首页> 外文期刊>Journal of the Chemical Society, Perkin Transactions 1 >Diastereocontrol in the reaction of amide-homoenolates with aromatic aldehydes
【24h】

Diastereocontrol in the reaction of amide-homoenolates with aromatic aldehydes

机译:酰胺-高烯醇酸盐与芳香醛反应中的非对映控制

获取原文
获取外文期刊封面目录资料

摘要

J. CHEM. SOC. PERKIN TRANS. I 1995 Diastereocontrol in the Reaction of Amide-homoenolates with Aromatic Aldehydes Satoshi Sakami, Takashi Houkawa, Morio Asaoka and Hisashi Takei Department of Life Chemistry, Tokyo Institute of Technology, Midoriku, Yokohama 227, Japan The reaction of chiral Ti'" amide- homoenolates with aromatic dominantly, whereas the corresponding Zn" gave the anti-adducts preferentially. Stereocontrolled reactions with chiral organometallic reagents are of indisputable importance in asymmetric synthesis. Though there are many reports on stereocontrol with chiral enolates, allyl-metal reagents and related species, only few examples with simple chiral organometallic reagents have appeared.' In this paper, we describe our preliminary results on diastereocontrol in the homo-Reformatsky and related reactions with sec-homoenolates under various conditions.Amide-homoenolates 2 were chosen since the high chelating ability of amides was expected to result in a high stereoselectivity. The amide-homoenolates were generated by Knochel's method and reacted with aldehydes uia titanium reagents by applying Ochiai's method5 (Method A). A high degree of syn-selectivity was observed (Table 1, entries 1-5). Inversion of diastereoselectivity by a change in reaction mode was then envisioned. Initially, the reaction of the zinc amide-homoenolates 2 (Metal = ZnI), generated in THF by Knochel's method, with benzaldehyde by using BF,-OEtz or chlorotrimethylsilane as an activator was examined, however, the reaction did not work.6 In examining the reaction conditions, we found that the zinc amide-homoenolate can be easily prepared with activated zinc' in CH2Cl, in the presence of 0.05-0.I equiv. of chlorotrimethylsilane at room temperature for 0.5 -1 h. The corresponding ester-homoenolate could not be prepared by the same method. The generated zinc amide- homoenolates were found to react with aromatic aldehydes in the presence of chlorotrimethylsilane. For example, the homoenolates reacted with benzaldehyde at room temperature exothermically in the presence of 2 equiv. of chlorotrimethyl- silane to give anti-3 preferentially (entries 6 and 7h8 Other aromatic aldehydes also gave anri-adducts preferentially (entries 8-10), In the silyl reagents examined, iodotrimethyl- silane and trimethylsilyl trifluoromethanesulfonate were also effective, however, chlorotriethylsilane was less effective and tert-butylchlorodimethylsilanewas ineffective.In the range of 0-40 "C, the reaction temperature did not affect the anti:syn ratios. The reaction of acetophenone with the zinc amide- Table 1 Diastereoselective reactions of the homoenolate 2 with several aromatic aldehydes Entry 1 R3 Method" aldehydes gave syn-adducts pre- reagents in the presence of chlorotrimethylsilane R' @N /OLtCR' la R1R2=-CH-lb R', R2=Pt 2 R' @N OH anti-3 Scheme 1 homoenolates under the above reaction conditions resulted in failure. Transformation of adducts into lactones was also examined. Though the treatment of the diastereoisomerically pure anti-3b (R3= Ph) with a catalytic amount of p-TsOH gave a diastereoisomeric mixture of lactones, treatment with 6 equiv.of CF,CO,H in THF at reflux for 18.5 h gave the diastereoisomerically pure anti-lactone in quantitative yield. In summary, we have demonstrated for the first time that preferential formation of each diastereoisomer is possible in the reactions of chiral amide-homoenolates and aromatic aldehydes. Experimental Typical Procedure (Method B).-To a mixture of the iodide 1 (3 mmol) and activated Zn '(3.6 mmol) in CH,CIZ (4 cm3) was added chlorotrimethylsilane (0.3 mmol). The mixture was stirred at room temperature for 1 h, whilst the consumption of the iodide 1was monitored by TLC hexane-EtOAc (1 : 1): lb, R, 0.561.The relevant aldehyde (2.1 mmol) and further chloromethylsilane (6 mmol) were then added to the mixture, which was stirred for 0.5-3 h at room temperature and then diluted with CH,Cl, and washed with water. Purification by silica gel column chromatography or preparative TLC with ethyl acetate-hexane as eluent gave the pure syn-3 and anti-3 Time (h) Yield 3 () Ratio syn : anri I la Ph 97:3A 3 80 2 lb Ph 94:6A 3 79 3 lb o-MeOC,H, 85:15A 3 87 4 5 6 lb Ib la 2-Fury1 I-Naphtyl Ph 96:4 91 :9 19:81 A A B 0.5 61 14 59 2.5 72 7 lb Ph 13:87B 2.5 82 8 lb o-MeOC,H, 25: 75B 0.6 95 9 10 lb lb 2-Fury1 1-Naphtyl 38 :62 21:79 B B 0.6 60 2.5 84 Method A: Metal = Ti(OPr'),, THF, 0 "C--room temp.; Method B: Metal = ZnI, 2 equiv.Me,SiCI, CH,Cl,, room temp adducts hexane-EtOAc (1 : 1): syn3b (R3= Ph), Rf 0.37; anti-3b (R3= Ph), Rf 0.331 or a mixture of the two. Yields were based on the aldehydes and the diastereoisomeric ratios were determined by 'H NMR (270 MHz) analysis of the crude product. References 1 J. D. Morrison, Asymmetric Synthesis, Academic Press, New York, 1983-1985, VO~S. 1-5. 2 G. J. McGarvey and M. Kimura, J. Urg. Chem., 1982, 47, 5420; P. G. McDougal, B. D. Condon, M. D. Laffosse, Jr., A. M. Lauro and D. VanDerveer, Tetrahedron Left.,1988,21,2547; W. H. Miles, S. L. Rovera and J. D. Rosario, Tetrahedron Lett., 1992, 33, 305; R. Duddu, M. Eckhardt, M. Furlong, H.P. Knoess, S. Berger and P. Knochel, Tetrahedron, 1994, 50, 2415; P. Beak, S. T. Kerrick, S. Wu and J. Chu, J. Am. Chem. Soc., 1994,116, 3231 and references cited therein. 3 I. Kuwajima and E. Nakamura, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 199 I, vol. 2, pp. 441454. J. CHEM. SOC. PERKIN TRANS. 1 1995 4 M. C. P. Yeh and P.Knochel, Tetrahedron Lett., 1988, 29, 2395; P. Knochel and R. D. Singer, Chem. Rev., 1993,93,2117. 5 Two examples of the reaction of a chiral ester-homoenolate with aldehydes are reported: H. Ochiai, T. Nishihara, Y. Tamaru and Z. Yoshida, J. Org. Chem., 1988,53, 1343. 6 Recently, a BF,.Et,O mediated reaction of an organozinc iodide with an aldehyde in CH,Cl, was reported: U. Koert, H. Wagner and U. Pidum, Chem. Ber., 1994, 127, 1447. 7 S. Yamamura, M. Toda and Y. Hirata, Org. Synth., Coll. Vol. VI, 1988,289. 8 Skeletal rearrangement is reported in the chlorotrimethylsilane mediated reaction of a chiral zinc ester-homoenolate with benzaldehyde: Y. Tamaru, T. Nakamura, M. Sakaguchi, H. Ochiai and Z. Yoshida, J. Chem. Soc., Chem. Commun., 1988,610. Paper 41076 13C Received 13th December 1994 Accepted 14th December 1994
机译:J. CHEM. SOC. PERKIN 译.I 1995 酰胺高烯醇酸盐与芳香醛反应中的非对映控制 Satoshi Sakami, Takashi Houkawa, Morio Asaoka and Hisashi Takei 东京工业大学生命化学系,Midoriku, Yokohama 227, Japan 手性Ti'“酰胺-均烯醇化物与芳香族的反应占主导地位,而相应的Zn”优先给予抗加合物。与手性有机金属试剂的立体控制反应在不对称合成中具有无可争议的重要性。虽然有很多关于手性烯醇酸盐、烯丙基金属试剂和相关物质的立体控制的报道,但只有少数例子出现了简单的手性有机金属试剂。本文介绍了在各种条件下与仲同烯醇酸盐的非对映控制以及相关反应的初步结果。选择酰胺-高烯醇酸盐 2 是因为酰胺的高螯合能力有望导致高立体选择性。通过Knochel方法生成酰胺-高烯醇酸盐,并通过应用落合方法5(方法A)与醛类uia钛试剂反应。观察到高度的同义选择性(表1,条目1-5)。然后设想通过改变反应模式来反转非对映选择性。最初,检查了通过Knochel方法在THF中生成的锌酰胺-高烯醇酸盐2(金属=ZnI)与苯甲醛的反应,通过使用BF,-OEtz或氯三甲基硅烷作为活化剂,但是,该反应不起作用.6在检查反应条件时,我们发现酰胺-高烯醇化锌可以很容易地在CH2Cl中与活化的锌'制备,在室温下0.5-1小时,在0.05-0.I当量的氯三甲基硅烷存在下,0.5-1小时。相应的酯-高烯醇酯不能用相同的方法制备。发现生成的酰胺-高烯醇化锌在三甲基氯硅烷存在下与芳香醛反应。例如,高烯醇酸盐在室温下与苯甲醛在2当量的三甲基氯烷存在下放热反应,优先得到抗-3(条目6和7h8其他芳香醛也优先给予anri-加合物(条目8-10),在所检查的甲硅烷试剂中,碘三甲基硅烷和三甲基硅基三氟甲磺酸酯也有效,但三乙基氯硅烷效果较差,叔丁基氯二甲基硅烷无效。在0-40“C范围内,反应温度不影响抗:syn比。苯乙酮与酰胺锌的反应-表1 高烯醇酯2与几种芳香醛的非对映选择性反应 条目1 R3法“ 醛类在氯三甲基硅烷存在下给予syn-adducts预试剂 R' @N /OLtCR' la R1R2=-[CH&-lb R', R2=Pt 2 R' @N OH anti-3 Scheme 1 homoenolates 在上述反应条件下导致失效。还检查了加合物向内酯的转化。虽然用催化量的p-TsOH处理非对映异构体纯的抗-3b(R3=Ph)得到非对映异构体的内酯混合物,但在回流18.5小时时用6当量的CF,CO,H在THF中处理18.5小时,得到非对映异构体纯的抗内酯的定量收率。总之,我们首次证明,在手性酰胺-高烯醇酸盐和芳香醛的反应中,每种非对映异构体的优先形成是可能的。实验典型步骤(方法B).-向碘化物1(3mmol)和活化Zn'(3.6mmol)的混合物中加入CH,CIZ(4 cm3)氯三甲基硅烷(0.3mmol)。将混合物在室温下搅拌1 h,同时用TLC [hexane-EtOAc (1 : 1):lb,R,0.561监测碘化物1的消耗量,然后将相关醛(2.1 mmol)和进一步的氯甲基硅烷(6 mmol)加入混合物中,在室温下搅拌0.5-3 h,然后用CH稀释,Cl,并用水洗涤。用硅胶柱层析或制备型TLC纯化,以乙酸乙酯-己烷为洗脱液,得到纯的syn-3和抗-3 时间 (h) 产率 3 (%) 比率 syn : anri I la Ph 97:3A 3 80 2 lb Ph 94:6A 3 79 3 lb o-MeOC,H, 85:15A 3 87 4 5 6 lb Ib la 2-Fury1 I-Naphtyl Ph 96:4 91 :9 19:81 A A B 0.5 61 14 59 2.5 72 7 lb Ph 13:87B 2.5 828 lb o-MeOC,H, 25: 75B 0.6 95 9 10 lb lb 2-Fury1 1-Naphtyl 38 :62 21:79 B B 0.6 60 2.5 84 方法 A: 金属 = Ti(OPr'),, THF, 0 “C--室温;方法 B:金属 = ZnI,2 当量。Me,SiCI,CH,Cl,,室温加合物[己烷-EtOAc(1:1):syn3b(R3=Ph),Rf 0.37;抗-3b(R3=Ph),Rf 0.331或两者的混合物。产率基于醛,非对映异构体比率通过对粗产品的'H NMR(270 MHz)分析确定。参考文献 1 J. D. Morrison, Asymmetric Synthesis, Academic Press, New York, 1983-1985, VO~S. 1-5.2 G. J. McGarvey 和 M. Kimura, J. Urg.化学, 1982, 47, 5420;P. G. McDougal, B. D. Condon, M. D. Laffosse, Jr., A. M. Lauro 和 D. VanDerveer, Tetrahedron Left.,1988,21,2547;W. H. Miles, S. L. Rovera 和 J. D. Rosario, Tetrahedron Lett., 1992, 33, 305;R. Duddu、M. Eckhardt、M. Furlong、H.P. Knoess、S. Berger 和 P. Knochel,四面体,1994,50,2415;P. Beak, S. T. Kerrick, S. Wu and J. Chu, J. Am. Chem. Soc., 1994,116, 3231 以及其中引用的参考文献。3 I. Kuwajima 和 E. Nakamura, in Comprehensive Organic Synthesis, ed. B. M. Trost and I. Fleming, Pergamon Press, Oxford, 199 I, vol. 2, pp. 441454.J.CHEM. SOC. PERKIN TRANS. 1 1995 4 M. C. P. Yeh and P.Knochel, Tetrahedron Lett., 1988, 29, 2395;P. Knochel 和 RD Singer,化学修订版,1993,93,2117。5 报道了手性酯-高烯醇酯与醛反应的两个例子:H. Ochiai, T. Nishihara, Y. Tamaru 和 Z. Yoshida, J. Org. Chem., 1988,53, 1343。6 最近,一个BF,。据报道,Et,O介导的有机碘化物与CH,Cl中的醛的反应:U. Koert, H. Wagner and U. Pidum, Chem. Ber., 1994, 127, 1447.7 S. Yamamura, M. Toda 和 Y. Hirata, Org. Synth., Coll. Vol. VI, 1988,289.8 在三甲基氯硅烷介导的手性锌酯-高烯醇酯与苯甲醛的反应中报道了骨架重排:Y. Tamaru, T. Nakamura, M. Sakaguchi, H. Ochiai and Z. Yoshida, J. Chem. Soc., Chem. Commun., 1988,610.论文 41076 13C 收稿日期 1994 年 12 月 13 日 录用日期 1994 年 12 月 14 日

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号