的甲醇重结晶来纯化,在固态下,它们在室温下可以稳定数月。反应位点来自'H NMR光谱(显示5-H和7-H为双峰,6-H为双峰)和化合物(11)的X射线晶体结构(见下文)。当使用两种当量的N-氯琥珀酰亚胺时(或者如果用一种当量的N-氯琥珀酰亚胺处理一氯衍生物),可以分离出4,6-二氯化合物(12)(44%)。在所有情况下,都存在其他重要成分,但由于分解,这些成分无法干净地获得。正如氘交换反应所发现的那样,很明显,位置 4 仍然是对亲电试剂反应性最强的(参见方案 1),并且 4-氯取代基不会显着阻止 6-位置的后续反应。用一种或两种当量的 N-溴琥珀酰亚胺处理 l-甲基氮杂卓酮 (1) 仅分离出 8% 和 60% 的二溴物质 (13)。两次当量的琥珀酰亚胺一次在没有色谱的情况下将产物作为结晶化合物产生,但这种纯度无法重现,通常需要色谱法和从-20“C的甲醇溶液中重新结晶。该化合物在氯仿溶液中分解数小时,产生黑色不溶性沉淀,因此无法获得3C NMR谱图。通过与一种当量的N-溴琥珀酰亚胺反应得到的产物粗混合物的NMR谱图表明,主要成分是未改变的氮卓酮(1)和一溴化合物(14),以及一些二溴化合物(13)。然而,只有化合物(13)(8%)在层析后可以以纯形式分离;鉴定化合物(14),然后比较(受污染的)次要成分的'H NMR谱图和一氯衍生物(10)的'H NMR谱图(见实验部分)。表3和表4给出了完全表征的卤代氮杂卓酮(10H13)的NMR参数。在'H NMR谱图(表3)中,二卤素化合物(12)和(13)在被卤素取代时的预期去屏蔽尤为明显(参见:参考文献1)。对于单取代的例子,卤素的作用是减少3J5,6和增加3J6,7(分别从约9到7和从7.5到10 Hz),尽管现阶段尚不清楚这种趋势的原因。13C NMR谱图中的C-5和C-7共振具有非常相似的化学位移,就像在那些没有卤素取代基的氮杂环酮中发现的一样。然而,前面已经指出,由于长程耦合,lH-氮杂卓-3(2H)-酮的C-7共振产生了复数信号的双峰,而C-5共振是双峰的简单双峰,并且由于在氯取代衍生物(11)和(12)(表4)中发现了相同的模式,因此可以明确区分这些共振。此外,碳原子信号在氮旁边位置的单键耦合预计会更大,并且与上述分配一致,1JC-7,7-H在两者中约为160 Hz,而1JC.。5,5-H 示例。羰基碳原子在取代相邻原子(6.8 ppm)时的明显屏蔽与在lH-吡咯-3(2H)-酮l2中观察到的相似,这似乎可能是由于电子效应,正如在许多a-氯酮^的单键上观察到的那样。'^ 这被推测为氯原子的电负性抵消了羰基氧原子的作用。预计共轭系统其余部分的取代基效应可能与在苯和杂芳烃共轭系统中观察到的取代基效应相当,但除了取代位点的一致高频移外,没有观察到这种趋势。获得了一氯衍生物(1 I)的X射线晶体结构,以证实上述NMR解释,并找到取代基对环几何形状的影响。键长、角度和扭转角度见表5-7,分数坐标见表8;ORTEP图如图3所示,化合物(2)和(1 1)的选定数据如图4所示。C-CI键长[1.743(3) A]如表5所示。具有标准偏差的键长。键长 (A) 键长 (A) ~ ~~ N( 1)-C(2) 1.452(4) C(3)-C(4) 1.444(4) N(l)-C(7) 1.356(4) C(4)-C1(4) 1.743(3) N(l)-C(8) 1.415(3) C(4)-C(5) 1.352(4) C(2)-C( 3) 1.518(4) C(5)-C(6) 1.420(5) C(3)-0(3) 1.222(4) C(6)-C(7) 1.356(5) 表6.带标准差的角度。原子角 (“) 角 (”) 118.46(24) 126.7(3)121.09(21) 118.35(23) 120.38(22) 129.1(3) 1O9.68(23) 127.1(3) 120.9(3) 12433) 114.69(25) 120.89(17) 124.4(3) 119.11(17) 114.74(21) 表 7.具有标准偏差的扭转角。扭转原子角 (“) C(7)-N( 1)-C(2)-C(3) 82.0(3) C(8)-N(1 )-C(2)-C(3) -100.9(3) C(2)-N( 1)-C(7)-C(6) -26.8(4) CWN(1)-C(7)-CW 156.1(3) C(2)-N(1 )-C@kC(9) -38.9(3) C(2)-N(1)-C(8)-C(13) 141.80(22) C(7)-N( 1)-CW-C(9) 138.1l(24) C(7)-N( l)-C(S)-C(l3) -4 1.2(3) N( 1)-C(2)-C(3)-0(3) 112.8(3) N(1)-C(2)-C(3)-C(4) -68.7(3) C(2)-C(3)-C(4)-CK4) -163.31(21) C(2t-C(3)-C(4tC(5) 1144) 0(3)-C(3)-C(4t-C1(4) 15.1(4) C1(4)-C(4)-C(5)-C(6) 165.9(3)0(3tC(3)-C(4tC(5) - 170.5(3)C(3)-C(4kC(5)-C(6) 19.9(5) C(4)-C(5)-C(7) 5.9(6) C(5)-C(6)-C(7)-N( 1) -20.4(5) N(l)-C(S)-C(9)-C(lO) -179.33(18)N(l)-C(8)-C(l3)-C(12) 179.35(17) 表8.原子坐标与e.s.d.s. 原子 X Y Z uiso 0.109 5(3) 0.313 醇(12) 0.316 8(3) 0.052 2( 15) 0.210 O(4) 0.249 06(15) 0.398 7(3) 0.054 9( 19) 0.205 6(4) 0.185 47(15) 0.285 7(3) 0.051 6(19) 0.3584(3) 0.163 16(12) 0.253 8(3) 0.072 9(16) 0.01 1 升(4) 0.I53 95(16) 0.225 4(3) 0.050 6( 18) 0.012 32(13) 0.066 95(4) 0.139 92(10) 0.070 4(6) -0.164 8(4) 0.182 23(17) 0.240 O(3) 0.062 l(22) -0.212 l(5) 0.255 94(18) 0.274 9(4) 0.073 7(24) -0.091 6(4) 0.31609(17) 0.288 9(4) 0.065 4(22) 0.218 37(25) 0.372 58(8) 0.273 19(21) 0.049 5( 18) 0.394 20(25) 0.397 17(8) 0.371 48(21) 0.057 7( 19) 0.498 24(25) 0.456 48(8) 0.327 06(21) 0.067 3(23) 0.426 48(25) 0.491 20(8) 0.184 33(21) 0.071 3(24) 0.250 65(25) 0.466 61(8) 0.086 04(21) 0.068 2(22) 0.146 59(25) 0.407 30(8) 0.130 47(21) 0.056 7( 19) J.CHEM. SOC. PERKIN TRANS. I 1990 Fig.3.(a),阿泽酮(11)的ORTEP图显示了晶体编号系统;(b),氮吡酮的侧视图(11)。置信区间 1.428 130.1 126.5 1'439 I.356 1.356 125.8 112.6 124.5 109.68 119.0 118.46 591 1.356 4N ~.1.452 5i“451 1 Ph Ph 图 4.氮杂环酮(2)和(11)的键长和键角是芳香族氯化合物[1.739(10)A]的典型特征,但令人惊讶的是,由于取代基,七元环的键长没有显著变化(图4)。氯原子的大部分显然被C-2和C-3处环键角的减小所容纳(图4);二面角 Cl-C(4)-C(3)-0(3) 仅为 15O。显然,几何形状仍然由二胺酮共轭系统控制,并且取代引起相对较小的扰动。除非另有说明,否则分别在200和50 MHz下记录[2H]氯仿溶液的实验'H和I3C NMR谱图。J. CHEM. SOC. PERKIN 译.I 1990 1 H-氮杂卓-3(2H)-酮与三氢乙酸的质子化.-将适当的氮杂环酮溶解在三氟乙酸中,并使用外部['H,]水锁记录光谱。使用纯['HI三氟乙酸观察氘交换反应。结果如表1和表2所示。3-乙氧基-1-甲基-1,2-二氢氮杂卓鎓四呋喃硼酸酯-1-甲基-1H-氮杂卓-3-(2H)-酮(60毫克,0.50 mmol)溶于二氯甲烷中,加入新鲜制备的三乙基氧铵四氟硼酸二氯甲烷溶液(0.67~;0.53 mmol)。还加入固体碳酸钾(75mg,0.55mmol),并将溶液在室温下搅拌过夜。然后过滤反应混合物,并在减压下将溶剂从滤液中蒸发,得到烷基化盐为橙色油,其不能以结晶形式获得,但其NMR波谱具有特征。在没有碳酸钾的情况下,还观察到少量的质子化盐。因此,制备了3-乙氧基-L-甲基-1,2-二氢氮杂卓鎓四氟硼酸盐(100mg,79%);6,(['H,]-丙酮)8.41(1 H,d,3J,4.7Hz),7.70(1 H,dd,3J,11.3和7.7 Hz),6.69(1 H,dd,3J,11.3和4.8 Hz),6.38(1 H,d,3J7.7 Hz),4.19(2 H,q,3J7.0 Hz),4.17(2 H,s),3.86(3 H,s)和1.37(3 H,t,3J7.0 Hz);Gc(DEPT) 160.31、148.93、115.91、104.49、66.81、56.40、46.41 和 12.64;无法获得合理的电子撞击质谱。1 H-氮杂卓-3(2H)-酮与N-卤代琥珀酰亚胺的反应-与N-卤代琥珀酰亚胺(NXS)进行了多次反应。通过将甲醇(8ml)中的适当NXS溶液加入在冰浴上冷却的甲醇(10ml)中的氮卓酮(1mmol)溶液中进行所有反应。在所有情况下,将反应混合物在0“C下搅拌,并列出了进一步的反应条件和单独的实例。然后将反应混合物倒入二氯甲烷(20ml)中,并用碳酸氢钠溶液(20%;3×20ml)洗涤。然后干燥有机层(MgSO),并在室温下减压除去溶剂。然后使用二氯甲烷作为洗脱剂,通过干闪柱色谱法纯化氯化产物。当使用两种当量的NBS时,二溴化合物同样被纯化或作为结晶固体获得。所有产品都对热非常敏感,因此在室温下去除溶剂;这些产品无法通过蒸馏或常规重结晶进行纯化。然而,如果将固体溶解在尽可能少的甲醇中并保持在-20“C过夜,则可以获得结晶,分析纯的材料。二溴化合物特别敏感,即使在约30“C的溶液中也会分解为黑色不溶性物质。得到以下卤素-1-H-氮杂卓-3(2H)-酮:4,6-二氯-1-苯基(由1-苯基氮杂卓酮和2.1当量。NCS,室温45分钟)(1 10mg,44%),熔点105-108“C(分解)(来自甲醇)(发现:C,55.7;H,3.5;H,5.45。C,2H,C1zNO*0.25H20 要求 C, 55.7;H,3.65;N,5.4%);6、7.46(1 H、d、4J0.9 Hz)、7.25(1 H、q、4J和 5J0.9 Hz)、7.1-7.45(5 H、m)和 4.29 (2 H, d, 5J0.9 Hz);6、175.44(q)、142.60(q)、139.55、139.08、130.08(q)、129.66、126.06、120.13、109.49(q)和58.55;mfz257、255,253(M+、10、33 和 SO%)、226 (17)、224 (25) 和 105 (100);4-氯-L-苯基(来自1-苯基氮卓酮和1当量NCS,0“C45分钟(90mg,41%),熔点6667”C(来自甲醇)(发现:C,64.6;H,4.6;N,6.25。C,zH,oC1NO~0.25Hz0要求C,64.3;H,4.7;N,6.25%);6“ 7.1-7.4 (6 H, m) (烯烃质子叠加在芳烃上) 7.10(1 H,d,3J7.5Hz),5.52(l H,dd,3J7.5和9.8Hz)和4.27 (2 H, s);6、176.06(q)、143.74(q)、141.90、138.88、129.80(q)、129.57、125.71、120.36、103.07和58.68;m/z 221, 219 (M', 29 和 70%), 192 (18), 190 (47), 156 (39, 105 (100) 和 77 (47); 4-氯-1-甲基(来自1-甲基氮杂卓酮和1当量。NCS,0°C,45分钟)(80mg,51%)(发现:M',157.0288。C7H835C1N0 需要 M', 157.0294);6、7.21 (1 H, d, 3J10.0 Hz)、6.83 (1 H, d, 3J6.9 Hz)、5.20 (1 H, dd, 3J6.9 和 10.0 Hz)、3.63 (2 H, s) 和 3.20 (3 H, s);6、173.42(q)、147.37、140.62、125.85(q)、98.15、61.31和43.88;m/z 159、157 (M'、26 和 7973、130 (30)、128 (100) 和 94 (72); 4,6-二溴-L-甲基 [来自 1-甲基氮杂环酮和 2.1 当量。 NBS,0 “C 时 5 rnin(也来自 1-甲基氮卓酮和 1 当量。NBS,0“C下5分钟],[168mg,60%(23mg,8%)],m.p.140-141”C(分解)(来自甲醇)(发现 C,30.4;H,2.7;N,5.15。C7H7Br2N0 需要 C, 29.9;H,2.5;N, 5.0%);6、7.72 (1 H, s)、7.12 (1 H, s)、3.71 (2 H, s) 和 3.19 (3 小时,秒);(由于化合物在溶液中容易分解,无法获得13C NMR谱图);m/z 283,281,279 (M', 36,71 和 36“,), 254 (16), 252 (32), 250 (16), 202 (50), 200 (50), 174 (18), 172 (18), 159 (20), 157 (20) 和 40 (100)。通过与一个当量的NBS和l-甲基-氮杂环庚酮的反应,收集由4-溴衍生物[S,7.46(1H,d,3J 10.0Hz),6.87(1H,d,3J6.9Hz),5.19(1H,dd,3J10.0和6.9Hz),3.71(2H,s)和3.22(3H,3H, s)],以及等量的不明杂质。晶体数据.-C,,H,,ClNO, M = 219.67.单斜晶系, a = 6.909 6(3), b = 18.046 4(7), c = 0.845 O(4) A, p = 103.210(4)“, V = 1073.7 A3 [从 fo (20 = 40-45”, x = 1.541 84 A), T = 298 K] 处测量的 32 个反射值, T = 298 K], 空间群 P2Jc (No. 14), Z = 4, D, = 1.359 g ~m-~, F(OO0) = 456, 黄褐色板 0.12 x 0.27 x 0.52 mm, p(Cu-K,) = 2.94 mm-'.数据收集和处理.-Stoe STADI-4 四圆衍射仪,T = 298 K,石墨单色 Cu-K,X 辐射 (1= 1.541 84 A),0-20 模式,o 扫描宽度 (0.66 + 0.347tan0)“,1656 个独特反射 (20,,, 1 20”,+h,k,l),其中 1211 个 F 2 60(F) 用于所有计算,通过 w 扫描进行吸收校正(最小和最大透射系数 0.177 和 0.293, ),没有明显的晶体衰减或移动。结构分析与细化。-自动直接方法lg定位了所有非H原子,并在F,20上用各向异性热参数对所有非H原子进行全矩阵最小二乘法细化结构;苯基环被细化为理想化的六边形,H原子被包括在固定的、计算的位置。在最终收敛时,125 个参数的 R = 0.0383、wR = 0.0441、S = 1.239,加权方案 w' = 02(F)+ 0.000053F2 给出了令人满意的一致性分析。最终的AF合成没有显示高于0.15或低于-0.16 e k3的特征,并且在最终的最小二乘循环(A / O)~~~为0.02.分子几何计算利用CALC2',图是使用ORTEPII产生的.22在剑桥晶体学数据中心沉积的补充材料包括H原子位置和热参数。致谢 我们非常感谢 SERC 提供的研究奖学金(L. C. M.),并感谢 Lonza Ltd. 慷慨赠送用于制造氮丙酮的 Meldrum 酸。参考文献 1 第 2 部分,H. McNab 和 L. C. Monahan,前一篇论文。2 初步来文,H. McNab 和 L. C. Monahan, J. Chem. SOC., Chem. Commun., 1987,141, 3 H. McNab and L. C. Monahan, J. Chem. SOC.,Chem. Commun., 1987,140。4 A. J. Blake, H.McNab 和 L. C. Monahan, J.Chem. SOC., Perkin Trans. I, 1989,425.5 H. Tieckelmann, in 'Pyridine and its Derivatives, Supplement Part 3', ed. R. A. Abramovitch, Wiley-Interscience, New York, 1974, p. 597.6 R. A. Abramovitch 和 J. G. Saha, Adv. Heterocycl.化学。, 1966,6, 229.7 A. H. Berrie, G. T. Newbold 和 F. S. Spring, J. Chem. SOC.,1951, 2590.8 W. H. Wills 和 S. T. Widdows, J. Chem. SOC., 1908, 1372.9 例如,L. A. Paquette 和 W. C. Farley, J. Org. Chem., 1967, 32,2725。10 Y. Kawazoe 和 Y. Yoshioka,Chem. Pharm. Bull.,1968,16,715。11 A. J. Blake, H. McNab 和 L. C. Monahan, J. Chem. SOC.,Perkin Trans. 2,1988,1463.12 H. McNab 和 L. C. Monahan, J. Chem. Sac., Perkin Trans. 1,1989, 419.13 H. McNab, J. Chem. SOC.,Perkin Trans. 2,1981,1287.J. CHEM. SOC. PERKIN TRANS. 1 1990 14 R. Radeglia, M. Wahnert, S. Dahne and H. Bogel, J. Prakt.化学, 1978,320,539.15 A. El-Anani, J. Bauger, G. Bianchi, S. Clementi, C. D. Johnson and A. R. Katritzky, J. Chem. SOC.,Perkin Trans. 2, 1973, 1065.16 H. McNab 和 L. C. Monahan, J. Chem. Res. (S), 1990,336.17 J. E. Stothers 和 P. C. Lauterbur, Can. J. Chem., 1964,42,1563.18 F. H. Allen, 0.Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. SOC., Perkin Trans. 2, 1987, S1.19 SHELX86,晶体结构解决方案程序,G. M. Sheldrick,哥廷根大学,F.R.G.,1986年。20 SHELX76,晶体结构细化程序,G. M. Sheldrick,剑桥大学,英国,1976年。21 CALC,分子几何计算程序,FORTRAN77版,R. 0.Gould 和 P. Taylor,苏格兰爱丁堡大学,1985 年。22 ORTEPII,互动版,P. D. Mallinson 和 K. W. Muir, J. Appl. Cryst., 1985, 18, 51.论文 0/02353A 1990 年 5 月 25 日收稿 1990 年 7 月 16 日录用

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号